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Abstract

The state of the art in machine translation
(MT) is governed by neural approaches, which
typically provide superior translation accuracy
over statistical approaches. However, on the
closely related task of word alignment, tradi-
tional statistical word alignment models of-
ten remain the go-to solution. In this pa-
per, we present an approach to train a Trans-
former model to produce both accurate trans-
lations and alignments. We extract discrete
alignments from the attention probabilities
learnt during regular neural machine trans-
lation model training and leverage them in
a multi-task framework to optimize towards
translation and alignment objectives. We
demonstrate that our approach produces com-
petitive results compared to GIZA++ trained
IBM alignment models without sacrificing
translation accuracy and outperforms previous
attempts on Transformer model based word
alignment. Finally, by incorporating IBM
model alignments into our multi-task training,
we report significantly better alignment accu-
racies compared to GIZA++ on three publicly
available data sets. Our implementation has
been open-sourced1.

1 Introduction

Neural machine translation (NMT) constitutes the
state of the art in MT, with the Transformer model
architecture (Vaswani et al., 2017) beating other
neural architectures in competitive MT evalua-
tions. The attention mechanism used in NMT
models was motivated by the need to model word
alignments, however it is now well known that the
attention probabilities can differ significantly from
word alignments in the traditional sense (Koehn
and Knowles, 2017), since attending to the con-
text words rather than the aligned source words

1Code can be found at https://github.com/
pytorch/fairseq/pull/1095

might be helpful for translation. The presence of
multi-layer, multi-head attention mechanisms in
the Transformer model further complicate inter-
preting the attention probabilities and extracting
high quality discrete alignments from them.

Finding source to target word alignments has
many applications in the context of MT. A
straightforward application of word alignments is
to generate bilingual lexica from parallel corpora.
Word alignments have also been used for external
dictionary assisted translation (Chatterjee et al.,
2017; Alkhouli et al., 2018; Arthur et al., 2016) to
improve translation of low frequency words or to
comply with certain terminology guidelines. Doc-
uments and webpages often contain word anno-
tations such as formatting styles and hyperlinks,
which need to be preserved in the translation. In
such cases, word alignments can be used to trans-
fer these annotations from the source sentence to
its translation. In user facing translation services,
providing word alignments as additional informa-
tion to the users might improve their trust and con-
fidence, and also help them to diagnose problems
such as under-translation (Tu et al., 2016).

In this work, we introduce an approach that
teaches Transformer models to produce transla-
tions and interpretable alignments simultaneously:

• We use a multi-task loss function combin-
ing negative log likelihood (NLL) loss used
in regular NMT model training and an align-
ment loss supervising one attention head to
learn alignments (Section 4.2).

• Conditioning on past target context is essen-
tial for maintaining the auto-regressive prop-
erty for translation but can be limiting for
alignment. We alleviate this problem by
conditioning the different components of our
multi-task objective on different amounts of
context (Section 4.3).

https://github.com/pytorch/fairseq/pull/1095
https://github.com/pytorch/fairseq/pull/1095
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• We demonstrate that the system can be su-
pervised using seed alignments obtained by
carefully averaging the attention probabili-
ties of a regular NMT model (Section 4.1)
or alignments obtained from statistical align-
ment tools (Section 4.4)

We show that our model outperforms previous
neural approaches (Peter et al., 2017; Zenkel et al.,
2019) and statistical alignment models (Och and
Ney, 2003) in terms of alignment accuracy without
suffering any degradation of translation accuracy.

2 Preliminaries

2.1 Word Alignment Task
Given a sentence fJ1 = f1, . . . , fj , . . . fJ in
the source language and its translation eI1 =
e1, . . . , ei, . . . eI in the target language, an align-
ment A is defined as a subset of the Cartesian
product of the word positions (Och and Ney,
2003).

A ⊆ {(j, i) : j = 1, . . . , J ; i = 1, . . . , I} (1)

The word alignment task aims to find a discrete
alignment representing a many-to-many mapping
from the source words to their corresponding
translations in the target sentence.

2.2 Transformer Model
The Transformer model (Vaswani et al., 2017)
is an encoder-decoder model that only relies on
attention for computing the contextual represen-
tations for source and target sentences. Both
the encoder and decoder are composed of multi-
ple layers, each of which includes a multi-head
self-attention and a feed-forward sub-layer. Lay-
ers in the decoder additionally apply a multi-
head encoder-decoder attention between the self-
attention and the feed-forward sub-layers. To
maintain the auto-regressive property, the self-
attention sub-layer in the decoder attends to the
representations of only the past tokens computed
by the lower layer.

In this work, we will be focusing on guiding
the encoder-decoder attention sub-layer in the de-
coder. Let demb, dk, dv, N denote the embedding
dimension, dimensions of the key and value pro-
jections and number of heads, respectively. As
described in Vaswani et al. (2017), for this sub-
layer, the output of the previous decoder layer cor-
responding to the ith target token is used as a query

vector qi ∈ R1×demb and the encoder output for all
the source tokens are packed together as the value
V ∈ RJ×demb and key K ∈ RJ×demb matrices. To
compute the output M(qi,K, V ), N heads first
project the query vector and the key and value ma-
trices into different subspaces, compute attention
in their own subspaces, aggregate their outputs and
project back to the original space:

q̃i
n = qiWQ

n , K̃n = KWK
n , Ṽn = VW V

n (2)

H i
n = Attention(q̃i

n, K̃n, Ṽn) (3)

M(qi,K, V ) = Concat(H i
1, . . . ,H

i
N )WO, (4)

where the projection matrices WQ
n , WK

n , W V
n and

WO are learnt parameters of the nth head. Each
head employs a scaled dot-product attention:

Attention(q̃i
n, K̃n, Ṽn) = ainṼn, (5)

where ain = softmax(
q̃i
nK̃

T
n√

dk
). (6)

The vector ain ∈ R1×J denotes the attention prob-
abilities for the ith target token over all the source
tokens, computed by the nth attention head. For
any particular head, an attention matrix AI×J can
be constructed by grouping together the vectors ain
corresponding to all the target tokens. In the fol-
lowing sections, we analyze the quality of align-
ments that can be extracted from these attention
matrices AI×J and describe how they can be ef-
fectively supervised to learn word alignments.

3 Baseline Methods

A common baseline approach to extract word
alignments from a regular NMT trained Trans-
former, is to average over all attention matrices
AI×J computed across all layers and heads. The
resulting matrix gives a probability distribution
over all source tokens for each target token. This
distribution is then converted to a discrete align-
ment by aligning each target word to the corre-
sponding source word with the highest attention
probability.

Peter et al. (2017) guide the attention probabil-
ities to be close to the alignments obtained from
statistical MT toolkits by imposing an additional
loss based on the distance between the alignment
and attention distributions. They get improve-
ments in alignment accuracy over previous works
based on guided alignment training by feeding the
current target word to the attention module, pro-
viding it more context about the target sentence.
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Zenkel et al. (2019) proposed an method that
does not rely on alignments from external toolkits
for training. They instead add an extra attention
layer on top of the Transformer architecture and
directly optimize its activations towards predicting
the given target word.

All the above methods involve training mod-
els for both the directions to get bidirectional
alignments. These bidirectional alignments are
then merged using the grow diagonal heuris-
tic (Koehn et al., 2005).

4 Proposed Method

4.1 Averaging Layer-wise Attention Scores

The attention heads in a single layer are sym-
metrical, but the different layers themselves can
learn drastically different alignments. To better
understand the behavior of the encoder-decoder
attention learnt at different layers, we average
the attention matrices computed across all heads
within each layer and evaluate the obtained align-
ments. We show that the attention probabilities
from the penultimate layer naturally tend to learn
alignments and provide significantly better results
compared to naively averaging across all layers
(cf. Section 5.3). For the rest of the paper, we refer
to the former method as the layer average baseline.

4.2 Multi-task Learning

Translation and alignment tasks are very closely
related. NMT models with attention (Bahdanau
et al., 2015) have also shown to learn alignments
in the intermediate attention layer. A neural model
receiving supervision from given translations and
given alignments can therefore benefit from multi-
task learning by exploiting the correlations be-
tween these two tasks.

Annotating word alignments is a laborious and
expensive task, but the layer average baseline de-
scribed in Section 4.1 is able to generate reason-
ably good alignments in an unsupervised man-
ner. We thus use the alignments generated by the
layer average baseline as labels for supervising our
model. We first convert the alignments into a prob-
ability distribution over source tokens for every
target token. Let GI×J denote a 0-1 matrix such
that Gi,j = 1 if the jth source token is aligned to
the ith target token. We simply normalize the rows
of matrixG corresponding to target tokens that are
aligned to at least one source token to get a matrix
Gp. As described in Section 2.2, the Transformer

model computes multiple attention probability dis-
tributions over source tokens for every target token
across different heads and layers of the network.
Since we observed that the attention probabilities
from the penultimate layer most naturally tend to
learn alignments (Section 5.3), we arbitrarily se-
lect one head from the penultimate layer (subse-
quently referred to as the alignment head) and su-
pervise its attention probability distribution to be
close to the labeled alignment distribution (Gp).
Let AI×J denote the attention matrix computed
by the alignment head. For every target word i,
we minimize the Kullback-Leibler divergence be-
tweenGp

i andAi which is equivalent to optimizing
the following cross-entropy loss La

La(A) = −
1

I

I∑
i=1

J∑
j=1

Gp
i,j log(Ai,j). (7)

The motivation behind supervising one head is that
it gives the model the flexibility to either use the
representation computed by the alignment head, or
depend more on the representations computed by
other heads. We train our model to minimize La
in conjunction with the standard NLL translation
loss Lt. The overall loss L is:

L = Lt + λLa(A), (8)

where λ is a hyperparameter.

4.3 Providing Full Target Context
The Transformer decoder computes the probabil-
ity of the next target token conditioned on the past
target tokens and all source tokens. This is imple-
mented by masking the self attention probabilities,
i.e. while computing the representation for the ith

target token, the decoder can only self-attend to
the representations of {1, 2 . . . i− 1} tokens from
the previous layer. This auto-regressive behavior
of the decoder is crucial for the model to repre-
sent a valid probability distribution over the target
sentence. However, conditioning on just the past
target tokens is limiting for the alignment task.
As described in Section 4.2, the alignment head
is trained to model the alignment distribution for
the ith target token given only the past target to-
kens and all source tokens. Since the alignment
head does not know the identity of the next tar-
get token, it becomes difficult for it to learn this
token’s alignment to the source tokens. Previous
work has also identified this problem and alleviate
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it by feeding the target token to be aligned as an
input to the module computing the alignment (Pe-
ter et al., 2017), or forcing the module to predict
the target token (Zenkel et al., 2019) or its prop-
erties, e.g. POS tags (Li et al., 2018). Feeding the
next target token assumes that we know it in ad-
vance and thus calls for separate translation and
alignment models. Forcing the alignment module
to predict target token’s properties helps but still
passes the information of the target token in an in-
direct manner. We overcome these limitations by
conditioning the two components of our loss func-
tion on different amounts of context. The NLL
loss Lt is conditioned on the past target tokens to
preserve the auto-regressive property:

Lt = −
1

I

I∑
i=1

log(p(ei|fJ1 , ei−11 )). (9)

However, the alignment loss L′
a is now condi-

tioned on the whole target sentence:

L′
a = La(A|fJ1 , eI1). (10)

This is implemented by executing two forward
passes of the decoder model, one with the mask-
ing of the future target tokens for computing the
NLL lossLt and the other one with no masking for
computing the alignment loss L′

afrom the align-
ment head. Although this formulation forces the
network to learn representations adapting to both
full and partial target context, Section 5.5 shows
that this approach does not degrade the translation
quality while improving the alignment accuracy.

4.4 Alignment Training Data

Our method described so far does not rely on
alignments from external statistical toolkits but
performs self-training on alignments extracted
from the layer average baseline. However,
GIZA++ provides a robust method to compute ac-
curate alignments. If achieving better alignment
accuracy is paramount, then our multi-task frame-
work can also leverage alignments from GIZA++
to produce even better alignment accuracy (Sec-
tion 5.4). In this setting we use the GIZA++ align-
ments as labels instead of those obtained from the
layer average baseline for supervising the align-
ment head.

5 Experiments

5.1 Setup
Our experiments show that our proposed approach
is able to achieve state-of-the-art results in terms
of alignment and maintain the same translation
performance. In the following, we describe two
setups to compare with previously established
state-of-the-art results.

For all setups and models used in this work, we
learn a joint source and target Byte-Pair-Encoding
(BPE, Sennrich et al. (2016)) with 32k merge op-
erations. We observe that even for statistical align-
ment models sub-word units are beneficial. To
convert the alignments from sub-word-level back
to word-level, we consider each target word as be-
ing aligned to a source word if an alignment be-
tween any of the target sub-words and source sub-
words exists.

The alignment quality is evaluated by using the
alignment error rate (AER) introduced in (Och and
Ney, 2000). Significance of the differences in AER

between two models is tested using a two-sided
Wilcoxon signed-rank test (α = 0.1%).

5.1.1 Alignment Task
The purpose of the this task is to fairly com-
pare with state-of-the-art results in terms of
alignment quality and perform a hyperparame-
ter search. We use the same experimental setup
as described in (Zenkel et al., 2019). The au-
thors provide pre-processing and scoring scripts2

for three different datasets: Romanian→English,
English→French and German→English. Train-
ing data and test data for Romanian→English and
English→French are provided by the NAACL’03
Building and Using Parallel Texts word align-
ment shared task3 (Mihalcea and Pedersen, 2003).
The Romanian→English training data are aug-
mented by the Europarl v8 corpus increasing the
amount of parallel sentences from 49k to 0.4M.
For German→English we use the Europarl v7 cor-
pus as training data and the gold alignments4 pro-
vided by Vilar et al. (2006). The reference align-
ments were created by randomly selecting a subset
of the Europarl v7 corpus and manually annotating
them following the guidelines suggested in (Och

2https://github.com/lilt/
alignment-scripts

3http://web.eecs.umich.edu/˜mihalcea/
wpt/index.html#resources

4https://www-i6.informatik.
rwth-aachen.de/goldAlignment/

https://github.com/lilt/alignment-scripts
https://github.com/lilt/alignment-scripts
http://web.eecs.umich.edu/~mihalcea/wpt/index.html#resources
http://web.eecs.umich.edu/~mihalcea/wpt/index.html#resources
https://www-i6.informatik.rwth-aachen.de/goldAlignment/
https://www-i6.informatik.rwth-aachen.de/goldAlignment/
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and Ney, 2003). Data statistics are shown in Ta-
ble 1.

Table 1: Number of sentences for three datasets:
German→English (DeEn), Romanian→English
(RoEn) and English→French (EnFr). The datasets in-
clude training data and test data with gold alignments.

DeEn RoEn EnFr
training 1.9M 0.5k 1.1M
test 508 248 447

In all experiments for this task, we employ the
base transformer configuration with an embed-
ding size of 512, 6 encoder and decoder layers, 8
attention heads, shared input and output embed-
dings (Press and Wolf, 2017), the standard relu
activation function and sinusoidal positional em-
bedding. The total number of parameters is 60M.
We train with a batch size of 2000 tokens on 8
Volta GPUs and use the validation translation loss
for early stopping. Furthermore, we use Adam
optimizer (Loshchilov and Hutter, 2019) with a
learning rate of 3e-4, β1 = 0.9, β2 = 0.98, learn-
ing rate warmup over the first 4000 steps and in-
verse square root as learning rate scheduler. The
dropout probability is set to 0.1. Additionally, we
apply label smoothing with a factor of 0.1. To con-
veniently extract word alignments for both transla-
tion directions, we train bidirectional models, i.e.
our models are able to translate and align from Ro-
manian to English and vice versa.

5.1.2 Align and Translate Task
The second setup is based on the WMT‘18
English-German news translation task (Bojar
et al., 2018). We apply the same corpus selec-
tion for bilingual data and model architecture as
suggested by Edunov et al. (2018). However, we
slightly modify the preprocessing pipeline to be
able to evaluate the alignment quality against the
gold alignments provided by Vilar et al. (2006).
We use all available bilingual data (Europarl v7,
Common Crawl corpus, News Commentary v13
and Rapid corpus of EU press releases) exclud-
ing the ParalCrawl corpus. We remove sentences
longer than 100 words and sentence pairs with a
source/target length ratio exceeding 1.5. This re-
sults in 5.2M parallel sentences. We apply the
Moses tokenizer (Koehn et al., 2007) without ag-
gressive hyphen splitting and without perform-
ing HTML escaping of apostrophes and quotes.

Furthermore, we do not normalize punctuation
marks. We use newstest2012 as validation and
newstest2014 as test set.

To achieve state-of-the-art translation results,
all models in this setup are trained unidirectional
and we change to the big transformer configura-
tion with an embedding size of 1024 and 16 at-
tention heads. The total number of parameters is
213M. We train the layer average baseline with
a batch size of 7168 tokens on 64 Volta GPUs
for 30k updates and apply a learning rate of 1e-
3, β1 = 0.9, β2 = 0.98. The dropout probabil-
ity is set to 0.3. All other hyperparameters are as
described in the previous section. Since training
the multi-task models consumes more memory, we
need to half the batch size, increase the number of
updates accordingly and adapt the learning rate to
7e-4. We average over the last 10 checkpoints and
run inference with a beam size of 5.

To fairly compare against state-of-the-art trans-
lation setups, we compute BLEU (Papineni et al.,
2002) with sacreBLEU (Post, 2018).

5.2 Statistical Baseline

For both setups, the statistical alignment models
are computed with the multi-threaded version of
the GIZA++ toolkit5 implemented by Gao and Vo-
gel (2008). GIZA++ estimates IBM1-5 models
and a first-order hidden Markov model (HMM)
as introduced in (Brown et al., 1993) and (Vo-
gel et al., 1996), respectively. In particular, we
perform 5 iterations of IBM1, HMM, IBM3 and
IBM4. Furthermore, the alignment models are
trained in both translation directions and sym-
metrized by employing the grow-diagonal
heuristic (Koehn et al., 2005). We use the resulting
word alignments to supervise the alignment loss
for the method described in Section 4.4.

5.3 Averaging Attention Results

For our experiments, we use the data and Trans-
former model setup described in Section 5.1.1. We
perform the evaluation of alignments obtained by
layer wise averaging of attention probabilities as
described in Section 4.1. As shown in Table 2,
all three language pairs exhibit a very similar pat-
tern, wherein the attentions do not seem to learn
meaningful alignments in the initial layers and
show a remarkable improvement in the higher lay-
ers. This indicates that the initial layers are fo-

5https://github.com/moses-smt/mgiza/

https://github.com/moses-smt/mgiza/
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Table 2: AER
[%]

per layer for all three language
pairs: German→English (DeEn), Romanian→English
(RoEn) and English→French (EnFr).

Layer DeEn RoEn EnFr
1 (bottom) 90.0 92.9 80.7
2 91.0 93.6 81.7
3 94.5 92.0 73.4
4 41.2 37.5 20.5
5 32.6 33.4 17.0
6 (top) 56.3 48.4 37.9
average 55.8 38.6 23.2

cusing more on learning good representations of
the sentence generated by the decoder so far by
self attention. Once good contextual representa-
tions are learnt, the higher layers fetch the rele-
vant representations from the encoder’s output via
the encoder-decoder attention. However, interest-
ingly the penultimate layer outperforms the final
layer suggesting the final layer uses the alignment-
based features in the penultimate layer to derive its
own representation.

5.4 Alignment Task Results

Table 3 compares the performance of our meth-
ods against statistical baselines and previous neu-
ral approaches. The layer average baseline pro-
vides relatively weak alignments, which are used
for training our multi-task model. The improve-
ment of the multi-task approach over the layer av-
erage baseline suggests that learning to translate
helps produce better alignments as well. However
still the multi-task approach falls short of the sta-
tistical and neural baselines, which have a strong
advantage of having access to the full/partial tar-
get context. Exposing our model to the full target
context gives the largest gains in terms of AER.
Note that full context results are directly compara-
ble to Zenkel et al. (2019) since both approaches
do not leverage external knowledge from statisti-
cal models. We suspect that we are able to outper-
form Zenkel et al. (2019) because we provide the
full target context instead of only the to-be aligned
target word. Finally, by supervising our model on
the alignments obtained from GIZA++ (GIZA++
supervised) rather than layer average baseline, we
outperform GIZA++ and Peter et al. (2017).

We tuned the alignment loss weight λ (Equa-
tion 8) using grid search on the German→English

dataset. We achieve the best results with λ = 0.05.

Table 3: Results on the alignment task (in AER
[%]

).
‡Difference in AER w.r.t. GIZA++ (BPE-based) is sta-
tistically significant (p<0.001).

Model DeEn RoEn EnFr
GIZA++ (word-based) 21.4 27.9 5.9
GIZA++ (BPE-based) 18.9 27.0 5.5
Layer average baseline 32.6 33.4 17.0
Multi-task 25.4 30.7 12.6
+ full-context 20.2 26.0 7.7
++ GIZA++ supervised 16.0‡ 23.1‡ 4.6‡

Peter et al. (2017) 19.0 - -
Zenkel et al. (2019) 21.2 27.6 10.0

5.5 Align and Translate Task Results

For fair comparison of our approach to the state-
of-the-art translation models, we use the setup de-
scribed in Section 5.1.2. Table 4 summarizes the
results on alignment and translation tasks. The
layer average baseline is based on regular NMT
model training, therefore ideally it should achieve
the same BLEU as Edunov et al. (2018), how-
ever we see a small drop of 0.3 BLEU points in
practice which could be caused by the slightly dif-
ferent preprocessing procedure (cf. Section 5.1.2,
no aggressive hyphen splitting/no punctuation nor-
malization). The layer average baseline performs
poorly in terms of the AER. The Precision and Re-
call results for the layer average baseline demon-
strate the effectiveness of symmetrization. Sym-
metrization removes a majority of incorrect align-
ments and gives a high precision (94.2%) but low
recall (29.6%). The high precision of the layer av-
erage baseline ensures that the multi-task model
receives correct alignments for supervision, en-
abling it to get large improvements in AER over
the layer average baseline.

Similar to the trend observed in 5.4, provid-
ing full target sentence context in the decoder
helps the model to improve further and perform
comparably to GIZA++. Lastly, supervision with
GIZA++ gives the best AER and significantly out-
performs GIZA++. The improvements in align-
ment quality and no degradation in BLEU com-
pared to the layer average baseline shows the ef-
fectiveness of the proposed multi-task approach.



4459

Table 4: Results on the align and translate task. Alignment quality is reported in AER, translation quality in
BLEU. †baseline (without back-translation) sacreBLEU results were provided in https://github.com/
pytorch/fairseq/issues/506#issuecomment-464411433. ‡Difference in AER w.r.t. GIZA++
(BPE-based) is statistically significant (p<0.001)

AER
[%]

(Precision
[%]

, Recall
[%]

) BLEU
[%]

Model DeEn EnDe Symmetrized DeEn EnDe
GIZA++ (word-based) 21.7 (85.4, 72.1) 24.0 (85.8, 68.2) 22.2 (93.5, 66.5) - -
GIZA++ (BPE-based) 19.0 (89.1, 74.2) 21.3 (86.8, 71.9) 19.6 (93.2, 70.6) - -
Layer average baseline 66.8 (32.0, 34.6) 66.5 (32.5, 34.7) 54.8 (94.2, 29.6) 33.1 28.7
Multi-task 31.1 (67.2, 70.7) 32.2 (66.6, 69.1) 25.8 (88.1, 63.8) 33.1 28.5
+ full-context 21.2 (76.9, 80.9) 23.5 (75.0, 78.0) 19.5 (89.5, 72.9) 33.2 28.5
++ GIZA++ supervised 17.5‡ (80.5, 84.7) 19.8‡ (78.8, 81.7) 16.4‡ (89.6, 78.2) 33.1 28.8
Edunov et al. (2018)† - - - - 29.0
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Sorgfalt
untersuchen
.

Ich muß
an dieser
Stelle
das
Haus
darüber
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Figure 1: Two examples from the German→English alignment test set. Alignments in (a) show the output from
GIZA++ and (b) from our model (Multi-task with full-context and GIZA++ supervised). Gold Alignments in shown
in (c). Black squares and hatched squares in the reference represent sure and possible alignments, respectively.

6 Analysis

To further investigate why our proposed approach
is superior to GIZA++ in terms of AER, we ana-
lyze the generated word alignments of both mod-
els. We observe that our model tends to align
pronouns (e.g. you or them) with regular nouns
(e.g. objects or subjects). Given the gold align-
ments, it seems that these alignment links are
correct or at least possible (Och and Ney (2003)
provided annotators two options to specify align-

ments: sure and possible for unambiguous and
ambiguous alignments respectively). Figure 1
shows two examples from the German→English
alignment test set. In the first example, our model
correctly aligns them with Voraussetzungen (cri-
teria). The German parliament speaker indeed
mentioned Verfahrensvoraussetzungen (procedu-
ral criteria) in one of the preceding sentences and
refers later to them by using the term Vorausset-
zungen (criteria). In the second example, the pro-
noun you is correctly aligned to the noun Haus

https://github.com/pytorch/fairseq/issues/506#issuecomment-464411433
https://github.com/pytorch/fairseq/issues/506#issuecomment-464411433
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(house) which is just another way to address the
audience in the European parliament. Both align-
ment links are not generated by GIZA++. This
could be related to fact that a statistical model
is based on counting co-occurrences. We specu-
late that to generate such alignment links, a model
needs to be able to encode contextual information.
Experimental results in (Tang et al., 2018) suggest
that NMT models learn to encode contextual in-
formation, which seems to be necessary for word
sense disambiguation. Since pronouns can be am-
biguous references, we assume that both problems
are closely related and therefore believe that the
ability to encode contextual information may be
beneficial for generating word alignments.

From our experiments on the WMT’18 dataset,
we observe that the alignment quality of the layer
average baseline is quite low (cf. Table 4). To fur-
ther investigate this, we plot the test AER and the
validation NLL loss per epoch (Figure 2). The
graph shows that the lowest AER of 42.7% is al-
ready reached in the fifth epoch. This suggests that

5

10

0 20 40 60 80
40

50

60

70

80

90

va
lid

at
io

n
lo

ss
(N

L
L

)

A
E

R
[%

]

epoch

validation loss
AER

Figure 2: Test AER and validation loss (NLL) per
epoch on the WMT’18 English→German task.

picking an earlier checkpoint for generating word
alignments could be beneficial for better supervi-
sion. Unfortunately, an alignment validation set
does not exist for this task.

7 Related Work

Leveraging alignments obtained from statistical
MT toolkits to guide NMT attention mechanisms
has been explored in the past. Mi et al. (2016),
Chen et al. (2016), Liu et al. (2016) and Alkhouli
and Ney (2017) supervise the attention mecha-
nisms of recurrent models (Bahdanau et al., 2015)
in this way. Our multi-task framework is inspired
by these publications. However, we examine its
effect on the Transformer model (Vaswani et al.,

2017), which provides state-of-the-art results on
several translation benchmarks. Previous works
report significant gains in translation accuracy in
low resource settings, however gains remain mod-
est given larger amounts of parallel data (mil-
lions of sentences). These approaches also fail
to achieve significantly better alignment accuracy
than the statistical MT toolkits. Peter et al. (2017)
and Li et al. (2018) improve upon the previous
works in terms of alignment accuracy by provid-
ing an alignment module with additional infor-
mation about the to-be-aligned target word. Ex-
panding on this idea, we propose to leverage the
full target sentence context leading to AER im-
provements. Zenkel et al. (2019) presents an ap-
proach that eliminates the reliance on statistical
word aligners by instead by directly optimizing the
attention activations for predicting the target word.
We empirically compare our approach of obtain-
ing high quality alignments without the need of
statistical word aligners to Zenkel et al. (2019).

Augmenting the task objective with linguistic
information, such as word alignments, also has
had applications beyond MT. Strubell et al. (2018)
showed that adding linguistic information from
parse trees into one of the attention heads of the
transformer model can help in the semantic role
labeling. Inspired by Strubell et al. (2018), we in-
ject the alignment information through one of the
attention heads for the translation task instead.

As a by-product of developing our model, we
present a simple way to quantitatively evaluate
and analyze the quality of attention probabilities
learnt by different parts of the Transformer model
with respect to modeling alignments, which con-
tributes to previous work on understanding atten-
tion mechanisms (Ghader and Monz, 2017; Ra-
ganato and Tiedemann, 2018; Tang et al., 2018).

8 Conclusions

This paper addresses the task of jointly learning
to produce translations and alignments with a sin-
gle Transformer model. By using a multi-task ob-
jective along with providing full target sentence
context to our alignment module, we are able
to produce better alignments than previous ap-
proaches not relying on external alignment toolk-
its. We demonstrate that our framework can be ex-
tended to use external alignments from GIZA++
to achieve significantly better alignment results
compared to GIZA++, while maintaining the same
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translation performance.
Currently, our self-training based approach

needs two training runs. To train our model in a
single run, we would like to investigate a train-
ing method which alternates between alignment
extraction and model training.
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