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Abstract

A typical cross-lingual transfer learning ap-
proach boosting model performance on a
resource-poor language is to pre-train the
model on all available supervised data from
another resource-rich language. However, in
large-scale systems, this leads to high training
times and computational requirements. In ad-
dition, characteristic differences between the
source and target languages raise a natural
question of whether source-language data se-
lection can improve the knowledge transfer. In
this paper, we address this question and pro-
pose a simple but effective language model
based source-language data selection method
for cross-lingual transfer learning in large-
scale spoken language understanding. The
experimental results show that with data se-
lection i) the source data amount and hence
training speed is reduced significantly and ii)
model performance is improved.

1 Introduction

Spoken Language Understanding (SLU) plays an
important role in spoken language technology and
is typically divided into two sub-tasks: Intent Clas-
sification (IC) and Slot Filling (SF). While the for-
mer identifies a speaker’s intent, the latter extracts
semantic constituents from the natural language
query. Recently, there have been emerging efforts
on Cross-Lingual Transfer Learning (CLTL) meth-
ods to reduce data requirements in deep neural net-
work (DNN) based SLU. A typical approach is to
pre-train the model on labeled data from a richly re-
sourced language, and then either apply it directly
on a target language (Upadhyay et al., 2018) or fine-
tune it on a smaller amount of supervised data from
a target language (Do and Gaspers, 2019). How-
ever, both in SLU and other NLP tasks, prior work
on CLTL typically utilized all available source data
to transfer knowledge, as it has been mainly inves-

tigated in rather small Academic settings. How-
ever, in large-scale settings with millions of utter-
ances, this would lead to costly training times, high
computational requirements and optimization dif-
ficulties. Moreover, the different characteristics
between the source and target languages raise a
natural question of whether source-language data
selection in which only the most relevant source
instances are picked for pre-training can improve
CLTL performance, as a considerable amount of
source utterances might be “irrelevant” to the target
language or even yield negative transfer.

Addressing these questions, in this paper we ex-
plore source-language data selection for CLTL in
SLU, focusing especially on large-scale settings in
which we assume the existence of a large amount
(millions) of source data and a moderate amount
(thousands) of target data. Since the effectiveness
of pre-training in CLTL depends on the similarity
of the source data distribution and the real distri-
bution of the target language, we propose a source-
language data selection method which computes
the relevance score of each source instance to the
target language by using several N-gram language
model based metrics. Our method is designed to
satisfy both IC and SF sub-tasks in a multi-task
training scenario, and to select data from multiple
source languages, which have been rarely studied
in the literature.

Our experimental results show that our proposed
data selection method: i) improves CLTL perfor-
mance in large-scale settings, while reducing the
amount of source data significantly ii) brings higher
gains to SF but does not hurt IC, and iii) can select
data efficiently from multiple source languages for
a single target language.
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2 Related work

Prior work on CLTL for SLU has mainly focused
on using machine translation (e.g. Garcı́a et al.
(2012); He et al. (2013); Gaspers et al. (2018)).
Until recently, few approaches based on cross-
lingual joint training and cross-lingual supervised
pre-training for DNNs have been proposed. The
former takes advantage of the knowledge trans-
ferring in a SLU system by jointly training (rel-
atively balanced) source and target data (e.g. Li
et al. (2018)). Meanwhile, the latter is usually used
when the amount of source data is significantly
larger than the amount of target data. In particular,
the SLU model is pre-trained on a large amount
of supervised source data, and then either tested
directly on the target language (e.g. Upadhyay et al.
(2018)), or fine-tuned on a smaller amount of super-
vised target data (e.g. Do and Gaspers (2019)). Our
CLTL method follows the line of Do and Gaspers
(2019), but instead of utilizing all available source
data, we aim at selecting the most relevant subset
of the source data for the target language.

Data selection has been studied in the field of
domain adaptation with most of the work targeting
machine translation (Axelrod et al., 2011; van der
Wees et al., 2017). These approaches usually rank
sentence pairs in a large bitext from a source do-
main according to their difference in cross-entropy
or perplexity with respect to a target domain corpus
and then select the top n sentence pairs to train a
machine translation system for the target domain.
Although this task also deals with multiple lan-
guages, it is not a CLTL problem. The application
of data selection on other tasks are relatively rare,
e.g., dependency parsing (Plank and van Noord,
2011), sentiment analysis (Remus, 2012), POS tag-
ging (Ruder and Plank, 2017).

Several common data metrics have been pro-
posed to rank the relevance of the source instances
to the target domain, e.g, word similarity measures,
diversity. However, to the best of our knowledge,
data selection has not yet been explored for DNN-
based CLTL in SLU. In addition, two challenges
tackled in this paper, i.e. applying data selection
for a multi-task training scenario and dealing with
multiple source languages, have been rarely studied
in the literature.

3 Spoken language understanding

3.1 Task definition
Suppose for a language l with word vocabulary
Vl, intent vocabulary Il and slot vocabulary Sl, we
have a set of utterances which are annotated with
an intent label and each word is annotated with a
slot label. The task of SLU is divided into two
sub-tasks: i) Intent classification, which learns a
function mapping each unlabeled utterance to a
proper intent label ∈ Il, and ii) Slot filling, which
learns a function mapping each unlabeled token to
a proper slot label ∈ Sl.

3.2 Model
Our multi-task SLU model consists of: i) A shared
embedding layer which is the concatenation of a
1-dimensional convolution neural network based
character embedding and a word embedding. ii) A
shared encoder which is a two-layers bi-directional
highway Long-short Term Memory network (Sri-
vastava et al., 2015) served by the embedding layer
as inputs, learning a contextual, fixed-dimensional
representation for each token. ii) Two decoders for
SF and IC sub-tasks; each consists of a stack of
two dense layers and a softmax layer on top.

The two sub-tasks are trained jointly via a
weighted loss function: L = αiL̂i + αsL̂s, where
L̂i, L̂s are the normalized cross-entropy losses with
label smoothing (Szegedy et al., 2016) of IC and
SF, respectively.

3.3 Cross-lingual transfer learning
Given a target language lt with a limited super-
vised data set Dlt divided into a training set DT

lt

and a validation set DV
lt , CLTL aims at improv-

ing the SLU performance on lt by leveraging the
larger supervised data sets Dls1

, . . . ,DlsN
from N

source languages ls1, . . . , l
s
N . A common idea be-

hind CLTL methods is to map the source and target
data into a shared space, so that the knowledge can
be transferred in-between languages.

In this paper, we assume the availability of
a multi-lingual word embedding function which
maps a word in any language into a shared space:
W : Vls1

⋃
. . .VlsN

⋃
Vlt → IRd, where Vl is

the vocabulary of language l. In addition, for a
source language lsi in which a bilingual dictionary
Dlsi ,l

t : Vlsi → Vlt is available, a word w can be
alternatively mapped into the shared space by using
W(Dlsi ,l

t(w)) 1. The word embedding layer in our
1Experiments on the development data shows that
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SLU model is fixed to the mapping from the word
vocabulary to this shared space, without being up-
dated during training. In contrast, the character em-
bedding layer in our model is initialized randomly
and updated during training. Our CLTL training
strategy consists of two phases: First, the model
is pre-trained on the source data Dls1

∪ . . . ∪ DlsN

for T s
w epochs, and validated on DV

lt . Second, the
model is fine-tuned on the target data DT

lt for T t
w

epochs and validated on DV
lt .

4 Data selection

The effectiveness of pre-training in CLTL depends
on the similarity of the source data distribution and
the real distribution of the target language. Let us
consider each component in our model. First, for
the word embedding layer, obtaining similar distri-
butions of the source data and the target language
can be considered as an “easy” task by using multi-
lingual word embedding. Second, for the character
embedding layer and the encoder, it depends on
how similar the character patterns and the word
patterns of the source data and the target language
are, respectively. Finally, for the decoders, the sim-
ilar distributions could be expected given the good
distributions provided by the encoder.

We, therefore, propose a relevance metric for
the source utterances w.r.t. the target language:
R(u) =

∑M
k=1 αkfk(u), where fk and αk are re-

spectively an attribute value and its importance
weight, and M is the total number of attributes.
Each attribute is associated with an N-gram word-
or character- based language model trained on the
target language which can be used to estimate
the similarity of a pattern to the target language.
Let us consider an attribute fk and its N-gram
language model LMk trained on the target lan-
guage lt. Given an utterance u = w1 . . . wn in
a source language lsi and the bilingual dictionary
Dlsi ,l

t : Vlsi → Vlt mapping a word in lsi to another
word in lt, we call S the set of N-grams generated
from Dlsi ,l

t(w1) . . .Dlsi ,l
t(wn). The attribute value

fk is computed as the average language model
score of the elements in S:

fk(u) =
∑
g∈S

LMk(g) ∗ 1

|S|
(1)

W(D(w)) works well for French as target language, while
W(w) is better for German.

Exp. Source Target
Train Dev Test

10K-DE EN 5M 10K 2K 7,431
20K-DE EN 5M 20K 2K 7,431
10K-DE EN 5M, DE 1.1M, ES 114,702 10K 5K 58K
20K-DE EN 5M, DE 1.1M, ES 114,702 20K 5K 58K

Table 1: Supervised data statistics.

We then normalize fk(u) at intent level:

f̄k(u) =
fk(u)

maxu′∈Iu fk(u′)
(2)

where Iu is the set of utterances (from all source
languages) having the same intent as u. By using
the proposed relevance metric, the source data can
be ranked in descending order, and only the top-K
utterances will be selected for the pre-training.

5 Experiments

5.1 Data

Supervised data For large-scale experiments,
we extracted random samples from a large-scale
SLU system. The data are representative of user
requests to voice-enabled devices and are labeled
with intents and slots. We include four languages
into our experiments, i.e. English (EN), German
(DE), French (FR) and Spanish (ES). DE and FR
are used as the target languages in our experiments.
Data statistics can be found in Table 1.

Unlabelled data sets For each of the target lan-
guages (DE and FR), we build N-gram language
models on unlabelled data sets in that language.
We make use of 3M DE sentences and 1M FR
sentences which are freely available from the
Leipzig unlabelled corpus collection (Goldhahn
et al., 2012). In addition, we collect 500K DE and
2.5K FR unlabelled utterances with a similar nature
as labelled utterances from the SLU system.

Pre-trained resources We use pre-trained 300-
dimensional multilingual word embeddings and
bilingual dictionaries provided by Conneau et al.
(2017) and Lample et al. (2017), respectively.

5.2 Setup

We carry out four experiments with 10K and 20K
target data in DE and FR (see Table. 1 for the exper-
iment names and the labelled data statistics). We
conduct experiments with transferring from one
source language (EN) to another (DE) and from
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three source languages (EN, DE, ES) to one tar-
get language (FR). In each experiment, we com-
pare four different training strategies: i) Mono (w.o.
CLTL): an SLU model is trained on only the super-
vised target data. ii) CLTL: all supervised source
data is used for pre-training, and we fine-tune on
target language data. iii) CLTL-RD: random K%
utterances of the original source data are used for
pre-training. iv) CLTL-DS: the K% most relevant
source utterances are selected by using our pro-
posed relevance metric for pre-training.

Settings The convolutions used for character em-
beddings have window sizes of 2, 3, 4, each con-
sisting of 64 filters. The sizes of LSTM and dense
layers are set to 300. All dropout keep probabilities
are set to 0.9. The hyper-parameter tuning on the
development set results in αi = 0.2, αs = 0.8, la-
bel smoothing rate = 0.1. We use Adam optimizer
with learning rate = 0.001. Exponential decay is
applied to the learning rate with decay steps = 500,
and decay rate = 0.95. For CLTL, the number
of training epochs T s

w and T t
w are set to 6 and 25,

respectively. For data selection, we use four N-
gram language models, i.e. word-based bi-gram
and tri-gram language models and character-based
bi-gram and tri-gram language models. The four
importance weights are set to 1.0 each. For eval-
uation we use the standard metrics, i.e. F1, pre-
cision and recall for slot filling (computed using
the CoNLL 2002 script) and accuracy for intent
classification.

5.3 Results and discussions

Exp. Model Slot Intent
P R F1 Acc.

10
K

-D
E

Mono 76.4 ± 1.6 75.4 ± 1.4 75.9 ± 1.5 87.9 ± 0.4
CLTL 79.7 ± 1.8 77.6 ± 1.1 78.7 ± 1.5 89.5 ± 0.3
CLTL-RD 79.3 ± 0.9 77.0 ± 0.5 78.1 ± 0.6 89.5 ± 0.4
CLTL-DS 80.1 ± 0.6 78.6 ± 0.7 79.4 ± 0.6 90.0 ± 0.3

20
K

-D
E

Mono 80 ± 0.2 78.8 ± 1.0 79.4 ± 0.6 89.5 ± 0.0
CLTL 81.3 ± 1.8 78.9 ± 2.3 80.1 ± 2.1 90.5 ± 0.1
CLTL-RD 80.7 ± 1.6 79.3± 0.9 80.0 ± 1.2 90.1 ± 0.3
CLTL-DS 82.2 ± 0.2 80.7 ± 0.1 81.5 ± 0.1 90.8 ± 0.4

10
K

-F
R

Mono 76.5 ± 0.5 78.4 ± 0.5 77.5 ± 0.5 89.3 ± 0.4
CLTL 79.0 ± 0.3 80.7 ± 0.4 79.8 ± 0.1 90.7 ± 0.1
CLTL-RD 78.7 ± 0.2 80.6 ± 0.3 79.7 ± 0.2 90.4 ± 0.3
CLTL-DS 80.0 ± 0.7 82.0 ± 0.2 81.0 ± 0.3 91.2 ± 0.2

20
K

-F
R

Mono 78.9 ± 0.1 80.2 ± 0.2 79.5 ± 0.2 90.6 ± 0.1
CLTL 80.4 ± 0.6 82.4 ±0.5 81.4 ± 0.6 91.4 ± 0.2
CLTL-RD 80.9 ± 0.1 82.5 ± 0.5 81.7 ± 0.2 91.5 ± 0.1
CLTL-DS 81.5 ± 0.2 82.8 ± 0.2 82.1 ± 0.2 91.6 ± 0.2

Table 2: Performance of CLTL on large-scale data sets.
K is set to 50 (%) in CLTL-RD and CLTL-DS. Re-
ported results are the mean and std. values of 3 runs.

Is 100% better than 50%? Table 2 shows the
performances of the different training strategies in
our experiments. In CLTL-RD and CLTL-DS set-
tings, K is set to 50 (%). It helps to answer the
question that whether using the full source data
(100%) is better than using just 50%. Interest-
ingly, although 100% (CLTL) is better than ran-
dom 50% (CLTL-RD) in 3 out of 4 experiments,
it is surpassed by our selected 50% in all of the
experiments. These results do not only prove the
effectiveness of our proposed data selection metric
but also suggest a potentially powerful application
of source-language data selection on cross-lingual
transfer learning.

Slot filling vs. intent classification As shown in
Table 2source-language, our data selection method
tends to bring higher gains to SF than to IC. One
possible reason is that IC is the easier between
the two sub-tasks (less categories, single label vs.
sequence label decoding etc.). However, it is im-
portant to stress that our data selection does not
hurt IC, meaning that the method is useful for joint
learning.

One vs several source languages The similar
trends in experiments with DE as target and FR
as target show that our proposed data selection
method can be applied in both single-source and
multi-source transfer learning. In order to compare
the utility of multiple vs a single source, we ran
an experiment on 10K-FR using only English as
the source language. The means of slot F1 and
IC dropped from 81.0% and 91.2% to 79.9% and
90.8%, respectively, when using only English, po-
tentially because it is not the closest language to
French. Hence, the model could probably choose
better source utterances from multiple sources.
This indicates that our method works for both set-
tings with higher gains for using multiple source
languages.

Value of K and importance weights of the lan-
guage models? One may question whether it is
possible to optimize the importance weights of the
language models and choose K automatically. A
possible solution could be using Bayesian optimiza-
tion (Ruder and Plank, 2017). Instead of selecting
the top K% utterances, we define a threshold θ: u
is selected if R(u) >= θ. θ and αk become hyper-
parameters which can be optimized using Bayesian
Optimization with the score of the CLTL model on
a development set as the objective. However, while
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this could improve performance, it is expensive,
especially in large-scale settings, i.e. optimization
would likely add more computation time than what
we can gain by training on a subset.

Performance on a small-scale benchmark
dataset While we are mainly interested in large-
scale SLU, we also strive for further understanding
of CLTL by conducting a similar experiment on
a small-scale widely-used SLU benchmark data
set, i.e. ATIS (Tür et al., 2010). It contains audio
recordings and corresponding annotated transcrip-
tions in English of people making flight reserva-
tions.

To compare with the state-of-the-art systems, we
apply our monolingual model on ATIS. The model
reaches 95.6% F1 for slot filling and 96.8% accu-
racy for intent classification which are comparable
to the state-of-the-art results reported on the same
data set (Do and Gaspers, 2019).

We then perform a cross-lingual transfer learn-
ing experiment from English to German on ATIS.
To construct the training sets of the target language,
we select two random subsets of 200 and 400 En-
glish utterances from the training part of ATIS and
translate them into German. The development set
of the target language is formed by the German
translation of a random subset of 144 English ut-
terances selected from the validation part of ATIS.
The test set of the target language is the German
translation version of the ATIS test set which in-
cludes 893 utterances. The annotated source data
comprise 4015 English training utterances from
ATIS.

Exp. Model Slot Intent
P R F1 Acc.

20
0-

D
E

Mono 79.8 ± 0.3 80.6 ± 0.6 80.2 ± 0.6 85.8 ± 0.6
CLTL 81.8 ± 0.5 82.8 ± 0.9 82.3 ± 0.6 85.3 ± 1.6
CLTL-RD 83.0 ± 1.6 83.3 ± 1.7 83.1 ± 1.6 86.8 ± 1.4
CLTL-DS 84.8 ± 2.7 85.3 ± 2.3 85.0 ± 2.5 87.2 ± 1.9

40
0-

D
E

Mono 86.8 ± 1.1 87.7 ± 0.6 87.2 ± 0.8 88.2 ± 0.7
CLTL 88.0 ± 0.5 87.8 ± 0.7 87.9 ± 0.6 88.0 ± 0.3
CLTL-RD 87.8 ± 1.3 87.4 ± 1.1 87.6 ± 1.1 87.9 ± 0.8
CLTL-DS 88.3 ± 0.1 88.0 ± 0.3 88.2 ± 0.2 88.2 ± 0.2

Table 3: Performance of CLTL on ATIS. K is set to 50
(%) in CLTL-RD and CLTL-DS. Reported results are
the mean and std. values of 3 runs.

Table 3 shows the performance of CLTL on the
small-scale ATIS data set. As can been seen, in
general, CLTL with data selection (CLTL-DS) is
still beneficial in a small-scale setting.

6 Conclusions

We presented an efficient approach to select source
data for cross-lingual transfer learning in large-
scale SLU. Our results indicate that by using data
selection we can both improve performance and
reduce source data significantly without a negative
effect on system performance, which can reduce
training time and computational requirements in
large-scale systems greatly. This suggests an inter-
esting future research direction toward data selec-
tion for cross-lingual transfer learning problems.
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