
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 1317–1323,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

1317

Automatically Learning Data Augmentation Policies for Dialogue Tasks

Tong Niu Mohit Bansal
UNC Chapel Hill

{tongn, mbansal}@cs.unc.edu

Abstract

Automatic data augmentation (AutoAug-
ment) (Cubuk et al., 2019) searches for
optimal perturbation policies via a controller
trained using performance rewards of a sam-
pled policy on the target task, hence reducing
data-level model bias. While being a powerful
algorithm, their work has focused on computer
vision tasks, where it is comparatively easy
to apply imperceptible perturbations without
changing an image’s semantic meaning.
In our work, we adapt AutoAugment to
automatically discover effective perturbation
policies for natural language processing
(NLP) tasks such as dialogue generation. We
start with a pool of atomic operations that ap-
ply subtle semantic-preserving perturbations
to the source inputs of a dialogue task (e.g.,
different POS-tag types of stopword dropout,
grammatical errors, and paraphrasing). Next,
we allow the controller to learn more complex
augmentation policies by searching over the
space of the various combinations of these
atomic operations. Moreover, we also explore
conditioning the controller on the source in-
puts of the target task, since certain strategies
may not apply to inputs that do not contain
that strategy’s required linguistic features.
Empirically, we demonstrate that both our
input-agnostic and input-aware controllers
discover useful data augmentation policies,
and achieve significant improvements over the
previous state-of-the-art, including trained on
manually-designed policies.

1 Introduction

Data augmentation aims at teaching invariances to
a model so that it generalizes better outside the
training set distribution. Recently, there has been
substantial progress in Automatic Data Augmen-
tation (AutoAugment) for computer vision (Cubuk
et al., 2019). This algorithm searches for optimal
perturbation policies via a controller trained with
reinforcement learning, where its reward comes

from training the target model with data perturbed
by the sampled augmentation policy. Each pol-
icy consists of 5 sub-policies sampled randomly
during training, and each sub-policy consists of
2 operations applied in sequence. These oper-
ations are semantic-preserving image processing
functions such as translation and rotation.

We adapt AutoAugment to NLP tasks, where
the operations are subtle, semantic-preserving text
perturbations. To collect a pool of such opera-
tions, the first challenge we face is that the dis-
crete nature of text makes it less straightforward to
come up with semantic-preserving perturbations.
We thus employ as a starting point Should-Not-
Change strategies (equivalent to operations in this
paper) proposed by Niu and Bansal (2018) which
are shown to improve their dialogue task perfor-
mance when trained on data perturbed by these
strategies. Importantly, we next divide their op-
erations into several smaller ones (such as Gram-
mar Errors divided into Singular/Plural Errors and
Verb Inflection Errors) and also add a new opera-
tion Stammer (word repetition). This modification
provides a much larger space of operation com-
binations for the model to explore from, so that
it could potentially learn more complex and nu-
anced augmentation policies. Figure 1 shows a
sub-policy containing two operations. It first para-
phrases 2 tokens with probability 0.7 and then in-
troduces 1 grammar error with probability 0.4.1

We choose the dialogue generation task based
on the Ubuntu Dialogue Corpus (Lowe et al.,
2015) because as opposed to Natural Language
Inference and Question Answering tasks, real-
world dialogue datasets more naturally afford such
perturbation-style human errors (i.e., contain more
noise), and thus are inherently compatible with

1Our code and sampled augmented data is pub-
licly available at: https://github.com/WolfNiu/
AutoAugDialogue. The learned policies are presented in
Table 4.

https://github.com/WolfNiu/AutoAugDialogue
https://github.com/WolfNiu/AutoAugDialogue


1318

I have three 
beautiful kids.

I have three 
beautiful kids.

I have three 
lovely children.

0.3 0.7

0.6 0.4 0.6 0.4

Op1: (P, 2, 0.7)

Op2: (G, 1, 0.4)

I have three 
beautiful kids.

I have three 
lovely child.

I have three 
lovely children.

I have three 
beautiful kid.

Figure 1: Example of a sub-policy applied to a source
input. The first operation (Paraphrase, 2, 0.7) para-
phrases the input twice with probability 0.7; the second
operation (Grammar Errors, 1, 0.4) inserts 1 grammar
error with probability 0.4. Thus there are at most 4
possible outcomes from each sub-policy.

a variety of artificial perturbations. Empirically,
we show that our controller can self-learn poli-
cies that achieve state-of-the-art performance on
Ubuntu, even compared with very strong base-
lines such as the best manually-designed policy
in Niu and Bansal (2018). We also verify this
result through human evaluation to show that our
model indeed learns to generate higher-quality re-
sponses. We next analyze the best-learned policies
and observe that the controller prefers to sample
operations which work well on their own as aug-
mentation policies, and then combines them into
stronger policy sequences. Lastly, observing that
some operations require the source inputs to have
certain linguistic features (e.g., we cannot apply
Stopword Dropout to inputs that do not contain
stopwords), we also explore a controller that con-
ditions on the source inputs of the target dataset,
via a sequence-to-sequence (seq2seq) controller.
We show that this input-aware model performs on
par with the input-agnostic one (where the con-
troller outputs do not depend on the source inputs),
and may need more epochs to expose the model to
the many diverse policies it generates. We also
present selected best policies to demonstrate that
the seq2seq controller can sometimes successfully
attend to the source inputs.

2 Related Works

There has been extensive work that employs data
augmentation in both computer vision (Simard
et al., 2003; Krizhevsky et al., 2012; Cireşan et al.,
2012; Wan et al., 2013; Sato et al., 2015; DeVries
and Taylor, 2017; Tran et al., 2017; Lemley et al.,

2017) and NLP (Fürstenau and Lapata, 2009; Sen-
nrich et al., 2016; Wang and Yang, 2015; Zhang
et al., 2015; Jia and Liang, 2016; Kim and Rush,
2016; Hu et al., 2017; Xu et al., 2017; Xia et al.,
2017; Silfverberg et al., 2017; Kafle et al., 2017;
Hou et al., 2018; Wang et al., 2018).

Automatic data augmentation is addressed via
the AutoAugment algorithm proposed by Cubuk
et al. (2019), which uses a hypernetwork (in
our case, a controller) to train the target model,
an approach inspired by neural architecture
search (Zoph et al., 2017). Previous works
have also adopted Generative Adversarial Net-
works (Goodfellow et al., 2014) to either directly
generate augmented data (Tran et al., 2017; Sixt
et al., 2018; Antoniou et al., 2017; Zhu et al., 2017;
Mun et al., 2017; Wang and Perez, 2017), or gen-
erate augmentation strategies (Ratner et al., 2017).
These approaches produce perturbations through
continuous hidden representations. Motivated by
the fact that our pool of candidate perturbations
are discrete in nature, we identify AutoAugment
as a more proper base model to use, and adapt it
linguistically to the challenging task of generative
dialogue tasks. Our work closely follows Niu and
Bansal (2018) to obtain a pool of candidate op-
erations. Although their work also used combi-
nations of operations for data augmentation, their
best model is manually designed, training on each
operation in sequence, while our model automati-
cally discovers more nuanced and detailed policies
that have not only the operation types but also the
intensity (the number of changes) and probability.

3 Model

AutoAugment Architecture: As shown in Fig-
ure 2, our AutoAugment model consists of a con-
troller and a target model (Cubuk et al., 2019). The
controller first samples a policy that transforms the
original data to augmented data, on which the tar-
get model trains. After training, the target model
is evaluated to obtain the performance on the val-
idation set. This performance is then fed back to
the controller as the reward signal. Figure 3 il-
lustrates the details of input-agnostic and input-
aware controllers. The former corresponds to the
lower half of the figure. It consists of a single de-
coder that samples each operation in sequence. An
operation is defined by 3 parameters: Operation
Type, Number of Changes (the maximum number
of times allowed to perform the operation, which



1319

Controller sample Policy

Data Aug-data

training

Model
performance reward (R)

perturb

transform

Figure 2: The controller samples a policy which is used
to perturb the training data. After training on the aug-
mented inputs, the model feeds the performance as re-
ward back to the controller.

is a discrete equivalence of the continuous Magni-
tude in (Cubuk et al., 2019)), and the Probabil-
ity of applying that operation. The input-aware
controller corresponds to the whole figure, i.e., we
novelly add in an encoder that takes as inputs the
source of the training data, making it a seq2seq
model. Since for each source input, there may be a
different set of perturbations that are most suitable
to it, our input-aware controller aims at providing
customized operations for each training example.
Search Space: Following Niu and Bansal (2018),
our pool of operations contains Random Swap,
Stopword Dropout, Paraphrase, Grammar Errors,
and Stammer, which cover a substantial enough
search space of real-world noise in text.2 To allow
the controller to learn more nuanced combinations
of operations, we further divide Stopword Dropout
into 7 categories: Noun, Adposition, Pronoun,
Adverb, Verb, Determiner, and Other, and divide
Grammar Errors into Noun (plural/singular con-
fusion) and Verb (verb inflected/base form confu-
sion). For Stopword Dropout, we chose the first
six categories because they are the major universal
POS tags in the set closed-class words. We per-
form this subdivision also because different cate-
gories of an operation can influence the model to
different extents. Suppose the original utterance
is “What is the offer?”, dropping the interrogative
pronoun “what” is more semantic-changing than
dropping the determiner “the.” Our pool thus con-
sists of 12 operations. For generality, we do not
distinguish in advance which operation alone is
effective as an augmentation policy on the target
dataset, but rather let the controller figure it out.
Moreover, it is possible that an operation alone
is not effective, but when applied in sequence
with another operation, they collectively teach the

2We did not use their Generative Paraphrasing where
number of changes (which signifies the intensity of the pol-
icy) does not apply to this operation, because this operation
can generate only one possible paraphrase for each input.

S3 S2 S1

Encoder

Decoder

Source 

Operation
Num. of
Changes

Op. Type Probability

<Start>

Figure 3: AutoAugment controller. An input-agnostic
controller corresponds to the lower part of the figure.
It samples a list of operations in sequence. An input-
aware controller additionally has an encoder (upper
part) that takes in the source inputs of the data.

model a new pattern of invariance in the data.
Each policy consists of 4 sub-policies chosen

randomly during training, each sub-policy consists
of 2 operations,3 and each operation has 3 hyper-
parameters. We discretize the Probability of ap-
plying an operation into 10 uniformly-spaced val-
ues starting from 0.1 and let the number of re-
places range from 1 to 4. Thus, the search space
size is (12× 4× 10)(2×4) = 2.82× 1021. 2 oper-
ations allows more perturbations than exerted by a
single strategy: in reality a sentence may contain
several types of noise.
Search Algorithm: We use REINFORCE, a pol-
icy gradient method (Williams, 1992; Sutton et al.,
2000) to train the controller. At each step, the de-
coder samples a token and feeds it into the next
step. Since each policy consists of 4 sub-policies,
each sub-policy contains 2 operations, and each
operation is defined by 3 tokens (Operation Type,
Number of Changes, Probability), the total num-
ber of steps for each policy is 4 × 2 × 3 = 24.
Sampling multiple sub-policies to form one pol-
icy provides us with a less biased estimation of the
controller performance. We sample these 4 sub-
policies at once rather than sample the controller 4
times to reduce repetition – the controller needs to
keep track of what policies it has already sampled.
To obtain the reward for the controller, we train
the target model with the augmented data and ob-
tain its validation set performance. We calculate a
weighted average of two F1s (Activity and Entity)

3Having 2 operations allows more perturbations than ex-
erted by a single strategy: in reality a sentence may contain
several types of noise.



1320

as the reward R since both are important comple-
mentary measures of an informative response, as
discussed in Serban et al. (2017a).4 We use the re-
inforcement loss following Ranzato et al. (2016)
and an exponential moving average baseline to re-
duce training variance. At the end of the search,
we use the best policy to train the target model
from scratch and evaluate on the test set.

4 Experimental Setup

Dataset and Model: We investigate Variational
Hierarchical Encoder-Decoder (VHRED) (Serban
et al., 2017b) on the troubleshooting Ubuntu Di-
alogue task (Lowe et al., 2015).5 For this short
paper, we focus on this dataset because it has a
well-established F1 metric among dialogue tasks.6

In future work, we plan to apply the idea to other
datasets and NLP tasks since the proposed model
is not specific to the Ubuntu dataset. We hypothe-
size that most web/online datasets that have reg-
ular human errors/noise (e.g. Twitter Dialogue
Dataset (Serban et al., 2017b) and multiple movie
corpora (Serban et al., 2016)) would be suitable
for our framework.
Training Details: We employ code7 from Niu and
Bansal (2018) to reproduce the VHRED baseline
results and follow methods described in Zoph et al.
(2017) to train the controller. For details, please
refer to their Appendix A.2 (Controller Architec-
ture) and A.3 (Training of the Controller).

We adopt the following method to speed up con-
troller training and hence facilitate scaling.8 We
let the target model resume from the converged
baseline checkpoint and train on the perturbed
data for 1 epoch. During testing, we use the pol-
icy that achieves the highest weighted average F1
score to train the final model for 1 epoch. For the
All-operations model (which corresponds to the
All-Should-Not-Change model in Niu and Bansal
(2018)), we train on each operation (without sub-
divisions for Stopword Dropout and Grammar Er-

4We use the weighted average F1 = Activity F1 + 5.94 /
3.52 ∗ Entity F1, where the weights are determined by the
baseline results, for balance between the two F1s.

5http://www.iulianserban.com/Files/
UbuntuDialogueCorpus.zip

6Serban et al. (2017a) found that F1 is particularly suited
for the goal-oriented Ubuntu Dialogue Corpus based on man-
ual inspection of the extracted activities and entities.

7https://github.com/WolfNiu/
AdversarialDialogue

8It took us 3 days with 6 P100 GPUs to get our reported
results for each of the input-aware and input-agnostic models.
The VHRED model took 1.5 days to pre-train.

Activity F1 Entity F1
LSTM 1.18 0.87
HRED 4.34 2.22

VHRED 4.63 2.53
VHRED (w/ attn.) 5.94 3.52

All-operations 6.53 3.79
Input-aware 7.04 3.90

Input-agnostic 7.02 4.00

Table 1: Activity, Entity F1 results reported by previous
work (rows 1-4 from Serban et al. (2017a)), and the
All-operations and AutoAugment models.

W T L W - L
Input-agnostic vs. baseline 48 23 29 19
Input-aware vs. baseline 45 27 28 17

Input-agnostic vs. All-ops 43 27 30 13
Input-aware vs. All-ops 50 13 37 13

Table 2: Human evaluation results on comparisons
among the baseline, All-operations, and the two Au-
toAugment models. W: Win, T: Tie, L: Loss.

rors) for 1 epoch in sequence.9

Automatic Evaluation: We follow Serban et al.
(2017a) and evaluate on F1s for both activities
(technical verbs) and entities (technical nouns).
Human Evaluation: We conducted human stud-
ies on MTurk. We compared each of the input-
agnostic/aware models with the VHRED baseline
and All-operations from Niu and Bansal (2018),
where we followed the same setting. Each study
contains 100 samples randomly chosen from the
test set. The utterances were randomly shuffled
and we only allowed US-located human evaluators
with approval rate > 98%, and at least 10, 000 ap-
proved HITs. More details are in the appendix.

5 Results and Analysis

Automatic Results: Table 1 shows that all data-
augmentation approaches (last 3 rows) improve
statistically significantly (p < 0.01) 10 over the
strongest baseline VHRED (w/ attention). More-
over, our input-agnostic AutoAugment is statisti-
cally significantly (p < 0.01) better (on Activity
and Entity F1) than the strong manual-policy All-
operations model, while the input-aware model is
stat. signif. (p < 0.01) better on Activity F1.11

Human Evaluation: In Table 2, both AutoAug-

9We do not follow Cubuk et al. (2019) to train on a small
portion of the data for many epochs because we empirically
found that this approach decreases our task performance.

10Statistical significance is computed via the bootstrap
test (Noreen, 1989) over 100K samples.

11Note that F1s are overall low (reported baselines in Ta-
ble 1 are from Serban et al. (2017a)) because Ubuntu is semi-
task-oriented; each context can have many valid responses
containing different activities/entities from the ground-truth.

http://www.iulianserban.com/Files/UbuntuDialogueCorpus.zip
http://www.iulianserban.com/Files/UbuntuDialogueCorpus.zip
https://github.com/WolfNiu/AdversarialDialogue
https://github.com/WolfNiu/AdversarialDialogue


1321

Perturbation Method Policy Source Inputs
Original Context - fresh install of crack of the day : gdm login → “ can’t access ACPI bla bla bla ”

eou you don’t want to be me ... eou ah , it happened to you too ?
All-operations (R , 4, 1.0) fresh install crack of of the day : gdm login→ “ can’t ACPI access bla bla bla ”

eou you don’t want be to me ... eou ah , it happened you to too ?
Input-agnostic (Dv , 3, 0.2)

(R , 1, 0.5)
fresh install of crack of the day : login gdm → “ can’t access ACPI bla bla bla ”

eou you don’t want to be me ... eou ah , it happened to you too ?
Input-aware (S , 1, 0.8)

(Dv , 2, 0.5)
fresh install of crack of the day : gdm login→ “ can’t access ACPI bla bla bla bla ”

eou you don’t want to be me ... eou ah , it happened to you too ?

Table 3: Comparisons of perturbed outputs among the three Augmentation models. Note that only the sam-
pled/applied sub-policy is shown for each model. The dashed line separates the original and augmented source
inputs. Perturbed tokens are boldfaced.

Sub-policy1 Sub-policy2 Sub-policy3 Sub-policy4
P, 1, 0.5 Dv , 3, 0.2 R, 3, 0.9 Dp, 2, 0.3

Dadv , 4, 0.4 R, 1, 0.5 Dadp, 1, 0.5 Dadp, 2, 0.1
Dn, 1, 0.8 Do, 3, 1.0 P, 4, 0.4 Gn, 3, 0.3
Gv , 1, 0.9 Do, 3, 0.1 S, 3, 0.4 R, 1, 0.2
Dv , 2, 0.5 Dv , 2, 0.7 S, 3, 0.5 P, 1, 1.0
R, 2, 0.2 Gv , 1, 0.9 Do, 1, 0.5 Gn, 2, 0.6

Table 4: Top 3 policies on the validation set and their
test performances. Operations: R=Random Swap,
D=Stopword Dropout, P=Paraphrase, G=Grammar Er-
rors, S=Stammer. Universal tags: n=noun, v=verb,
p=pronoun, adv=adverb, adp=adposition.

ment models obtained significantly more net wins
(last column) than the VHRED-attn baseline.
They both outperform even the strong manual-
policy All-operations model.

Policy Learned by the Input-Agnostic Con-
troller: We present 3 best learned policies from
the Ubuntu val set (Table 4). Although there is
a probability of 7/12 = 58.3% to sample one of
the Stopword Dropout operations from our pool,
all 3 learned policies show much more diversity
on the operations they choose. This is also the
case for the other two hyperparameters: Number
of Changes varies from 1 to 4, and Probability
varies from 0.1 to 0.9, which basically extend their
whole search range. Moreover, all best policies in-
clude Random Swap, which agrees with the results
in Niu and Bansal (2018).

Example Analysis of Perturbation Procedure
in Generated Responses: We also present a se-
lected example of perturbed source inputs from
the three Augmentation models with their respec-
tive best policies in Table 3. First of all, the All-
operations model is forced to use an operation (in
this case Random Swap) with a fixed number of
changes and a probability of 1.0, leading to less
variation in the source inputs. On the other hand,
our Input-agnostic AutoAugment model samples
3 Verb Dropout’s followed by Random Swap.

Note that although the number of changes for the
dropout is 3, there are only 2 verb stopwords in
the utterance. Thus, it has to resort back to modi-
fying only 2 tokens. The Input-aware model sam-
ples Stammer followed by 2 Verb Dropout’s. In-
terestingly, it inserts an extra “bla” around other
“bla’s” in the utterance. It also did not sample a
policy that drops more than 2 verb stopwords (this
operation is not applied due to its Probability pa-
rameter). These two observations indicate that the
model can sometimes successfully attend to the
source inputs to provide customized policies.

6 Conclusion and Future Work

We adapt AutoAugment to dialogue and extend
its controller to a conditioned model. We show
via automatic and human evaluations that our
AutoAugment models learn useful augmentation
policies which lead to state-of-the-art results on
the Ubuntu task. Motivated by the promising suc-
cess of our model in this short paper, we will apply
it to other diverse NLP tasks in future work.

Acknowledgments
We thank the reviewers for their helpful com-
ments and discussions. This work was supported
by DARPA #YFA17-D17AP00022, ONR Grant
#N00014-18-1-2871, and awards from Google,
Facebook, Salesforce, and Adobe (plus Amazon
and Google GPU cloud credits). The views are
those of the authors and not of the funding agency.

References
Antreas Antoniou, Amos Storkey, and Harrison Ed-

wards. 2017. Data augmentation generative adver-
sarial networks. arXiv preprint arXiv:1711.04340.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of



1322

International Conference on Learning Representa-
tions.

Dan Cireşan, Ueli Meier, and Jürgen Schmidhuber.
2012. Multi-column deep neural networks for im-
age classification. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 3642–3649.

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay
Vasudevan, and Quoc V. Le. 2019. AutoAugment:
Learning augmentation policies from data. In Pro-
ceedings of Conference on Computer Vision and Pat-
tern Recognition.

Terrance DeVries and Graham W Taylor. 2017.
Dataset augmentation in feature space. arXiv
preprint arXiv:1702.05538.

Hagen Fürstenau and Mirella Lapata. 2009. Semi-
supervised semantic role labeling. In Proceedings
of the 12th Conference of the European Chapter
of the Association for Computational Linguistics,
pages 220–228. Association for Computational Lin-
guistics.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems, pages 2672–2680.

Yutai Hou, Yijia Liu, Wanxiang Che, and Ting Liu.
2018. Sequence-to-sequence data augmentation for
dialogue language understanding. In Proceedings of
COLING.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the
34th International Conference on Machine Learn-
ing, PMLR 70, pages 1587–1596.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of As-
sociation for Computational Linguistics.

Kushal Kafle, Mohammed Yousefhussien, and Christo-
pher Kanan. 2017. Data augmentation for visual
question answering. In Proceedings of the 10th In-
ternational Conference on Natural Language Gen-
eration, pages 198–202.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of Em-
pirical Methods in Natural Language Processing,
pages 1317–1327.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Proceedings of Ad-
vances in neural information processing systems,
pages 1097–1105.

Joseph Lemley, Shabab Bazrafkan, and Peter Corco-
ran. 2017. Smart augmentation learning an optimal
data augmentation strategy. In Proceedings of IEEE
Access, volume 5, pages 5858–5869.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909.

Seongkyu Mun, Sangwook Park, David K Han, and
Hanseok Ko. 2017. Generative adversarial network
based acoustic scene training set augmentation and
selection using svm hyper-plane. Detection and
Classification of Acoustic Scenes and Events Work-
shop, pages 93–97.

Tong Niu and Mohit Bansal. 2018. Adversarial over-
sensitivity and over-stability strategies for dialogue
models. In Proceedings of Conference on Natural
Language Learning.

Eric W. Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In Proceedings
of International Conference on Learning Represen-
tations.

Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain,
Jared Dunnmon, and Christopher Ré. 2017. Learn-
ing to compose domain-specific transformations for
data augmentation. In Proceedings of Advances in
neural information processing systems, pages 3236–
3246.

Ikuro Sato, Hiroki Nishimura, and Kensuke Yokoi.
2015. Apac: Augmented pattern classification with
neural networks. arXiv preprint arXiv:1505.03229.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, pages 86–96.

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kar-
tik Talamadupula, Bowen Zhou, Yoshua Bengio,
and Aaron C. Courville. 2017a. Multiresolution re-
current neural networks: An application to dialogue
response generation. In AAAI, pages 3288–3294.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In The
Thirtieth AAAI Conference on Artificial Intelligence
(AAAI-16), pages 3776–3784.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron C. Courville,
and Yoshua Bengio. 2017b. A hierarchical latent
variable encoder-decoder model for generating di-
alogues. In Proceedings of AAAI, pages 3295–3301.



1323

Miikka Silfverberg, Adam Wiemerslage, Ling Liu, and
Lingshuang Jack Mao. 2017. Data augmentation
for morphological reinflection. Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Univer-
sal Morphological Reinflection, pages 90–99.

Patrice Y Simard, Dave Steinkraus, and John C Platt.
2003. Best practices for convolutional neural net-
works applied to visual document analysis. In Pro-
ceedings of International Conference on Document
Analysis and Recognition.

Leon Sixt, Benjamin Wild, and Tim Landgraf. 2018.
Rendergan: Generating realistic labeled data. Fron-
tiers in Robotics and AI, 5:66.

Richard S. Sutton, David Mcallester, Satinder Singh,
and Yishay Mansour. 2000. Policy gradient methods
for reinforcement learning with function approxima-
tion. In Proceedings of Advances in Neural Informa-
tion Processing Systems 12, pages 1057–1063. MIT
Press.

Toan Tran, Trung Pham, Gustavo Carneiro, Lyle
Palmer, and Ian Reid. 2017. A bayesian data aug-
mentation approach for learning deep models. In
Proceedings of Advances in Neural Information Pro-
cessing Systems, pages 2797–2806.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun,
and Rob Fergus. 2013. Regularization of neural net-
works using dropconnect. In Proceedings of Inter-
national Conference on Machine Learning, pages
1058–1066.

Jason Wang and Luis Perez. 2017. The effectiveness
of data augmentation in image classification using
deep learning. Convolutional Neural Networks Vi-
sual Recognition.

William Yang Wang and Diyi Yang. 2015. That’s
so annoying!!!: A lexical and frame-semantic em-
bedding based data augmentation approach to auto-
matic categorization of annoying behaviors using#
petpeeve tweets. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2557–2563.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham
Neubig. 2018. Switchout: an efficient data augmen-
tation algorithm for neural machine translation. In
Proceedings of Empirical Methods in Natural Lan-
guage Processing.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. In Proceedings of Reinforcement
Learning, pages 5–32. Springer.

Yingce Xia, Tao Qin, Wei Chen, Jiang Bian, Nenghai
Yu, and Tie-Yan Liu. 2017. Dual supervised learn-
ing. In Proceedings of ICML, pages 3789–3798.

Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan.
2017. Variational autoencoder for semi-supervised
text classification. In Proceedings of Association

for the Advancement of Artificial Intelligence, pages
3358–3364.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of Advances in neural in-
formation processing systems, pages 649–657.

Xinyue Zhu, Yifan Liu, Zengchang Qin, and Jiahong
Li. 2017. Data augmentation in emotion classifi-
cation using generative adversarial networks. arXiv
preprint arXiv:1711.00648.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. 2017. Learning transferable architec-
tures for scalable image recognition. In Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition.

A Experimental Setup

Dataset and Model: We investigate Variational
Hierarchical Encoder-Decoder (VHRED) (Serban
et al., 2017b), a state-of-the-art dialogue model on
the Ubuntu Dialogue Corpus (Lowe et al., 2015).
Ubuntu is a troubleshooting dialogue dataset con-
taining 1 million 2-person, multi-turn dialogues
extracted from Ubuntu chat. The chat channels
are used by customers to provide and receive tech-
nical support. We focus on the task of generat-
ing fluent, relevant, and goal-oriented responses.
Following Niu and Bansal (2018), we apply addi-
tive attention mechanism (Bahdanau et al., 2015)
to the source sequence while keeping the remain-
ing VHRED architecture unchanged.
Automatic Evaluation: We follow Serban et al.
(2017a) and evaluate the model on F1’s for both
activities (technical verbs, e.g., “boot”, “delete”)
and entities (technical nouns, e.g., “root”, “disk”)
computed by mapping the ground-truth and model
responses to their corresponding activity-entity
representations.
Human Evaluation: We conducted human stud-
ies on MTurk to evaluate the dialogue quality of
generated responses from the investigated models.
We compared each of the input-agnostic/aware
models with All-operations and the baseline (i.e.,
4 experiments in total). Studies involving the base-
line are for sanity checks.


