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Abstract

We consider the problem of conversational
question answering over a large-scale knowl-
edge base. To handle huge entity vocabulary
of a large-scale knowledge base, recent neu-
ral semantic parsing based approaches usu-
ally decompose the task into several subtasks
and then solve them sequentially, which leads
to following issues: 1) errors in earlier sub-
tasks will be propagated and negatively affect
downstream ones; and 2) each subtask cannot
naturally share supervision signals with oth-
ers. To tackle these issues, we propose an in-
novative multi-task learning framework where
a pointer-equipped semantic parsing model
is designed to resolve coreference in conver-
sations, and naturally empower joint learn-
ing with a novel type-aware entity detection
model. The proposed framework thus en-
ables shared supervisions and alleviates the ef-
fect of error propagation. Experiments on a
large-scale conversational question answering
dataset containing 1.6M question answering
pairs over 12.8M entities show that the pro-
posed framework improves overall F1 score
from 67% to 79% compared with previous
state-of-the-art work.

1 Introduction

Recent decades have seen the development of AI-
driven personal assistants (e.g., Siri, Alexa, Cor-
tana, and Google Now) that often need to an-
swer factorial questions. Meanwhile, large-scale
knowledge base (KB) like DBPedia (Auer et al.,
2007) or Freebase (Bollacker et al., 2008) has been
built to store world’s facts in a structure database,
which is used to support open-domain question an-
swering (QA) in those assistants.

Neural semantic parsing based approach (Jia
and Liang, 2016; Reddy et al., 2014; Dong and

∗Work done while the author was an intern at Microsoft,
Beijing, China.

Lapata, 2016; Liang et al., 2016; Dong and Lap-
ata, 2018; Guo et al., 2018) is gaining rising atten-
tion for knowledge-based question answer (KB-
QA) in recent years since it does not rely on hand-
crafted features and is easy to adapt across do-
mains. Traditional approaches usually retrieve an-
swers from a small KB (e.g., small table) (Jia and
Liang, 2016; Xiao et al., 2016) and are difficult to
handle large-scale KBs. Many recent neural se-
mantic parsing based approaches for KB-QA take
a stepwise framework to handle this issue. For
example, Liang et al. (2016), Dong and Lapata
(2016), and Guo et al. (2018) first use an entity
linking system to find entities in a question, and
then learn a model to map the question to logi-
cal form based on that. Dong and Lapata (2018)
decompose the semantic parsing process into two
stages. They first generate a rough sketch of logi-
cal form based on low-level features, and then fill
in missing details by considering both the question
and the sketch.

However, these stepwise approaches have two
issues. First, errors in upstream subtasks (e.g., en-
tity detection and linking, relation classification)
are propagated to downstream ones (e.g., semantic
parsing), resulting in accumulated errors. For ex-
ample, case studies in previous works (Yih et al.,
2015; Dong and Lapata, 2016; Xu et al., 2016;
Guo et al., 2018) show that entity linking error
is one of the major errors leading to wrong pre-
dictions in KB-QA. Second, since models for the
subtasks are learned independently, the supervi-
sion signals cannot be shared among the models
for mutual benefits.

To tackle issues mentioned above, we propose
a novel multi-task semantic parsing framework
for KB-QA. Specifically, an innovative pointer-
equipped semantic parsing model is first designed
for two purposes: 1) built-in pointer network to-
ward positions of entity mentions in the question
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Alias Operator Comments
A1/2/3 start → set/num/bool
A4 set → find(set, p) set of entities with a predicate p edge to entity e
A5 num → count(set) number of distinct elements in the input set
A6 bool → in(e, set) whether the entity e in set or not
A7 set → union(set1, set2) set1 ∪ set2
A8 set → inter(set1, set2) set1 ∩ set2
A9 set → diff(set1, set2) set1 - set2
A10 set → large(set, p, num) subset of set linking to more than num entities with predicate p
A11 set → less(set, p, num) subset of set linking to less than num entities with predicate p
A12 set → equal(set, p, num) subset of set linking to num entities with predicate p
A13 set → argmax(set, p) subset of set linking to most entities with predicate p
A14 set → argmin(set, p) subset of set linking to least entities with predicate p
A15 set → filter(tp, set) subset where entity e in set and belong to entity type tp
A16 num → u num transform number in utterance u num to intermediate number num
A17 set → set(e)
A18/19/20/21 e/p/tp/u num → constant *instantiation for e, p, tp, u num

Table 1: Brief grammar definitions for logical form generation. *instantiation of entity e, predicate p, type tp,
number-in-question u num, by corresponding constant parsed from the question.

can naturally empower multi-task learning with
conjunction of upstream sequence labeling sub-
task, i.e., entity detection; and 2) it explicitly takes
into account the context of entity mentions by us-
ing the supervision of the pointer network. Be-
sides, a type-aware entity detection method is pro-
posed to produce accurate entity linking results,
in which, a joint prediction space combining en-
tity detection and entity type is employed, and the
predicted type is then used to filter entity linking
results during inference phase.

The proposed framework has certain merits.
First, since the two subtasks, i.e., pointer-

equipped semantic parsing and entity detection,
are closely related, learning them within a single
model simultaneously makes the best of supervi-
sions and improves performance of KB-QA task.

Second, considering entity type prediction is
crucial for entity linking, our joint learning frame-
work combining entity mention detection with
type prediction leverages contextual information,
and thus further reduces errors in entity linking.

Third, our approach is naturally beneficial to
coreference resolution for conversational QA due
to rich contextual features captured for entity men-
tion, compared to previous works directly employ-
ing low-level features (e.g., mean-pooling over
word embeddings) as the representation of an en-
tity. This is verified via our experiments in §4.2.

We evaluate the proposed framework on the
CSQA (Saha et al., 2018) dataset, which is the
largest public dataset for complex conversational
question answering over a large-scale knowledge
base. Experimental results show that the overall
F1 score is improved by 12.56% compared with

strong baselines, and the improvements are con-
sistent for all question types in the dataset.

2 Task Definition

In this work, we target the problem of conver-
sational question answering over a large-scale
knowledge base. Formally, in training data, ques-
tion U denotes an user utterance from a dialog,
which is concatenated dialog history for handling
ellipsis or coreference in conversations, and the
question is labeled with its answer A. Besides,
“IOB” (Insider-Outside-Beginning) tagging and
entities linking to KB are also labeled for entity
mentions in U to train an entity detection model.

We employ a neural semantic parsing based ap-
proach to tackle the problem. That is, given a
question, a semantic parsing model is used to pro-
duce a logical form which is then executed on
the KB to retrieve an answer. We decompose the
approach into two subtasks, i.e., entity detection
for entity linking and semantic parsing for log-
ical form generation. The former employs IOB
tagging and corresponding entities as supervision,
while the latter uses a gold logical form as super-
vision, which may be obtained by conducting in-
tensive BFS1 over KB if only final answers (i.e.,
weak supervision) are provided.

3 Approach

This section begins with a description of gram-
mars and logic forms used in this work. Then, the
proposed model is presented, and finally, model’s
training and inference are introduced.

1Breadth-first search with limited buffer (Guo et al., 2018)
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Figure 1: Proposed Multi-task Semantic Parsing (MaSP) model. Note that P* and T* are predicate and entity type
ids in Wikidata where entity type id originally starts with Q but is replaced with T for clear demonstration.

3.1 Grammar and Logical Form

Grammar We use similar grammars and logi-
cal forms as defined in Guo et al. (2018), with
minor modification for better adaptation to the
CSQA dataset. The grammars are briefly sum-
marized in Table 1, where each operator consists
of three components: semantic category, a func-
tion name, and a list of arguments with specified
semantic categories. Semantic categories can be
classified into two groups here w.r.t. the ways
for instantiation: one is referred to as entry se-
mantic category (i.e., {e, p, tp, u num} for enti-
ties, predicates, types, numbers) whose instantia-
tions are constants parsed from a question, and an-
other is referred to as intermediate semantic cate-
gory (i.e., {start, set, num, bool}) whose instan-
tiation is the output of an operator execution.

Logical Form A KB-executable logical form is
intrinsically formatted as an ordered tree where
the root is the semantic category start, each child
node is constrained by the nonterminal (i.e., the
un-instantiated semantic category in parenthesis)
of its parent operator, and leaf nodes are instanti-
ated entry semantic categories, i.e., constants.

To make the best of well-performed sequence to
sequence (seq2seq) models (Vaswani et al., 2017;
Bahdanau et al., 2015) as a base for semantic pars-
ing, we represent a tree-structured logical form as
a sequence of operators and constants via depth-
first traversal over the tree. Note, given guidance
of grammars, we can recover corresponding tree

structure from a sequence-formatted logical form.

3.2 Proposed Model

The structure of our proposed Multi-task Smantic
Parsing (MaSP) model is illustrated in Figure 1.
The model consists of four components: i.e., word
embedding, contextual encoder, entity detection
and pointer-equipped logical form decoder.

3.2.1 Embedding and Contextual Encoder

To handle ellipsis or coreference in conversations,
our model takes current user question combined
with dialog history as the input question U . In
particular, all those sentences are concatenated
with a [SEP] separated, and then a special to-
ken [CTX] is appended. We apply wordpiece tok-
enizing (Wu et al., 2016) method, and then use a
word embedding method (Mikolov et al., 2013) to
transform the tokenized question to a sequence of
low-dimension distributed embeddings, i.e., X =
[x1, · · · ,xn] ∈ Rde×n where de denotes embed-
ding size and n denotes question length.

Given word embeddings X , we use stacked
two-layer multi-head attention mechanism in the
Transformer (Vaswani et al., 2017) with learn-
able positional encodings as an encoder to model
contextual dependencies between tokens, which
results in context-aware representations H =
[h1, · · · ,hn] ∈ Rde×n. And, contextual embed-
ding for token [CTX] is used as the semantic rep-
resentation for entire question, i.e., h(ctx) , hn
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3.2.2 Pointer-Equipped Decoder
Given contextual embeddings H of a question, we
employ stacked two-layer masked attention mech-
anism in (Vaswani et al., 2017) as the decoder to
produce sequence-formatted logical forms.

In each decoding step, the model first predicts
a token from a small decoding vocabulary V(dec)

= {start, end, e, p, tp, u num, A1, · · · , A21} ,
where start and end indicate the start and end of
decoding,A1, · · · , A21 are defined in Table 1, and
e, p, tp and u num denote entity, predicate, type
and number entries respectively. A neural classi-
fier is established to predict current decoding to-
ken, which is formally denoted as

p
(tk)
j =softmax(FFN(sj ; θ

(tk))), (1)

where sj is decoding hidden state of current (i.e.,
j-th) step, FFN(·; θ) denotes a θ-parameterized
two-layer feed forward network with an activation
function inside, and p

(tk)
j ∈R|V(dec)| is a predicted

distribution over V(dec) to score candidates2.
Then, a FFN(·) or a pointer network (Vinyals

et al., 2015) is utilized to predict instantiation for
entry semantic category (i.e., e, p, tp or u num in
V(vec)) if it is necessary.

• For predicate p and type tp, two parameter-
untied FFN(·) are used as

p
(p)
j =softmax(FFN([sj ;h

(ctx)];θ(p))), (2)

p
(t)
j =softmax(FFN([sj ;h

(ctx)];θ(t))), (3)

where h(ctx) is semantic embedding of entire
question, sj is current hidden state, p(p)

j ∈
RN(p)

and p
(t)
j ∈ RN(t)

are predicted distri-
butions over the predicate and type instanti-
ation candidates respectively, and N (p) and
N (t) are the numbers of distinct predicates
and types in the knowledge base.

• For entity e and number u num, two
parameter-untied pointer-networks (Vinyals
et al., 2015) with learnable bilinear layer are
employed to point toward the targeted entity3

and number, which are defined as follows.

p
(e)
j = softmax(sTj W

(e)H:,1:n−1), (4)

2Superscript in bracket denotes the type instead of index.
3Toward the first one if entity consists of multiple words.

p
(n)
j = softmax(sTj W

(n)H:,1:n−1), (5)

where H:,1:n−1 is contextual embedding of
tokens in the question except [CTX], W (e)

and W (n) are weights of pointer-network for
entity and number, p(e)

j ,p
(n)
j ∈ Rn−1 are the

resulting distributions over positions of input
question, and n is the length of the question.

The pointer network is also used for semantic
parsing in (Jia and Liang, 2016), where the pointer
aims at copying out-of-vocabulary words from a
question over small-scale KB. Different from that,
the pointer used here aims at locating the targeted
entity and number in a question, which has two ad-
vantages. First, it handles the coreference problem
by considering the context of entity mentions in
the question. Second, it solves the problem caused
by huge entity vocabulary, which reduces the size
of decoding vocabulary from several million (i.e.,
the number of entities in KB) to several dozen (i.e.,
the length of the question).

3.2.3 Entity Detection and Linking

Figure 2: Transformation from entity-pointed logical
form to KB-executable logical form for KB querying.

To map the pointed positions to entities in KB,
our model also detects entity mentions for the in-
put question, as shown as the “Entity Detection”
part of Figure 1.

We observe that multiple entities in a large-
scale KB usually have same entity text but dif-
ferent types, leading to named entity ambiguity.
Therefore, we design a novel type-aware entity
detection module in which the prediction is ful-
filled in a joint space of IOB tagging and cor-
responding entity type for disambiguation. Par-
ticularly, the prediction space is defined as E =

{O, {I,B} × {ETk}N
(t)

k=1 } where ETk stands for
the k-th entity type label, N (t) denotes number of
distinct entity types in KB, and |E| = 2×N (t)+1.
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The prediction for both entity IOB tagging and
entity type is formulated as

p
(ed)
i =softmax(FFN(hi;θ

(ed))),∀i∈ [1,n−1] (6)

where hi is the contextual embedding of the i-th
token in the question, and p

(ed)
i ∈ R|E| is the pre-

dicted distribution over E.
Given the predicted IOB labels and entity types,

we take the following steps for entity linking.
First, the predicted IOB labels are used to locate
all entities in the question and return correspond-
ing entity mentions. Second, an inverted index
built on the KB is leveraged to find entity candi-
dates in KB based on each entity mention. Third,
the jointly predicted entity types are used to fil-
ter out the candidates with unwanted types, and
the remaining entity with the highest inverted in-
dex score is selected to substitute the pointer. This
process is shown as the bottom part of Figure 2.

During inference phase, the final logical form
is derived by replacing entity pointers in entity-
pointed logical form from §3.2.2 with entity link-
ing results, and is then executed on the KB to re-
trieve an answer for the question, as shown as the
top part of Figure 2.

3.3 Learning and Inference
Model Learning During the training phase, we
first search gold logical forms for questions in
training data over KB if only weak supervision is
provided. Then we conduct multi-task learning for
semantic parsing and entity detection. The final
loss is defined as

L = αL(sp) + L(ed), (7)

where α > 0 is a hyperparameter for a tradeoff be-
tween semantic parsing and entity detection, and
L(sp) and L(ed) are negative log-likelihood losses
of semantic parsing and entity detection defined as
follows.

L(sp)=− 1

|D|
∑
D

1

m

m∑
j=1

log p
(tk)
j [tk′=y

(tk)
j ]

(8)

+
∑

c∈{p,t,e,n}

I
(y

(tk)
j =c)

log p
(c)
j [c′=y

(c)
j ]

L(ed)=− 1

|D|
∑
D

1

n−1

n−1∑
i=1

logp
(ed)
i [ed′=y

(ed)
i ]

(9)

In the two equations above, y(tk)j is gold label for

decoding token in V(dec); y(p)j , y
(t)
j , y

(e)
j and y(n)j

are gold labels for predicate, type, entity posi-
tion and number position for instantiation; p(tk)

j ,

[p
(c)
j ]c∈{p,t,e,n}, and p

(ed)
j are defined in Eq.(1-6)

respectively; and m denotes the decoding length.
Here, we use a single model to handle two sub-

tasks simultaneously, i.e., semantic parsing and
entity detection. This multi-task learning frame-
work enables each subtask to leverage supervision
signals from the others, and thus improves the fi-
nal performance for KB-QA.

Grammar-Guided Inference The grammars
defined in Table 1 are utilized to filter illegal op-
erators out in each decoding step. An operator is
legitimate if its left-hand semantic category in the
definition is identical to the leftmost nonterminal
(i.e., un-instantiated semantic category) in the in-
complete logical form parsed so far. In particular,
the decoding of a logical form begins with the se-
mantic category start. During decoding, the pro-
posed semantic parsing model recursively rewrites
the leftmost nonterminal in the logical form by 1)
applying a legitimate operator for an intermedi-
ate semantic category, or 2) instantiation for one
of entity, predicate, type or number for an entry
semantic category. The decoding process for the
parsing terminates until no nonterminals remain.

Furthermore, beam search is also incorporated
to boost the performance of the proposed model
during the decoding. And, the early stage execu-
tion is performed to filter out illegal logical forms
that lead to empty intermediate result.

4 Experiments

4.1 Experimental Settings

Dataset We evaluated the proposed approach on
Complex Sequential Question Answering (CSQA)
dataset4 (Saha et al., 2018), which is the largest
dataset for conversational question answering
over large-scale KB. It consists of about 1.6M
question-answer pairs in ∼200K dialogs, where
152K/16K/28K dialogs are used for train/dev/test.
Questions are classified as different types, e.g.,
simple, comparative reasoning, logical reasoning
questions. Its KB is built on Wikidata5 in a form of
(subject, predicate, object), and consists of 21.2M
triplets over 12.8M entities, 3,054 distinct entity
types, and 567 distinct predicates.

4https://amritasaha1812.github.io/CSQA
5https://www.wikidata.org

https://amritasaha1812.github.io/CSQA
https://www.wikidata.org
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Methods HRED+KVmem D2A (Baseline) MaSP (Ours) ∆
Question Type #Example F1 Score F1 Score F1 Score
Overall 203k 9.39% 66.70% 79.26% +12.56%
Clarification 9k 16.35% 35.53% 80.79% +45.26%
Comparative Reasoning (All) 15k 2.96% 48.85% 68.90% +20.05%
Logical Reasoning (All) 22k 8.33% 67.31% 69.04% +1.73%
Quantitative Reasoning (All) 9k 0.96% 56.41% 73.75% +17.34%
Simple Question (Coreferenced) 55k 7.26% 57.69% 76.47% +18.78%
Simple Question (Direct) 82k 13.64% 78.42% 85.18% +6.76%
Simple Question (Ellipsis) 10k 9.95% 81.14% 83.73% +2.59%
Question Type #Example Accuracy Accuracy Accuracy
Verification (Boolean) 27k 21.04% 45.05% 60.63% +15.58%
Quantitative Reasoning (Count) 24k 12.13% 40.94% 43.39% +2.45%
Comparative Reasoning (Count) 15k 8.67% 17.78% 22.26% +4.48%

Table 2: Comparisons with baselines on CSQA. The last column consists of differences between MaSP and D2A.

Training Setups We leveraged a BFS method to
search valid logical forms for questions in train-
ing data. The buffer size in BFS is set to 1000.
Both embedding and hidden sizes in the model
are set to 300D, and no pretrained embeddings
are loaded for initialization, and the positional
encodings are randomly initialized and learnable.
The head number of multi-head attention is 6
and activation function inside FFN(·) is Gelu(·)
(Hendrycks and Gimpel, 2016). We used Adam
(Kingma and Ba, 2015) to optimize the loss func-
tion defined in Eq.(7) where α is set to 1.5, and
learning rate is set to 10−4. The training batch
size is 128 for 6 epochs. And we also employed
learning rate warmup within the first 1% steps
and linear decay within the rest. The source
codes are available at https://github.com/
taoshen58/MaSP.

Evaluation Metrics We used the same evalua-
tion metrics as Saha et al. (2018) and Guo et al.
(2018). F1 score (i.e., precision and recall) is used
to evaluate the question whose answer is com-
prised of entities, and accuracy is used to mea-
sure the question whose answer type is boolean or
number.

Baselines There are few works targeting con-
versational question answering over a large-scale
knowledge base. HRED+KVmem (Saha et al.,
2018) and D2A (Guo et al., 2018) are two typi-
cal approaches, and we compared them with our
proposed approach. Particularly, HRED+KVmem
is a memory network (Sukhbaatar et al., 2015; Li
et al., 2017) based seq2seq model, which com-
bines HRED model (Serban et al., 2016) with key-
value memory network (Miller et al., 2016). D2A6

6Overall score of D2A reported in this paper is superior to
that in the original paper since our re-implemented grammars

is a memory augmented neural symbolic model for
semantic parsing in KB-QA, which introduces di-
alog memory manager to handle ellipsis and co-
reference problems in conversations.

4.2 Model Comparisons
We compared our approach (denoted as MaSP)
with HRED+KVmem and D2A in Table 2.
As shown in the table, the semantic parsing
based D2A significantly outperforms the mem-
ory network based text generation approach
(HRED+KVmem), which thus poses a strong
baseline. Further, our proposed approach (MaSP)
achieves a new state-of-the-art performance,
where the overall F1 score is improved by ∼12%.
Besides, the improvement is consistent for all
question types, which ranges from 2% to 25%.

There are two possible reasons for this signif-
icant improvement. First, our approach predicts
entities more accurately, where the accuracy of en-
tities in final logical forms increases from 55%
to 72% compared with D2A. Second, the pro-
posed pointer-equipped logical form decoder in
the multi-task learning framework handles coref-
erence better. For instance, given an user question
with history, “What is the parent organization of
that one? // Did you mean Polydor Records ? //
No, I meant Deram Records. Could you tell me
the answer for that?” with coreference, D2A pro-
duces “(find {Polydor Records}, owned by)” and
in contrast our approach produces “(find {Deram
Records}, owned by)”. This also explains the sub-
stantial improvement for Simple Question (Coref-
erenced) and Clarification7.

for CSQA achieve a better balance between the simple and
non-simple question types. For rational and fair comparisons,
we report re-run results for D2A in this paper.

7In CSQA, the performance of Clarification closely de-
pends on F1 score for next question, 88% of which belong to

https://github.com/taoshen58/MaSP
https://github.com/taoshen58/MaSP
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67.9% 67.6% 67.8%
89.5% 89.1% 89.3%

Precision Recall F1

w/o ET Our Approach

Figure 3: Performance of entity linking. “w/o ET” de-
notes removing entity type filtering.

We also observed that the improvement of
MaSP over D2A for some question types is rel-
atively small, e.g., 1.73% for logical reasoning
questions. A possible reason is that there are usu-
ally more than one entities are needed to compose
the correct logical form for logical reasoning ques-
tions, and our current model is too shallow to parse
the multiple entities. Hence, we adopted deeper
model and employed BERT (Devlin et al., 2018)
as the encoder (latter in §4.4), and found that the
performance of logical reasoning questions is im-
proved by 10% compared to D2A.

4.3 Ablation Study

Methods Ours w/o ET w/o Multi w/o Both
Question Type F1 F1 F1 F1
Overall 79.26% 70.42% 76.73% 68.22%
Clarification 80.79% 68.01% 66.30% 54.64%
Comparative 68.90% 66.35% 61.12% 58.04%
Logical 69.04% 62.63% 67.81% 62.51%
Quantitative 73.75% 73.75% 64.56% 64.55%
Simple (Co-ref) 76.47% 64.94% 74.35% 63.15%
Simple (Direct) 85.18% 75.24% 84.93% 75.19%
Simple (Ellipsis) 83.73% 78.45% 82.66% 77.44%
Question Type Accu Accu Accu Accu
Verification 60.63% 45.40% 60.43% 45.02%
Quantitative 43.39% 39.70% 37.84% 43.39%
Comparative 22.26% 19.08% 18.24% 22.26%

Table 3: Ablation study. “w/o ET” stands for remov-
ing entity type prediction in Entity Detection of §3.2.3;
“w/o Multi” stands for learning two subtasks separately
in our framework; and “w/o Both” stands for a combi-
nation of “w/o ET” and “w/o Multi”.

There are two aspects leading to performance
improvement, i.e., predicting entity type in entity
detection to filter candidates, and multi-task learn-
ing framework. We conducted an ablation study in
Table 3 for in-depth understanding of their effects.

Effect of Entity Type Prediction (w/o ET)
First, the entity type prediction was removed from
the entity detection task, which results in 9% drop
of overall F1 score. We argue that the performance
of the KB-QA task is in line with that of entity

Simple Question(Coreference) .

Accuracy Ours w/o Multi
Entity pointer 79.8% 79.3%
Predicate 96.9% 96.3%
Type 86.8% 84.1%
Number 89.1% 88.3%
Operators 79.4% 78.7%

Table 4: Prediction accuracy on each component com-
posing the pointer-equipped logical form.

linking. Hence, we separately evaluated the entity
linking task on the test set. As illustrated in Figure
3, both precision and recall of entity linking drop
significantly without filtering the entity linking re-
sults w.r.t. the predicted entity type, which verifies
our hypothesis above.

Effect of Multi-Task Learning (w/o Multi)
Second, to measure the effect of multi-task learn-
ing, we evaluated the KB-QA task when the two
subtasks, i.e., pointer-equipped semantic parsing
and entity detection, are learned separately. As
shown in Table 3, the F1 score for every question
type consistently drops in the range of 3% to 14%
compared with that with multi-task learning. We
further evaluated the effect of multi-task learning
on each subtask. As shown in Table 4, the accu-
racy for each component of the pointer-equipped
logical form drops with separate learning. Mean-
while, we found 0.1% F1 score reduction (99.4%
vs. 99.5%) for entity detection subtask compared
to the model without multi-task learning, which
only poses a negligible effect on the downstream
task. To sum up, the multi-task learning frame-
work increases the accuracy of the pointer-based
logical form generation while keeping a satisfac-
tory performance of entity detection, and conse-
quently improves the final question answering per-
formance.

Note that, considering a combination of remov-
ing the entity type filter and learning two subtasks
separately (i.e., w/o Both in Table 3), the proposed
framework will degenerate to a model that is simi-
lar to Coarse-to-Fine semantic parsing model, an-
other state-of-the-art KB-QA model over small-
scale KB (Dong and Lapata, 2018). Therefore, an
improvement of 11% of F1 score also verifies the
advantage of our proposed framework.

4.4 Model Setting Analysis

As introduced in §4.1 and evaluated in §4.2, the
proposed framework is built on a relatively shal-
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Methods Vanilla w/ BERT w/ Large Beam
Question Type F1 F1 F1
Overall 79.26% 80.60% 81.55%
Clarification 80.79% 79.46% 83.37%
Comparative 68.90% 65.99% 69.34%
Logical 69.04% 77.53% 69.41%
Quantitative 73.75% 70.43% 73.75%
Simple (Co-ref) 76.47% 77.95% 79.03%
Simple (Direct) 85.18% 86.40% 88.28%
Simple (Ellipsis) 83.73% 84.82% 86.96%
Question Type Accuracy Accuracy Accuracy
Verification 60.63% 63.85% 61.96%
Quantitative 43.39% 47.14% 44.22%
Comparative 22.26% 25.28% 22.70%

Table 5: Comparisons with different experimental set-
tings. “Vanilla” stands for standard settings of our
framework, i.e, MaSP. “w/ BERT” stands for incorpo-
rating BERT. And “w/ Large Beam” stands for increas-
ing beam search size from 4 to 8.

low neural network, i.e., stacked two-layer multi-
head attention, which might limit its representative
ability. Hence, in this section, we further exploited
the performance of the proposed framework by ap-
plying more sophisticated strategies.

As shown in Table 5, we first replaced the en-
coder with pre-trained BERT base model (Devlin
et al., 2018) and fine-tuned parameters during the
training phase, which results in 1.3% F1 score im-
provement over the vanilla one. Second, we in-
creased beam search size from 4 to 8 during the
decoding in the inference phase for the standard
settings, which leads to 2.3% F1 score increase.

4.5 Error Analysis

We randomly sampled 100 examples with wrong
logical forms or incorrect answers to conduct an
error analysis, and found that the errors mainly fall
into the following categories.

Entity Ambiguity Leveraging entity type as a
filter in entity linking significantly reduces errors
caused by entity ambiguity, but it is still possible
that different entities with same text belong to the
same type, due to coarse granularity of the entity
type, which results in filtering invalidity. For ex-
ample, it is difficult to distinguish between two
persons whose names are both Bill Woods.

Wrong Predicted Logical Form The predicted
components (e.g., operators, predicates and types)
composing the logical form would be inaccurate,
leading to a wrong answer to the question or an
un-executable logical form.

Spurious Logical Form We took a BFS method
to search gold logical forms for questions in train-
ing set, which inevitably generates spurious (in-
correct but leading to correct answers coinciden-
tally) logical forms as training signals. Take the
question “Which sexes do King Harold, Queen Lil-
lian and Arthur Pendragon possess” as an exam-
ple, a spurious logical form only retrieves the gen-
ders of “King Harold” and “Queen Lillian”, while
it gets correct answers for the question. Spurious
logical forms accidentally introduce noises into
training data and thus negatively affect the perfor-
mance of KB-QA.

5 Related Work

Our work is aligned with semantic parsing based
approach for KB-QA. Traditional semantic pars-
ing systems typically learn a lexicon-based parser
and a scoring model to construct a logical form
given a natural language question (Zettlemoyer
and Collins, 2007; Wong and Mooney, 2007;
Zettlemoyer and Collins, 2009; Kwiatkowski
et al., 2011; Andreas et al., 2013; Artzi and Zettle-
moyer, 2013; Zhao and Huang, 2014; Long et al.,
2016). For example, Zettlemoyer and Collins
(2009) and Artzi and Zettlemoyer (2013) learn a
CCG parser, and Long et al. (2016) develop a
shift-reduce parser to construct logical forms.

Neural semantic parsing approaches have been
gaining rising attention in recent years, eschew-
ing the need for extensive feature engineering
(Jia and Liang, 2016; Ling et al., 2016; Xiao
et al., 2016). Some efforts have been made to
utilize the syntax of logical forms (Rabinovich
et al., 2017; Krishnamurthy et al., 2017; Cheng
et al., 2017; Yin and Neubig, 2017). For exam-
ple, Dong and Lapata (2016) and Alvarez-Melis
and Jaakkola (2017) leverage an attention-based
encoder-decoder framework to translate a natural
language question to tree-structured logical form.

Recently, to handle huge entity vocabulary ex-
isting in a large-scale knowledge base, many
works take a stepwise approach. For example,
Liang et al. (2016), Dong and Lapata (2016), and
Guo et al. (2018) first process questions using a
name entity linking system to find entity candi-
dates, and then learn a model to map a question to
a logical form based on the candidates. Dong and
Lapata (2018) decompose the task into two stages:
first, a sketch of the logical form is predicted, and
then a full logical form is generated with consid-



2450

ering both the question and the predicted sketch.
Our proposed framework also decomposes the

task into multiple subtasks but is different from ex-
isting works in several aspects. First, inspired by
pointer network (Vinyals et al., 2015), we replace
entities in a logical form with the starting posi-
tions of their mentions in the question, which can
be naturally used to handle coreference problem
in conversations. Second, the proposed pointer-
based semantic parsing model can be intrinsically
extended to jointly learn with entity detection for
fully leveraging all supervision signals. Third, we
alleviate entity ambiguity problem in entity de-
tection & linking subtask, by incorporating entity
type prediction into entity mention IOB labeling
to filter out the entities with unwanted types.

6 Conclusion

We studied the problem of conversational question
answering over a large-scale knowledge base, and
proposed a multi-task learning framework which
learns for type-aware entity detection and pointer-
equipped logical form generation simultaneously.
The multi-task learning framework takes full ad-
vantage of the supervisions from all subtasks, and
consequently increases the performance of final
KB-QA problem. Experimental results on a large-
scale dataset verify the effectiveness of the pro-
posed framework. In the future, we will test our
proposed framework on more datasets and investi-
gate potential approaches to handle spurious logi-
cal forms for weakly-supervised KB-QA.
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