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Abstract
We introduce a novel scheme for parsing a
piece of text into its Abstract Meaning Repre-
sentation (AMR): Graph Spanning based Pars-
ing (GSP). One novel characteristic of GSP
is that it constructs a parse graph incremen-
tally in a top-down fashion. Starting from the
root, at each step, a new node and its con-
nections to existing nodes will be jointly pre-
dicted. The output graph spans the nodes by
the distance to the root, following the intuition
of first grasping the main ideas then digging
into more details. The core semantic first prin-
ciple emphasizes capturing the main ideas of a
sentence, which is of great interest. We evalu-
ate our model on the latest AMR sembank and
achieve the state-of-the-art performance in the
sense that no heuristic graph re-categorization
is adopted. More importantly, the experiments
show that our parser is especially good at ob-
taining the core semantics.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism that
encodes the meaning of a sentence as a rooted la-
beled directed graph. As illustrated by an example
in Figure 1, AMR abstracts away from the surface
forms in text, where the root serves as a rudimen-
tary representation of the overall focus while the
details are elaborated as the depth of the graph in-
creases. AMR has been proved useful for many
downstream NLP tasks, including text summariza-
tion (Liu et al., 2015; Hardy and Vlachos, 2018)
and question answering (Mitra and Baral, 2016).

The task of AMR parsing is to map natural lan-
guage strings to AMR semantic graphs automat-
ically. Compared to constituent parsing (Zhang
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Figure 1: AMR for the sentence “During a time of pros-
perity and happiness, such a big earthquake suddenly
struck.”, where the subgraphs close to the root repre-
sent the core semantics.

and Clark, 2009) and dependency parsing (Kübler
et al., 2009), AMR parsing is considered more
challenging due to the following characteristics:
(1) The nodes in AMR have no explicit alignment
to text tokens; (2) The graph structure is more
complicated because of frequent reentrancies and
non-projective arcs; (3) There is a large and sparse
vocabulary of possible node types (concepts).

Many methods for AMR parsing have been de-
veloped in the past years, which can be catego-
rized into three main classes: Graph-based parsing
(Flanigan et al., 2014; Lyu and Titov, 2018) uses
a pipeline design for concept identification and re-
lation prediction. Transition-based parsing (Wang
et al., 2016; Damonte et al., 2017; Ballesteros and
Al-Onaizan, 2017; Guo and Lu, 2018; Liu et al.,
2018; Wang and Xue, 2017) processes a sentence
from left-to-right and constructs the graph incre-
mentally. The third class is seq2seq-based parsing
(Barzdins and Gosko, 2016; Konstas et al., 2017;
van Noord and Bos, 2017), which views parsing as
sequence-to-sequence transduction by a lineariza-
tion (depth-first traversal) of the AMR graph.
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While existing graph-based models cannot suf-
ficiently model the interactions between individual
decisions, the autoregressive nature of transition-
based and seq2seq-based models makes them suf-
fer from error propagation, where later decisions
can easily go awry, especially given the complex-
ity of AMR. Since capturing the core semantics of
a sentence is arguably more important and useful
in practice, it is desirable for a parser to have a
global view and a priority for capturing the main
ideas first. In fact, AMR graphs are organized in
a hierarchy that the core semantics stay closely to
the root, for which a top-down parsing scheme can
fulfill the desiderata. For example, in Figure 1,
the subgraph in the red box already conveys the
core meaning “an earthquake suddenly struck at a
particular time”, and the subgraph in the blue box
further informs that “the earthquake was big” and
“the time was of prosperity and happiness”.

We propose a novel framework for AMR pars-
ing known as Graph Spanning based Parsing
(GSP). One novel characteristic of GSP is that,
to our knowledge, it is the first top-down AMR
parser.1 GSP performs parsing in an incremen-
tal, root-to-leaf fashion, but still maintains a global
view of the sentence and the previously derived
graph. At each step, it generates the connecting
arcs between the existing nodes and the coming
new node, upon which the type of the new node
(concept) is jointly decided. The output graph
spans the nodes by the distance to the root, fol-
lowing the intuition of first grasping the main ideas
then digging into more details. Compared to pre-
vious graph-based methods, our model is capa-
ble of capturing more complicated intra-graph in-
teractions, while reducing the number of parsing
steps to be linear in the sentence length.2 Com-
pared to transition-based methods, our model re-
moves the left-to-right restriction and avoids so-
phisticated oracle design for handling the com-
plexity of AMR graphs.

Notably, most existing methods including the
state-the-of-art parsers often rely on heavy graph
re-categorization for reducing the complexity
of the original AMR graphs. For graph re-
categorization, specific subgraphs of AMR are
grouped together and assigned to a single node
with a new compound category (Werling et al.,

1Depth-first traversal in seq2seq models does not produce
a strictly top-down order due to the reentrancies in AMR.

2Since the size of AMR graph is approximately linear in
the length of sentence.

2015; Wang and Xue, 2017; Foland and Martin,
2017; Lyu and Titov, 2018; Groschwitz et al.,
2018; Guo and Lu, 2018). The hand-crafted rules
for re-categorization are often non-trivial, requir-
ing exhaustive screening and expert-level man-
ual efforts. For instance, in the re-categorization
system of Lyu and Titov (2018), the graph

fragment “temporal-quantity
:ARG3−of−→

rate-entity-91
:unit−→ year

:quant−→ 1”
will be replaced by one single nested node
“rate-entity-3(annual-01)”. There are
hundreds of such manual heuristic rules. This kind
of re-categorization has been shown to have con-
siderable effects on the performance (Wang and
Xue, 2017; Guo and Lu, 2018). However, one is-
sue is that the precise set of re-categorization rules
differs among different models, making it difficult
to distinguish the performance improvement from
model optimization or carefully designed rules.
In fact, some work will become totally infeasible
when removing this re-categorization step. For ex-
ample, the parser of Lyu and Titov (2018) requires
tight integration with this step as it is built on the
assumption that an injective alignment exists be-
tween sentence tokens and graph nodes.

We evaluate our parser on the latest AMR sem-
bank and achieve competitive results to the state-
of-the-art models. The result is remarkable since
our parser directly operates on the original AMR
graphs and requires no manual efforts for graph re-
categorization. The contributions of our work are
summarized as follows:

• We propose a new method for learning AMR
parsing that produces high-quality core se-
mantics.

• Without the help of heuristic graph re-
categorization which requires expensive
expert-level manual efforts for designing
re-categorization rules, our method achieves
state-of-the-art performance.

2 Related Work

Currently, most AMR parsers can be catego-
rized into three classes: (1) Graph-based meth-
ods (Flanigan et al., 2014, 2016; Werling et al.,
2015; Foland and Martin, 2017; Lyu and Titov,
2018; Zhang et al., 2019) adopt a pipeline ap-
proach for graph construction. It first maps con-
tinuous text spans into AMR concepts, then calcu-
lates the scores of possible edges and uses a max-
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imum spanning connected subgraph algorithm to
select the final graph. The major deficiency is that
the concept identification and relation prediction
are strictly performed in order, yet the interactions
between them should benefit both sides (Zhou
et al., 2016). In addition, for computational effi-
cacy, usually only first-order information is con-
sidered for edge scoring. (2) Transition-based
methods (Wang et al., 2016; Damonte et al., 2017;
Wang and Xue, 2017; Ballesteros and Al-Onaizan,
2017; Liu et al., 2018; Peng et al., 2018; Guo
and Lu, 2018; Naseem et al., 2019) borrow tech-
niques from shift-reduce dependency parsing. Yet
the non-trivial nature of AMR graphs (e.g., reen-
trancies and non-projective arcs) makes the tran-
sition system even more complicated and difficult
to train (Guo and Lu, 2018). (3) Seq2seq-based
methods (Barzdins and Gosko, 2016; Peng et al.,
2017; Konstas et al., 2017; van Noord and Bos,
2017) treat AMR parsing as sequence-to-sequence
problem by linearizing AMR graphs, thus exist-
ing seq2seq models (Bahdanau et al., 2014; Luong
et al., 2015) can be readily utilized. Despite its
simplicity, the performance of the current seq2seq
models lag behind when the training data is lim-
ited. The first reason is that seq2seq models are
often not as effective on smaller datasets. The sec-
ond reason is that the linearized AMRs add the
challenges of making use of the graph structure
information.

There are also some notable exceptions. Peng
et al. (2015) introduce a synchronous hyperedge
replacement grammar solution. Pust et al. (2015)
regard the task as a machine translation problem,
while Artzi et al. (2015) adapt combinatory cate-
gorical grammar. Groschwitz et al. (2018); Linde-
mann et al. (2019) view AMR graphs as the struc-
ture AM algebra.

Most AMR parsers require an explicit align-
ment between tokens in the sentences and nodes
in the AMR graph during training. Since such in-
formation is not annotated, a pre-trained aligner
(Flanigan et al., 2014; Pourdamghani et al., 2014;
Liu et al., 2018) is often required. More recently,
Lyu and Titov (2018) demonstrate that the align-
ments can be treated as latent variables in a joint
probabilistic model.

3 Background and Overview

3.1 Background of Multi-head Attention

The multi-head attention mechanism introduced
by Vaswani et al. (2017) is used as a basic building
block in our framework. The multi-head attention
consists of H attention heads, and each of which
learns a distinct attention function. Given a query
vector x and a set of vectors {y1, y2, . . . , ym} or
in short y1:m, for each attention head, we project
x and y1:m into distinct query, key, and value rep-
resentations q ∈ Rd, K ∈ Rm×d and V ∈ Rm×d

respectively, where d is the dimension of the vec-
tor space. Then we perform scaled dot-product at-
tention (Vaswani et al., 2017):

a = softmax
(Kq)√

d

attn = aV

where a ∈ Rm is the attention vector (a distribu-
tion over all input y1:m) and attn is the weighted
sum of the value vectors. Finally, the outputs of all
attention heads are concatenated and projected to
the original dimension of x. For brevity, we will
denote the whole attention procedure described
above as a function T (x, y1:m).

Based on the multi-head attention, the Trans-
former encoder (Vaswani et al., 2017) uses
self-attention for context information aggregation
when given a set of vectors (e.g., word embed-
dings in a sentence or node embeddings in a
graph).

3.2 Overview

Figure 2 depicts the major neural components in
our proposed framework: The Sentence Encoder
component and the Graph Encoder component are
designed for token-level sentence representation
and node-level graph representation respectively.
Given an input sentence w = (w1, w2, . . . , wn),
where n is the sentence length, the Sentence En-
coder component will first read the whole sentence
and encode each word wi into the hidden state si.
The initial graph G0 is always initialized with one
dummy node d∗ and a previously generated con-
cept cj is encoded into the hidden state vj by the
Graph Encoder component.

At each time step t, the Focus Selection com-
ponent reads both the sentence representation s1:n
and the graph representation v0:t−1 of Gt−1 re-
peatedly, generates the initial parser state ht. The
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Figure 5: A single layer of the Recursive Neural Ten-
sor Network. Each dashed box represents one of d-many
slices and can capture a type of influence a child can have
on its parent.

The RNTN uses this definition for computing p1:

p1 = f

 
b
c

�T

V [1:d]


b
c

�
+ W


b
c

�!
,

where W is as defined in the previous models. The
next parent vector p2 in the tri-gram will be com-
puted with the same weights:

p2 = f

 
a
p1

�T

V [1:d]


a
p1

�
+ W


a
p1

�!
.

The main advantage over the previous RNN
model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.

4.4 Tensor Backprop through Structure

We describe in this section how to train the RNTN
model. As mentioned above, each node has a

softmax classifier trained on its vector representa-
tion to predict a given ground truth or target vector
t. We assume the target distribution vector at each
node has a 0-1 encoding. If there are C classes, then
it has length C and a 1 at the correct label. All other
entries are 0.

We want to maximize the probability of the cor-
rect prediction, or minimize the cross-entropy error
between the predicted distribution yi 2 RC⇥1 at
node i and the target distribution ti 2 RC⇥1 at that
node. This is equivalent (up to a constant) to mini-
mizing the KL-divergence between the two distribu-
tions. The error as a function of the RNTN parame-
ters ✓ = (V, W, Ws, L) for a sentence is:
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The derivative for the weights of the softmax clas-
sifier are standard and simply sum up from each
node’s error. We define xi to be the vector at node
i (in the example trigram, the xi 2 Rd⇥1’s are
(a, b, c, p1, p2)). We skip the standard derivative for
Ws. Each node backpropagates its error through to
the recursively used weights V, W . Let �i,s 2 Rd⇥1

be the softmax error vector at node i:

�i,s =
�
W T
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⌦ f 0(xi),

where ⌦ is the Hadamard product between the two
vectors and f 0 is the element-wise derivative of f
which in the standard case of using f = tanh can
be computed using only f(xi).

The remaining derivatives can only be computed
in a top-down fashion from the top node through the
tree and into the leaf nodes. The full derivative for
V and W is the sum of the derivatives at each of
the nodes. We define the complete incoming error
messages for a node i as �i,com. The top node, in
our case p2, only received errors from the top node’s
softmax. Hence, �p2,com = �p2,s which we can
use to obtain the standard backprop derivative for
W (Goller and Küchler, 1996; Socher et al., 2010).
For the derivative of each slice k = 1, . . . , d, we get:
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Figure 2: Model architecture of GSP, together with the decoding procedure at the time step t, where the read and
write operations around the parser state ht follow the order 1©→ 2©→ 3©→ 4©→ 5©.

parser state carries the most useful information
and serves as a writable memory during the expan-
sion step. Next, the Relation Identification com-
ponent decides which specific head nodes to ex-
pand by computing the multiple attention scores
{agit }ki=1 over the existing nodes. New arcs are
generated according to the attention scores. Then
the Concept Prediction component updates the
parser state ht with arc information, computes the
attention vector ast over the sentence and accord-
ingly chooses a specific part to generate the new
concept ct. Finally, the Relation Classification
component is used to predict the relation labels be-
tween the newly generated concept and its prede-
cessors. Consequently an updated graph Gt is pro-
duced and Gt will be processed for the next time
step. The whole decoding procedure is terminated
if the newly generated concept is the special stop
concept �.

Our method expands the graph in a root-to-
leaf fashion, nodes with shorter distances to the
root will be introduced first. It follows a similar
way that humans grasp the meaning: first seek-
ing the main concepts then proceeding to the sub-
structures governed by certain head concepts (Ba-
narescu et al., 2013).

During training, we use breadth-first search to
decide the order of nodes. However, for nodes
with multiple children, there still exist multiple
valid selections. In order to define a deterministic

decoding process, we sort sibling nodes by their
relations to the head node. We will present more
discussions on the choice of sibling order in § 5.3.

4 Framework Description

4.1 Sentence & Graph Representation

Transformer encoder architecture is employed for
both the Sentence Encoder and the Graph encoder
components. For sentence encoding, a special to-
ken (�) is prepended to the input word sequence,
whose final hidden state s0 is regarded as an ag-
gregated summary of the whole sentence and used
as the initial state in parsing steps.

The Graph Encoder component takes
previously generated concept sequence
(c0, c1, . . . , ct−1) (c0 is the dummy node d∗)
as input. For computation efficiency and reducing
error propagation, instead of encoding the edge
information explicitly, we use the Transformer
encoder to capture the interactions between nodes.
Finally, the encoder outputs a sequence of node
representations (v0, v1, . . . , vt−1).

4.2 Focus Selection

At each time step t, the Focus Selection com-
ponent will read the sentence and the partially
constructed graph repeatedly for gradually locat-
ing and collecting the most relevant information
for the next expansion. We simulate the repeated
reading by multiple levels of attention. Formally,
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the following recurrence is applied by L times:

xl+1
t,1 = LN(hlt + T l+1

1 (hlt, s1:n))

xl+1
t,2 = LN(xl+1

t,1 + T l+1
2 (xl+1

t,1 , v0:t−1))

hl+1
t = max(xl+1

t,2 W l+1
1 + bl+1

1 )W l+1
2 + bl+1

2

where T (·, ·) is the multi-head attention function.
LN is the layer normalization (Ba et al., 2016) and
h0t is always initialized with s0. For clarity, we
denote the last hidden state hLt as ht, as the parser
state at the time step t. We now proceed to present
the details of each decision stage of one parsing
step, which is also illustrated in Figure 2.

4.3 Relation Identification

Our Relation Identification component is inspired
by a recent attempt of exposing auxiliary super-
vision on attention mechanism (Strubell et al.,
2018). It can be considered as another attention
layer over the existing graph, yet the attention
weights explicitly indicate the likelihood of the
new node being attached to a specific node. In
other words, its aim is to answer the question of
where to expand. Since a node can be attached to
multiple nodes by playing different semantic roles,
we utilize multi-head attention and take the maxi-
mum over different heads as the final arc probabil-
ities.

Formally, through a multi-head attention mech-
anism taking ht and v0:t−1 as input, we obtain a
set of attention weights {agit }ki=1, where k is the
number of attention heads and agit is the i-th prob-
ability vector. The probability of the arc between
the new node and the node vj is then computed
by agt,j = maxi(a

gi
t,j). Intuitively, each head is in

charge of a set of possible relations (though not ex-
plicitly specified). If certain relations do not exist
between the new node and any existing node, the
probability mass will be assigned to the dummy
node d∗. The maximum pooling reflects that the
arc should be built once one relation is activated.3

The attention mechanism passes the arc deci-
sions to later layers by the update of the parser
state as follows:

ht = LN(ht +W arc
t−1∑

j=0

agt,jvj)

3We also found that there may exist more than one relation
between two distinct nodes, however, it rarely happens.

4.4 Concept Prediction
Our Concept Prediction component uses a soft
alignment between words and the new concept.
Concretely, a single-head attention ast is computed
based on the parser state ht and the sentence rep-
resentation s1:n, where ast,i denotes the attention
weight of the word wi in the current time step.
This component then updates the parser state with
the alignment information via the following equa-
tion:

ht = LN(ht +W conc
n∑

i=1

ast,isi)

The probability of generating a specific con-
cept c from the concept vocabulary V is calculated
as gen(c|ht) = exp(xc

Tht)/
∑

c′∈V exp(xc′
Tht),

where xc (for c ∈ V) denotes the model param-
eters. To address the data sparsity issue in con-
cept prediction, we introduce a copy mechanism
in similar spirit to Gu et al. (2016). Besides gener-
ation, our model can either directly copy an input
token wi (e.g, for entity names) or map wi to one
concept m(wi) according to the alignment statis-
tics4 in the training data (e.g., for “went”, it would
propose go). Formally, the prediction probability
of a concept c is given by:

P (c|ht) =P (copy|ht)
n∑

i=1

ast,i[[wi = c]]

+P (map|ht)
n∑

i=1

ast,i[[m(wi) = c]]

+P (gen|ht)gen(c|ht)

where [[. . .]] is the indicator function. P (copy|ht),
P (map|ht) and P (gen|ht) are the probabilities of
three prediction modes respectively, computed by
a single layer neural network with softmax activa-
tion.

4.5 Relation Classification
Lastly, the Relation Classification component em-
ploys a multi-class classifier for labeling the arcs
detected in the Relation Identification component.
The classifier uses a biaffine function to score each
label, given the head concept representation vi and
the child vector ht as input:

eit = hTt Wvi + UTht + V T vi + b

4Based on the alignments provided by Liu et al. (2018),
for each word, the most frequently aligned concept (or its
lemma if it has empty alignment) is used for direct mapping.



3804

where W,U, V, b are model parameters. As sug-
gested by Dozat and Manning (2016), we project
vi and ht to a lower dimension for reducing the
computation cost and avoiding the overfitting of
the model. The label probabilities are computed
by a softmax function over all label scores.

4.6 Reentrancies

AMR reentrancy is employed when a node partici-
pates in multiple semantic relations (with multiple
parent nodes), and that is why AMRs are graphs,
rather than trees. The reentrancies are often hard
to treat. While previous work often either remove
them (Guo and Lu, 2018) or relies on rule-based
restoration in the postprocessing stage (Lyu and
Titov, 2018; van Noord and Bos, 2017), our model
provides a new and principled way to deal with
reentrancies. In our approach, when a new node
is generated, all its connections to already existing
nodes are determined by the multi-head attention.
For example, for a node with k parent nodes, k dif-
ferent heads will point to the those parent nodes
respectively. For a better understanding of our
model, a pseudocode is presented in Algorithm 1.

4.7 Training and Inference

Our model is trained to maximize the log likeli-
hood of the gold AMR graphs given sentences, i.e.
logP (G|w), which can be factorized as:

logP (G|w) =
m∑

t=1

(
logP (ct|Gt−1,w)

+
∑

i∈pred(t)
logP (arcit|Gt−1,w)

+
∑

i∈pred(t)
logP (relarcit |Gt−1,w)

)

where m is the total number of vertices. The set
of predecessor nodes of ct is denoted as pred(t).
arcit denotes the arc between ci and ct, and
relarcit indicates the arc label (relation type).

As mentioned, GSP is an autoregressive model,
such as seq2seq models and transition models, but
it factors the distribution according to a top-down
graph structure rather than a depth-first traversal or
a left-to-right chain. Meanwhile, GSP has a clear
separation of node, arc and relation label prob-
abilities, interacting in a more interpretable and
tighten manner.

Algorithm 1 Graph Spanning based Parsing

Input: the input sentence w = (w1, w2, . . . , wn)
Output: the AMR graph G corresponds to w.

3 Learning Sentence Representation
1: w = (w0 = �) + (w1, w2, . . . , wn)
2: s0, s1, s2, . . . , sn = Transformer(w)

3 Initialization
3: initialize the graph G0 (c0 = d∗)
4: initialize time step t = 1

3 Entering Main Spanning Loop
5: while True do
6: h0, . . . , vt−1 = Transformer(c0:t−1)
7: ht = Focus Selection (s0, v0:t−1, s1:n)
8: ht = Relation Identification (ht, v0:t−1)
8: decide the parents nodes pred(t) of ct
9: ht = Concept Prediction (ht, s1:n)
9: decide the node type of ct

10: if ct == � then
11: break
12: end if
13: for i ∈ pred(t) do
14: Relation Classification (ht, vi)
14: decide the edge type between ct and ci
15: end for
16: update Gt−1 to Gt

17: end while
18: return Gt−1

At the operational or testing time, the pre-
diction for the input w is obtained via Ĝ =
argmaxG′ P (G′|w). Rather than iterating over
all possible graphs, we adopt a beam search to
approximate the best graph. Specifically, for
each partially constructed graph, we only consider
the top-K concepts obtaining the best single-step
probability (a product of the corresponding con-
cept, arc, and relation label probability), where K
is the beam size. Only the best K graphs at each
time step are kept for the next expansion.

5 Experiments

5.1 Setup

We focus on the most recent LDC2017T10
dataset, as it is the largest AMR corpus. It consists
of 36521, 1368, and 1371 sentences in the train-
ing, development, and testing sets respectively.

We use Stanford CoreNLP (Manning et al.,
2014) for text preprocessing, including tokeniza-
tion, lemmatization, part-of-speech, and named-
entity tagging. The input for sentence encoder
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consists of the randomly initialized lemma, part-
of-speech tag, and named-entity tag embeddings,
as well as the output from a learnable CNN with
character embeddings as inputs. The graph en-
coder uses randomly initialized concept embed-
dings and another char-level CNN. Model hyper-
parameters are chosen by experiments on the de-
velopment set. The details of the hyper-parameter
settings are provided in the Appendix. During
testing, we use a beam size of 8 for generating
graphs.5

Conventionally, the quality of AMR parsing
results is evaluated using the Smatch tool (Cai
and Knight, 2013), which seeks for the maximum
number of overlaps between two AMR annota-
tions after decomposing AMR graphs into triples.
However, the ordinary Smatch metric treats all
triples equally regardless of their roles in the com-
position of the whole sentence meaning. We refine
the ordinary Smatch metric to take into considera-
tion the notion of core semantics. Specifically, we
compute:

• Smatch-weighted: This metric weights dif-
ferent triples by their importance of compos-
ing the core ideas. The root distance d of a
triple is defined as the minimum root distance
of its involving nodes, the weight of the triple
is then computed as:

w = min(−d+ dthr, 1)

In other words, the weight has a linear decay
in root distance until dthr. If two triples are
matched, the minimum importance score of
them is obtained. In our experiments, dthr is
set to 5.

• Smatch-core: This metric only compares the
subgraphs representing the main meaning.
Precisely, we cut down AMR graphs by set-
ting a maximum root distance dmax and only
keep the nodes and edges within the thresh-
old. dmax is set to 4 in our experiments, of
which the remaining subgraphs still have a
broad coverage of the original meaning, as il-
lustrated by the distribution of root distance
in Figure 3.

Besides, we also evaluate the quality by comput-
ing the following metrics.

5Our code can be found at https://github.com/
jcyk/AMR-parser.

0
5

10
15
20
25

0 1 2 3 4 5 6 >=7
Root Distance

Pe
rc

en
ta

ge
s (

%
)

Figure 3: The distribution of root distance of concepts
in the test set.

• complete-match (CM): This metric counts
the number of parsing results that are com-
pletely correct.

• root-accuracy (RA): This metric measures
the accuracy of the root concept identifica-
tion.

5.2 Main Results and Case Study

The main result is presented in Table 1. We com-
pare our method with the best-performing models
in each category as discussed in § 2.

Concretely, van Noord and Bos (2017) is a
character-level seq2seq model that achieves very
competitive result. However, their model is very
data demanding as it requires to train on addi-
tional 100K sentence-AMR pairs generated by
other parsers. Guo and Lu (2018) is a transition-
based parser with refined search space for AMR.
Certain concepts and relations (e.g., reentrancies)
are removed to reduce the burdens during training.
Lyu and Titov (2018) is a graph-based method that
achieves the best-reported result evaluated by the
ordinary Smatch metric. Their parser uses differ-
ent LSTMs for concept prediction, relation identi-
fication, and root identification sequentially. Also,
the relation identification stage has the time com-
plexity of O(m2 logm) where m is the number of
concepts. Groschwitz et al. (2018) views AMR
as terms of the AM algebra (Groschwitz et al.,
2017), which allows standard tree-based parsing
techniques to be applicable. The complexity of
their projective decoder is O(m5). Last but not
least, all these models except for that of van No-
ord and Bos (2017) require hand-crafted heuristics
for graph re-categorization.

We consider the Smatch-weighted metric as the
most suitable metric for measuring the parser’s
quality on capturing core semantics. The com-
parison shows that our method significantly out-
performs all other methods. The Smatch-core
metric also demonstrates the advantage of our

https://github.com/jcyk/AMR-parser
https://github.com/jcyk/AMR-parser
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Model
Graph Smatch(%)

RA(%) CM(%)
Re-ca. weighted core ordinary

Buys and Blunsom (2017) No - - 61.9 - -
van Noord and Bos (2017) + 100K No 68.8 67.6 71.0 75.8 10.2

Guo and Lu (2018) Yes 63.5 62.3 69.8 63.6 9.4
Lyu and Titov (2018) Yes 66.6 67.1 74.4 59.1 10.2

Groschwitz et al. (2018) Yes - - 71.0 - -
Ours No 71.3 70.2 73.2 76.9 11.6

Table 1: Comparison with state-of-the-art methods (results on the test set). Results relying on heuristic rules for
graph re-categorization are marked “Yes” in the Graph Re-ca. column.
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Figure 4: Case study.

method in capturing the core ideas. Besides, our
model achieves the highest root-accuracy (RA)
and complete-match (CM), which further confirms
the usefulness of a global view and the core se-
mantic first principle.

Even evaluated by the ordinary Smatch met-
ric, our model yields better results than all previ-
ously reported models with the exception of Lyu
and Titov (2018), which relies on a tremendous
amount of manual heuristics for designing rules
for graph re-categorization and adopts a pipeline
approach. Note that our parser constructs the
AMR graph in an end-to-end fashion with a bet-
ter (quadratic) time complexity.

We present a case study in Figure 4 with com-
parison to the output of Lyu and Titov (2018)’s
parser. As seen, both parsers make some mis-
takes. Specifically, our method fails to iden-
tify the concept generated-01. While Lyu
and Titov (2018)’s parser successfully identifies
it, their parser mistakenly treats it as the root
of the whole AMR. It leads to a serious draw-
back of making the sentence meaning be inter-
preted in a wrong way. In contrast, our method
shows a strong capacity in capturing the main idea
“the solution is about some patterns and a bal-
ance”. However, on the ordinary Smatch met-

Sm
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e
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0.80
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Figure 5: Smatch scores with different root distances.
vN’17 is van Noord and Bos (2017)’s parser with 100K
additional training pairs. GL’18 is Guo and Lu (2018)’s
parser. L’18 is Lyu and Titov (2018)’s parser.

ric, their graph obtains a higher score (68% vs.
66%), which indicates that the ordinary Smatch
is not a proper metric for evaluating the qual-
ity of capturing core semantics. If we adopt the
Smatch-weighted metric, our method achieves a
better score i.e. 74% vs. 61%.

5.3 More Results

To reveal our parser’s ability for grasping mean-
ings at different levels of granularity, we plot
the Smatch-core scores in Figure 5 by varying
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the maximum root distance dmax, compared with
several strong baselines and the state-of-the-art
model. It demonstrates that our method is better
at abstracting the core ideas of a sentence.

As discussed in § 3, there could be multiple
valid generation orders for sibling nodes in an
AMR graph. We experiment with the following
traversal variants: (1) random, which sorts the sib-
ling nodes in completely random order. (2) rela-
tion freq., which sorts the sibling nodes accord-
ing to their relations to the head node. We assign
higher priorities to relations that occur more fre-
quently, which drives our parser always to seek
for the most common relation first. (3) combined,
which combines the above two strategies by us-
ing random and relation freq. with equal chance.
As seen in Table 2, the deterministic order strat-
egy for training (relation freq.) achieves better
performance than random order. Interestingly, the
combined strategy significantly boosts the perfor-
mance.6 The reason is that the random order po-
tentially produces a larger set of training pairs
since each random order strategy can be consid-
ered as a different training pair. On the other
hand, the deterministic order stabilizes the maxi-
mum likelihood estimate training. Therefore, the
combined strategy benefits from both worlds.

6 Conclusion and Future Work

We presented the first top-down AMR parser. Our
proposed parser builds a AMR graph incremen-
tally in a root-to-leaf manner. Experiments show
that our method has a better capability of capturing
the core semantics in a sentence compared with
previous state-of-the-art methods. In addition,
we overcome the need of heuristics for graph re-
categorization employed in most previous work,
which makes our method much more transferable
to other semantic representations or languages.

Our methods follows the intuition that humans
tend to grasp the core meaning of a sentence
first. However, some cognitive theories (Lan-
gacker, 2008) also suggest that human language
understanding is often presented as a circular, ab-
ductive process (hermeneutic circle). It is inter-
esting to explore the use of some revision mecha-
nisms when the initial steps go wrong.

6We note there are many other ways to generate a deter-
ministic order. For example, van Noord and Bos (2017) uses
the order of aligned words in the sentence. However, we use
the relation frequency method for its simplicity and not rely-
ing on external resources (e.g, an aligner).

Order
Smatch

weighted core ordinary
random 68.2 67.4 70.4

relation freq. 69.9 68.3 70.9
combined 71.3 70.2 73.2

Table 2: The effect of different sibling orders.
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