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Abstract

Our goal is to better comprehend procedu-
ral text, e.g., a paragraph about photosynthe-
sis, by not only predicting what happens, but
why some actions need to happen before oth-
ers. Our approach builds on a prior process
comprehension framework for predicting ac-
tions’ effects, to also identify subsequent steps
that those effects enable. We present our new
model (XPAD) that biases effect predictions
towards those that (1) explain more of the ac-
tions in the paragraph and (2) are more plau-
sible with respect to background knowledge.
We also extend an existing benchmark dataset
for procedural text comprehension, ProPara,
by adding the new task of explaining actions
by predicting their dependencies. We find that
XPAD significantly outperforms prior systems
on this task, while maintaining the perfor-
mance on the original task in ProPara. The
dataset is available at http://data.allenai.
org/propara

1 Introduction

Procedural text is common in natural language, for
example in recipes, how-to guides, and science pro-
cesses, but understanding it remains a major chal-
lenge. While there has been substantial prior work
on extracting the sequence of actions (“scripts”)
from such texts, the task of identifying why the
sequence is the way it is has received less attention,
and is the goal of this work. While “why” can mean
many things, we treat it here as describing how one
action produces effects that are required by another.
For example in Figure 1, “CO2 enters the leaf” is
necessary because it results in “CO2 is at the leaf”,
a precondition for “CO2 forms sugar”. (Note that
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Figure 1: An action sequence (black) describes the or-
der that actions happen, but not why. We add the new
task of also predicting why the actions are needed, in
the form of the actions’ effects (blue) and subsequent
actions that depend on those effects (green). While a
system that predicts effects without considering depen-
dencies can make errors (red, top part), we obtain better
predictions by biasing the system to predict effects that
also result in more dependencies (lower part).

an action does not directly depend on previous ac-
tions, but rather on the state of the world result-
ing from previous actions). If one could determine
such rationales, new capabilities would become
possible, including explanation, identifying alter-
native event orderings, and answering "what if..."
questions. However, this task is challenging as it
requires knowledge of the preconditions and effects
of actions, typically unstated in the text itself.

Recent work in neural process modeling goes
partway towards our goal by modeling the effects
of actions, using annotated training data, allow-
ing the states of entities to be tracked through-
out a paragraph, e.g., EntNet (Henaff et al., 2017),
NPN (Bosselut et al., 2018), and ProStruct (Tan-

http://data.allenai.org/propara
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don et al., 2018). However, these systems do not
consider the purpose of those effects in the overall
action sequence. As a result, they are unaware if
they predict effects that have no apparent purpose
in the process, possibly indicating a prediction error
(e.g., the erroneous predictions in red in Figure 1).

To address these limitations, we extend proce-
dural text comprehension with an additional task
of predicting the dependencies between steps, in
the form of their effects and which subsequent ac-
tion(s) become possible. Building upon the state-of-
the-art framework for predicting effects of actions,
we present a new model, called XPAD (“eXPlain-
ing Action Dependencies”) that also considers the
purpose of those effects. Specifically, XPAD bi-
ases those predictions towards those that (1) ex-
plain more of the actions in the paragraph and
(2) are more plausible with respect to background
knowledge. On a benchmark dataset for procedural
text comprehension, ProPara (Dalvi et al., 2018),
XPAD significantly improves on the prediction and
explanation of action dependencies compared to
prior systems, while also matching state-of-the-art
results on the original tasks. We thus contribute:

1. A new task for procedural text comprehension,
namely predicting and explaining the depen-
dencies between actions (“what depends on
what, and why”), including an additional de-
pendency graph dataset for ProPara.

2. A model, XPAD, that significantly outper-
forms prior systems at predicting and explain-
ing action dependencies, while maintaining its
performance on the original tasks in ProPara.

2 Related Work

Understanding procedural text has a long history
in AI. Early work attempted to construct seman-
tic representations (“scripts”) of event sequences
(or partial orders) from text, including representa-
tions of the goals, effects, and purpose of actions,
e.g., (Schank and Abelson, 1977; DeJong, 1979;
Cullingford, 1986; Mooney, 1986). Some of these
systems could explain why actions occurred in text,
similar to our goals here, but only on a handful of
toy examples using hand-coded background knowl-
edge, and proved difficult to scale. More recent
work on event extraction and script learning has
proved more effective at extracting event/action se-
quences from text using statistical methods, e.g.,
(Chambers and Jurafsky, 2008), and neural tech-
niques, e.g., (Modi and Titov, 2014; Modi, 2016;

Pichotta and Mooney, 2016), but have largely fo-
cused on what happens and in what order, rather
than why. For example, such representations can-
not answer questions about which events would
fail if an earlier action in a sequence did not occur.
The 2014 ProRead system (Scaria et al., 2013; Be-
rant et al., 2014) included dependency relationships
between events that it extracted, but assessed de-
pendencies based on surface language cues, hence
could not explain why those dependencies held.

There has also been a line of research in read-
ing procedural text in which the goal has been to
track how entities’ states change with time, e.g.,
EntNet (Henaff et al., 2017), ProStruct (Tandon
et al., 2018), and Neural Process Networks (Bosse-
lut et al., 2018), applied to procedural text such
as cooking recipes (Kiddon et al., 2016), science
processes (Dalvi et al., 2018), or toy stories (We-
ston et al., 2015). Using annotated data, these sys-
tems learn to predict the effects of actions from
text, allowing simple simulations of how the world
changes throughout the process. We build on this
line of work to identify the purpose of actions, by
connecting their effects to subsequent actions.

In addition to signal from training data, many
systems use background knowledge to help bias
predictions towards those consistent with that
knowledge. For example, (McLauchlan, 2004) pre-
dicts prepositional phrase attachments that are
more consistent with unambiguous attachments de-
rived from thesaurii; (Clark and Harrison, 2009)
tune a parser to prefer bracketings consistent with
frequent bracketings stored a text-derived corpus
of bracketings; and (Tandon et al., 2018) predicts
state changes consistent with those seen in a large
text corpus. For our purposes, while KBs such as
(Speer and Havasi, 2013; Chu et al., 2017; Park and
Nezhad, 2018) contain useful information about
action dependencies (e.g., “smoking can cause can-
cer”), they lack explanations for those links. In-
stead, we create a KB of dependency links with
explanations (Section 5.3), allowing us to similarly
bias predictions with background knowledge.

3 Problem Definition

The input to our system is a paragraph of proce-
dural text, along with a list of the participant enti-
ties in the procedure. The output is a state change
matrix highlighting the changes undergone by the
entities, as well as a dependency explanation graph
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Figure 2: A procedural paragraph and target entities are provided as input. The task is to predict the state change
matrix π, along with the dependency explanation graph G between steps (red, overlayed on the step sequence). πt j

refers to the state change happening to entity e j in step st. In the ProPara task, there are 4 possible state changes
denoted by ’M’ (Move), ’C’ (Create), ’D’ (Destroy), and ’-’ (no change). Further, G describes which steps enable
which other steps and how. For example, s4 enables s5 by creating mixture, required by s5.

that encodes “what action1 depends on what, and
why”, as illustrated in Figure 2. This problem defi-
nition is derived from the one used for the ProPara
dataset (Dalvi et al., 2018), with the key addition
of the dependency explanation graph. Although we
use ProPara to illustrate and evaluate our work here,
our approach is not specific to the details of that
particular dataset.
Paragraph: We define a paragraph of procedural
text S = 〈s1, · · · , sT 〉 as a sequence of sentences
that describe a procedure (e.g., photosynthesis). We
assume that sentences are chronologically ordered
and treat a sentence st as a step executed at time t.2

Participant Entities: We assume that the set of
participant entities E = {e1, · · · , en} in the para-
graph S is given. Notice that E includes only enti-
ties that participate in the process where their state
changes at some steps.
State Change Matrix: For each entity e j ∈ E,
the system tracks how its properties change (e.g.,
location, existence) after each step. We enumerate
all the state changes in a T × n matrix π, where
πt j denote how e j has changed after step st. For
ProPara, we use just four possible state changes for
πt j, namely {Move, Create, Destroy, None},
sufficient to model the properties tracked in the
dataset. (More generally, additional state changes
could be used provided their effects on entity prop-
erties is clearly defined.) Move means that the loca-
tion of e j changes after st. Create and Destroy

1We use a broad definition of action to mean any event that
changes the state of the world (including non-volitional events
such as roots absorbing water).

2This assumption holds in ProPara, the dataset used in this
work. However, our techniques can generally be applied as
long as a partial order of events is given.

indicate e j starts or ceases to exist. Nonemeans that
the state of e j remains unchanged. A state change
can optionally take arguments, e.g., Move is associ-
ated with before and after locations.

Dependency Explanation Graph: In addition to
being able to predict when entities undergo state
changes, the system also needs to understand the
dependency relationships between steps in a pro-
cedure. That is, for a step si to be executable, the
system must be able to identify which previous
steps are required to have been completed first. We
represent these dependency relationships in proce-
dural text using a dependency explanation graph
G = 〈S ,E〉, where each node is a step si ∈ S and
a directed edge (si, s j) ∈ E indicates that si is a
precondition of s j (i < j). Moreover, each edge
is associated with the explanation in the form of
the entity state change that begets this dependency.
For example, in the example shown in Fig. 2, both
s2 and s3 are the parent nodes of s4. For light, wa-
ter, CO2 to form the mixture in s4, the water has
to move to the leaf in s2 (i.e., π21 = Move), and
light and CO2 also need to come to the leaf in s3
(i.e., π32 = π33 = Move). Note that the dependency
graph is not the “script” (event sequence) of the
process, but an overlay on the script that explains
why some actions need to happen before others.
Note also that the state changes are fully specified
(including the from and to locations) - the location
information is dropped in Figure 2 for simplicity.

4 The Dependency Graph Dataset

Dependency graphs were added to the ProPara
dataset using a mixture of manual and automated
methods. First, an algorithm was used to estimate
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dependencies using a heuristic method (below).
Then, for the test set, these dependencies were
manually reviewed and corrected. Approximately
15% of these dependencies needed to be changed,
suggesting the heuristic algorithm is a reasonable
approximation of the ground truth. The train and
dev sets remain with the automatically generated
(noisy but more numerous) dependency graphs.

As well as helping to augment the ProPara
dataset, the algorithm can be used to automatically
add approximate explanation graphs to existing
models’ state change predictions. On first sight,
this might seem like a simple solution to the de-
pendency prediction task. However, as we show
later, this approach does not produce good results.
This is because models’ state change predictions
were generated without regard for their explainabil-
ity, and hence prediction errors can cascade into
explainability errors. A better solution, which is
the basis of XPAD, is to minimize a joint loss for
both state change and explainability. In this way,
an algorithm will be steered towards state changes
that are also explainable (Figure 1).

The dependency graph algorithm is as follows,
and is based on a coherence assumption: If step s j

changes the state of entity ek, we assume that the
reason s j was included in the paragraph is because
the next step mentioning ek requires that change as
a precondition. By searching forward for the first
subsequent step s j in which ek is again mentioned,
or changes state again, we add an enable edge in
the dependency explanation graph that points from
si to s j, with the explanation label πik. As shown in
Sec. 7.1, these dependency graphs that we added
are mostly accurate (F1 ≈ 0.85).

5 XPAD Model

Our model builds on the approach used in the
ProStruct system (Tandon et al., 2018), namely an
encoder-decoder approach with beam search decod-
ing. We follow its design for the encoder, but use a
modified decoder that also generates dependency
graphs, and biases search towards graphs that are
both more connected and more a priori likely.

5.1 Encoder

For each sentence st and each entity e j, the encoder
creates a vector ct j, capturing how the actions in st

affect e j (Figure 3). During encoding, each word
wi in st is first represented by its GloVe vector,
concatenated with two indicator variables: whether

Figure 3: Encoder-decoder architecture used in XPAD:
First encode the action of each sentence st on entity e j,
then decode to a predicted state change (state change
arguments not shown). For example, the action Roots
absorb water from soil is predicted to Move (M) the
water (from soil to roots, not shown). Global predic-
tions are generated through beam search.

Figure 4: XPAD’s beam search for the best decoding,
one sentence (step) at a time, showing the predicted
state changes and the resulting dependency graph after
each step. In step 2, XPAD chooses between predict-
ing whether water is destroyed (D, upper figure) or
moved (M, lower). Predicting M results in a more con-
nected dependency graph (as water is mentioned again
in step 4), hence the lower choice is likely preferred
(Eq. (4)) by our dependency graph score. This score
also assesses how a priori likely it is that s4’s movement
of water enables s5, using a background KB (Eq. (5)).

the word refers to e j and whether the word is a
verb. The sentence is then fed into a BiLSTM to
generate a contextualized vector hi, which is then
passed to a bilinear attention layer: ai = hiBhev +

b, where B and b are learned parameters, and hev

is the concatenation of he and hv (the averaged
contextualized embedding of the entity and the verb
words, respectively). The output vector ct j is the
attention-weighted sum of the hi: ct j =

∑I
i=1 ai · hi.

Each ct j will be decoded (Sec. 5.2) into one of
K possible state changes. (For the ProPara applica-
tion, K = 4 for {create, move, destroy, none}).
As preparation for this, we pass each ct j through a
feedforward layer to generate K logits that denote
how likely each entity e j is to undergo each state
change during step st. For changes that take addi-
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tional arguments (e.g., move), the arguments are
chosen using standard span prediction techniques
over the encoded input hi (Seo et al., 2017a).

5.2 Decoder
The goal of decoding is to determine the state
change matrix π and the dependency graph G.
While each element πt j of the state change matrix
π could be determined solely by choosing the state
change with the highest logit value, this greedy,
local approach often results in nonsensical predic-
tions (e.g., an entity is moved before being cre-
ated). To avoid this, XPAD instead performs a beam
search of possible decodings, one sentence st at a
time, using a scoring function that includes terms
that ensure global consistency, as shown in Fig. 4.
Let πt be the state change matrix up to step t, and
Gt be the dependency graph up to step t. As πt is
constructed, Gt is derived from it deterministically
using the same heuristic procedure described in
Section 4. Most importantly, the scoring function
used in the beam search is a function of both πt and
Gt. This directs search towards state change predic-
tions that are both globally consistent and produce
a dependency graph that is well connected and a
priori likely. Finally, the decoder outputs the com-
plete state change grid π (= πT ) and dependency
graph G (= GT ) from step 1 to T .

5.3 Dependency Aware Scoring Function
At each decoding step t, XPAD explores different
options of πt (state changes for all entities) and
Gt (corresponding dependency explanation graphs)
as illustrated in Fig. 4. In particular, it scores the
candidates at step t based on two components:

φ(πt,Gt) = λ · f (πt) + (1 − λ) · g(Gt|πt), (1)

where (1) f (πt) is the state change score based on
the likelihood of selected state changes at step t
given the text and the state change history from
steps s1 to st−1, (2) g(Gt|πt) is the dependency
graph score based on the connectivity and likeli-
hood of the resulting dependency explanation graph
Gt, and (3) λ is a hyper-parameter that determines
the importance of the accuracy of the state changes
vs. the coherence of the action dependency graph.

State Change Score: To compute f (πt), we
reuse the scoring function proposed by ProStruct:

f (πt) =

|E|∑
j=1

(
α · logit(πt j) + (1 − α) · log Pext(πt j|e j)

)
, (2)

where α is a hyper-parameter controlling the de-
gree of bias, logit(πt j) is the logit value supplied by
the encoder for the local prediction, and Pext(πt j|e j)
indicates how likely entity e j will go through some
change defined in πt j, based on the topic of the pro-
cedural text. We use the knowledge base published
by Tandon et al. (2018) to compute Pext(πt j|e j).

Dependency Graph Score: g(Gt|πt) is the score
of the resulting dependency graph given the se-
lected state changes πt, defined as:

g(Gt|πt) = β · gedge(Gt|πt) + (1 − β) · gkb(Gt) (3)

where (1) gedge(Gt|πt) scores πt’s contributions to
the dependency graph, (2) gkb(Gt) encodes how
a priori likely the added dependency edges, com-
puted using background knowledge, and (3) β is a
hyperparameter tuned on the dev set.

With the help of the dependency graph score,
XPAD is able to bias the search toward predictions
that have an identifiable purpose (i.e., dependency
edges), and toward dependency graphs that are
more likely according to the background knowl-
edge. Next, we describe scores gedge and gkb in
more details.

(a) Score gedge: Actions with Purpose
We compute gedge in Eq. (3) to bias the search to-
ward dependency graphs that are more connected:

gedge(Gt|πt) =

|E|∑
j=1

log
(
1 + scorep(Gt|πt j)

)
, (4)

where scorep is assigned based on whether πt j re-
sults in a purpose for step st or not, as follows:

scorep(Gt|πt j) =



+c, if πt j adds an edge to Gt;
0, if no edge can be added

to Gt as e j isn’t mentioned later;
−c, if πt j doesn’t add an edge

to Gt and e j is mentioned later.

where 0 < c < 1 is a hyper-parameter tuned on
the dev set. Conceptually, this scoring function
checks whether a particular state change predic-
tion results in a connection in the dependency ex-
planation graph Gt. For example, if πt j = Create
entity e and e is mentioned in a later step sk,
then an edge will be added between st and sk to
Gt. Consequently, scorep = c > 0, resulting in a
positive boost in the score for πt j.
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(b) Score gkb: Action Dependency Priors
To distinguish likely dependency links (e.g., Ei j in
Gt) from unlikely ones, we also bias the predictions
in Equation 3 with gkb. The scoring function gkb

computes the prior likelihood of each dependency
link Ei j that would be added to Gt, as a result of the
predicted actions πik ∈ πi. This bias is particularly
helpful when there is a limited amount of training
data. If Et is the set of edges added to Gt because
of selected state changes πt, then

gKB(Gt) =
∑
Ei j∈Et

log
(
1 + scoree(Ei j)

)
(5)

where scoree(Ei j) scores the action dependency
link (if any, 0 otherwise) added by action πik on
an entity ek that is common to steps si and s j.
For example, in Figure 2, action π11 adds an edge
MOVE(water), between sentences “Roots absorb
water." and “The water flows to the leaf."

We need to estimate the likelihood of Ei j (i.e.,
the likelihood that si can enable s j via πik). This
information (especially πik) is not present in any
existing KB. Therefore, we train a model using
a large collection of positive and negative exam-
ples of valid/invalid edges. To generate these train-
ing examples, we first extract a large collection of
procedural texts from WikiHow.com, which con-
tains 1.75M steps from 227K processes across real-
world domains, including health, finance, educa-
tion, home, food, hobbies, etc. On each text, we
apply a rule-based system (Clark et al., 2018) that
noisily generates πtrain, and then apply the heuris-
tics from Section 4 to obtainGtrain. The distribution
in Gtrain can be quite different from that in ProPara
(the current task), so we append Gtrain with de-
pendency graphs obtained from the training set
in ProPara. We then decompose Gtrain into its Ei j

edges (negative examples are created by reversing
these edges). This leads to 324,462 training exam-
ples. We then add 2,201 examples derived from the
ProPara train set. This use of hand-written rules
to generate a large number of potentially noisy ex-
amples follows others in the literature, e.g. (Sharp
et al., 2016; Ahn et al., 2016; Bosselut et al., 2018).

To accommodate for lexical variations, we em-
bed the database of training data in a neural model.
Our model itself takes as input Ei j and outputs the
likelihood of Ei j. To do this, an embedding for Ei j

is created using a deep network of biLSTMs, pro-
ducing a contextual embedding based on the token
level embeddings of si, s j and the state change vec-
tor πik. This contextual embedding is then decoded

using a feedforward network to predict a score for
whether si enabled s j through πik. The loss func-
tion is designed such that errors on the training
examples coming from ProPara are penalized θ

times more than those from WikiHow, where θ is a
hyperparameter tuned on the dev set.

While gedge only scores whether the same entity
is used in the two connected events or not, ignoring
location information, gkb models how likely there
is a dependency between the two events, including
using the from/to location of an entity. For exam-
ple, gkb can model that moving ‘light’ and ‘CO2’
to ‘location=leaf’ is important before they can be
turned into a ‘mixture’ (Figure 2).

5.4 Training and Testing XPAD
At training time, XPAD follows only the correct
(gold) path through the search space, and learns
to minimize the joint loss of predicting the correct
state changes and dependency explanation graph
for the paragraph. At test time, XPAD performs a
beam search to predict the most likely state changes
and dependency explanation graph.

5.5 Implementation Details for XPAD
We implement XPAD in PyTorch using AllenNLP
(Gardner et al., 2018). We use the dataset reader
published in ProStruct’s publicly available code.
We use 100D Glove embeddings (Pennington et al.,
2014), trained on Wikipedia 2014 and Gigaword 5
corpora (6B tokens, 400K vocab, uncased). Start-
ing from glove embeddings appended by entity and
verb indicators, we use bidirectional LSTM layer
to create contextual representation for every word.
We use 100D hidden representations for the bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
shared between all inputs (each direction uses 50D
hidden vectors). The attention layer on top of BiL-
STM, uses a bilinear similarity function similar
to (Chen et al., 2016) to compute attention weights
over the contextual embedding for every word.

To compute the likelihood of all state changes
individually, we use a single layer feedforward net-
work with input dimension of 100 and output 4.
We then use constrained decoder during training as
explained in Section 5.2. We tune the hyperparam-
eters in Equations 1, 2, and 3 as λ = 0.5, α = 0.8,
β = 0.8. We use Adadelta optimizer (Zeiler, 2012)
with learning rate 0.2 to minimize total loss.

To make predictions, we use a constrained de-
coder with beam size of 20, i.e. top 20 choices are
explored at each step.
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6 Experiments

6.1 Evaluation metric and baselines

To evaluate XPAD, we measure its performance
on dependency explanations, as well as its per-
formance on the original state change prediction
task. For state change prediction, we use the same
dataset and evaluation metric described in (Tandon
et al., 2018), consisting of 1095 test questions for
the inputs, outputs, conversions, and movements
in the process (straighforwardly derivable from the
predicted state change matrix). For dependency ex-
planations, we compare the curated, gold graphs
Ggold that we added to ProPara (Section 4) with the
predicted dependency graphs Gpred. Each edge in a
graph contains 3 elements of explanation for “Why
st?”, namely “st enables su due to a state change
πtk in entity ek”, resulting in 2,814 elements to pre-
dict in the test set. We compute the precision and
recall of predicting these elements for all steps st,
yielding an overall F1 score.

We consider the state-of-the-art process compre-
hension models reported in (Tandon et al., 2018)
as our baselines, including Recurrent Entity Net-
works (EntNet) (Henaff et al., 2017), Query Re-
duction Networks (QRN) (Seo et al., 2017b), Pro-
Local and ProGlobal (Dalvi et al., 2018) and fi-
nally, ProStruct (Tandon et al., 2018). These mod-
els output state-change predictions, which are used
to create the corresponding dependency explana-
tion graph using the method in Section 4, but do not
bias their state change predictions towards those
that appear purposeful.

6.2 Results

Results on the proposed dependency task:

Model P R F1

ProLocal 24.7 18.0 20.8
QRN 32.6 30.3 31.4
EntNet 32.8 38.6 35.5
ProStruct 76.3 21.3 33.4
ProGlobal 43.4 37.0 39.9

XPAD 62.0 32.9 43.0

Table 1: Results on the dependency task (test set).

Table 1 reports results of all models on the new
dependency task. XPAD significantly outperforms
the strongest baselines, ProGlobal and ProStruct,
by more than 3 points F1. XPAD has much higher
precision than ProGlobal with similar recall, sug-

gesting that XPAD’s dependency-aware decoder
helps it select more accurate dependencies. Com-
pared with ProStruct, it yields more than 11.6
points improvement on recall. As XPAD adds a
novel dependency layer on top of the ProStruct
architecture, we note that all these gains come ex-
clusively from the dependency layer.

Impact of XPAD components:
Table 2 shows the impact of removing dependency
graph scores from XPAD. Removing gkb, results
in a substantial (9 points) drop in recall, since the
action dependency priors uses background knowl-
edge to help the model discover dependency links
that the model could not infer from the current
paragraph. Further, removing gedge score results
in around 2 points drop in recall and a substan-
tial increase in precision (F1 is still lower). This
is because the gedge score encourages the model
to predict state changes that result in more action
dependency links, often at the cost of a drop in
precision. Thus, the gedge and gkb scores together
help XPAD discover meaningful action dependency
links.

Dependency Task
Ablation P R F1

XPAD 62.0 32.9 43.0
- gkb 67.9 23.1 34.5
- gkb - gedge 76.3 21.3 33.4

Table 2: Effect of ablating gedge and gkb from XPAD
(test set).

Results on the previous state-change task:
On the original state-change prediction task, we
find that XPAD performs slightly better (by 0.7
points F1) than the best published state-of-the-art
system ProStruct3, even though Equation 1 is not
optimized solely for that task (Table 3). This il-
lustrates that encouraging purposefulness in action
prediction not only produces more explainable ac-
tion sequences, but can improve the accuracy of
those action predictions themselves.

3Since XPAD was developed, two higher unpublished re-
sults of 57.6 and 62.5 on the state-change task have appeared
on arXiv (Das et al., 2019; Gupta and Durrett, 2019), their
systems developed contemporaneously with XPAD. In princi-
ple XPAD’s approach of jointly learning both state changes
and dependencies could be also applied in these new systems.
Our main contribution is to show that jointly learning state
changes and dependencies can produce more rational (explain-
able) results, without damaging (here, slightly improving) the
state change predictions themselves.
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P R F1

ProStruct 74.3 43.0 54.5
XPAD 70.5 45.3 55.2

Table 3: Results on the state-change task (test set),
comparing with the best published prior result.

7 Analysis and Discussion
7.1 Dependency Graph Computation Errors

Our heuristic algorithm for estimating the depen-
dency graph from state change predictions (Sec-
tion 4) makes a coherence assumption, namely that
the purpose of a state change on entity e is to en-
able the next event mentioning e. We now describe
classes of errors that the algorithm makes, by sum-
marizing errors that had to be corrected when cu-
rating the gold explanation graphs for the test set.
1. Coreference (synonymy) (35% of errors): Ref-
erence to a changed entity is missed if an alternative
wording is used, e.g.,

snow becomes ice...the mass grows smaller...
2. Unstated Linkage (25%): Sometimes use of an
entity will be implicit, e.g.,

Animals eat plants...Animals make waste [from
the plants]...

preventing finding what “eat plants” enables.
3. Ellipsis (15%): (Sometimes ungrammatical)
elided references to earlier entities will hide the
purpose of those entity’s state changes, e.g.,

Water flows downwards... Enters the dam...
Thus, this analysis suggests several ways that the
dependency graph computation could be improved.
4. Bridging Anaphora (15%): In some cases, a
sentence will refer indirectly to a changed entity,
e.g., by referring to its part, whole, or some other
association (i.e., an associative/bridging anaphoric
reference (Wei, 2014)). As the algorithm does not
resolve such indirect references, the purpose of the
action changing that entity is unrecognized, e.g.,

spark plug causes a spark...explosion occurs...
The leaf absorbs CO2... The plant produces O2..

5. Bad State Change Annotations (5%): In a few
cases, state change annotations are missing or in
error in the gold dataset, resulting in missing or
incorrect prediction of their purpose.
6. Long-Range Dependencies (5%): We assume
that an entity’s change is to enable the next men-
tioned use of that entity. This assumption is based
solely on typical protocols of discourse, and occa-
sionally is violated. For example:

Rainwater picks up CO2... Rainwater goes into
the soil... The water dissolves limestone...

Here the first action is a prerequisite for the third,
not the second, thus violating our assumption and
creating an error in the dependency graph.

Note that around 45% of the sentences in
ProPara have no associated state change be-
cause of unmodeled state changes (other than cre-
ate/destroy/move) or the presence of stative sen-
tences (no resultant state changes). As a result, the
purpose of such sentences is inherently unrecover-
able given these annotations, and out of reach of
XPAD (and any other model).

7.2 Qualitative Analysis of XPAD’s Results

Corrected Predictions
In many cases, the bias toward enables links re-
sults in XPAD predicting a state change when pre-
viously none had been predicted. For example, in
sentence (6) of the paragraph snippet below:

(6) Millions of years later the fossil forms.
(7) A person finds the fossil.
ProStruct (for step 6): None
XPAD: CREATE(fossil) [correct]

ProStruct incorrectly predicted no state changes
from (6), while XPAD (correctly) predicted that
a fossil was created. The extra evidence causing
XPAD to make this prediction is that it adds an
edge in the dependency graph, giving step (6) a
purpose, namely to enable step (7) in which the
fossil is found. There are many such examples.

Erroneous Predictions
Both of XPAD’s new biases encourage XPAD to
make state-change predictions that result in more
enables edges, either by counting them (gedge) or
summing their likelihoods (gkb), resulting in some
overlap in their overall effect (Table 6.2). The bias
can help predict missing state changes (e.g., above),
but can also cause XPAD to “hallucinate” state
changes with weak evidence, simply to give each
sentence a purpose. An example is:

(5) Carbon-based mixture stays underground.
(6) Humans discover this carbon-based mixture.
ProStruct (for step 5): None [correct]
XPAD: CREATE (carbon-based mixture)

Here, there is no action associated with step (5).
However, in part because this is the first mention
of carbon-based mixture, XPAD incorrectly labels
it as being created, giving step (5) a purpose of
enabling step (6). Although such errors occur, they
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are less common than the corrected predictions,
hence the improved overall performance.

Comparing the ablated versions of XPAD, we
can also see how the different biases play out. With-
out gkb, XPAD can sometimes predict enables
edges that are nonsensical with respect to back-
ground knowledge, for example,

(1) Nitrogen exists naturally in the atmosphere.
(9) Bacteria turn nitrogen into a gas.
XPAD (no gkb) (for step 1): CREATE (gas)
XPAD: None [correct]

In this example, XPAD without gkb produces an
incorrect prediction for (1) (that gas has been cre-
ated), as it results in an enables link from step
(1) to (9). However, the background KB deems it
unlikely that (1) enables (9); as a result, the full
XPAD makes no such prediction.

8 Conclusion

Our goal is to better comprehend procedural text
by not only predicting what happens, but why. To
do this, we have expanded the traditional state-
tracking task with the additional task of predict-
ing and explaining dependencies between steps,
and presented a new model, XPAD, for these tasks.
XPAD is biased to prefer predictions that have an
identifiable purpose (enables a subsequent step),
and where that purpose is more plausible (judged
using a large corpus). Experiments show that
XPAD significantly improves the predictions of cor-
rect dependencies between actions, while matching
state-of-the-art results on the earlier tasks.

Although our experiments have been with
ProPara, there is nothing intrinsic to XPAD’s archi-
tecture that limits it to that dataset’s design: Given
appropriate annotations, XPAD could be trained
with a richer set of state change operators, longer
paragraphs, and (with the addition of a temporal
ordering module, e.g., (Ning et al., 2017)) non-
chronological event orderings. In addition, given
additional hand-labeled training data, a system
might learn to directly predict dependency links
(instead of deriving them heuristically from state
changes). These would be valuable new directions
to pursue. The Dependency Graph dataset is avail-
able within http://data.allenai.org/propara
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