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Abstract

Whereas traditional cryptography encrypts a
secret message into an unintelligible form,
steganography conceals that communication
is taking place by encoding a secret message
into a cover signal. Language is a particu-
larly pragmatic cover signal due to its benign
occurrence and independence from any one
medium. Traditionally, linguistic steganogra-
phy systems encode secret messages in exist-
ing text via synonym substitution or word or-
der rearrangements. Advances in neural lan-
guage models enable previously impractical
generation-based techniques. We propose a
steganography technique based on arithmetic
coding with large-scale neural language mod-
els. We find that our approach can generate
realistic looking cover sentences as evaluated
by humans, while at the same time preserving
security by matching the cover message distri-
bution with the language model distribution.

1 Introduction

Cryptography is central to modern communica-
tion, but while it effectively conceals the content
of a message it reveals that meaningful communi-
cation is taking place. Steganography answers an
alternative question: how to conceal a message in
some cover signal (an image, text etc.) such that
an eavesdropper is not even aware any meaningful
communication has taken place (Amin et al., 2003;
Shirali-Shahreza and Shirali-Shahreza, 2007; Ku-
mar and Pooja, 2010)? Different from cryptogra-
phy, in steganography security is derived from the
inability to detect that a message exists within the
cover signal, rather than the inability of an eaves-
dropper to determine the content of the message
(Westfeld and Pfitzmann, 1999).

Natural language is an especially useful cover
signal for steganography because it is prevalent
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and innocuous in everyday life. Furthermore, un-
like images or audio in which encoded information
depends on exact pixel values, linguistic steganog-
raphy (hiding information in choices of words) is
untethered from any one medium. For example,
the sender could encode a message on a computer,
read off the cover text in person, and then the re-
ceiver could separately enter the cover text into her
decoder and retrieve the message.

Linguistic steganography methods can be clas-
sified as either edit-based or generation-based
(Bennett, 2004). In edit-based methods, such as
synonym substitution, the content of the cover
text is selected by a human and slightly modified
to encode information (Xiang et al., 2017; Hefei,
2009; Xiang et al., 2018). In generative methods
an entire block of text is generated while encod-
ing the message reversibly in the choice of to-
kens. Traditionally, most practical stenography
systems are edit-based. These methods only en-
code a small amount of information (for example,
2 bits per tweet (Wilson and Ker, 2016)), whereas
generation-based systems can encode an order of
magnitude more information (Fang et al., 2017).

Generation-based steganography has a well-
established foundation in information theory (Cox
et al., 2005) with the aim of provably fooling any
machine steganalysis. Due to weak language mod-
els practical performance at the scale of modern
neural network-based models has not been con-
sidered or developed. One recent exception is
a neural network-based approach using heuristic-
based methods with the goal of fooling human
eavesdroppers. These methods are theoretically
sub-optimal, however, and while they demonstrate
some fluency in generations the underlying lan-
guage models are much worse than current state-
of-the-art large models (Fang et al., 2017).

In this paper we aim to get the best of both
approaches with a linguistic steganography
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Alice
y = f(m; pLM)

Bob
m = f-1(y; pLM)

pLM(y)

y

m ~ Unif({0,1}L)

y ~ q(y)

Figure 1: Problem setup. m ∼ Unif({0, 1}L) is the secret
message, y is the cover text, p(y) is the language model and
f is a deterministic invertible function. f and the distribution
of m implicitly defines q.

method based on arithmetic coding and modern
language models. Our contribution is two-fold:
1) we show that a linguistic steganography
approach combining arithmetic coding with
state-of-the-art language models can achieve
near-optimal statistical security; 2) human
evaluations show that the cover text from our
approach is able to fool humans even in the
presence of context. Our code is available at
https://github.com/harvardnlp/
NeuralSteganography. A demo is available
at http://steganography.live/

2 Background & Related work

Linguistic steganography We briefly give an
overview of steganography as outlined in (Cox
et al., 2005) and diagrammed in Figure 1: Alice
wants to communicate a hidden message m ∼
Unif({0, 1}L) with Bob by encoding it into a
choice of natural language cover text y. The uni-
form distribution is chosen for m without loss of
generality: if m has additional structure it can be
further compressed to a uniformly distributed ran-
dom variable (Han, 2005). Alice and Bob have
both agreed on an invertible mapping f which per-
forms the steganography. Alice and Bob also both
have access to the exact same language model,
pLM (y), which f can use during encoding and
decoding. The steganography mapping f and the
language model pLM (y) form the key.

The combination of the distribution of m and
deterministic function y = f(m) implicitly de-
fines a distribution for y which we denote q. This
is the cover distribution of natural language that
an eavesdropper would observe. As described in
(Cox et al., 2005), the security of the system is
determined by DKL(q||Ptrue) where Ptrue is the
true distribution of natural language. For example,
if DKL = 0 then the system is perfectly secure

m = 00111001... 

y = f(m) = “Hello fellow humans…”
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Figure 2: Diagram of arithmetic coding for steganography.
See Section 3 for details.

because an eavesdropper could not distinguish the
encoded messages from normal language. From
an information theoretic perspective the security
objective of steganography is therefore to ensure a
small DKL. At the same time, because f is invert-
ible the average number of bits that can be encoded
is given by the entropy H(q). Thus, the compres-
sion objective is to maximize H(q).

Generative coding techniques Recent work
studying generative approaches for linguistic
steganography have considered heuristic ap-
proaches to map uniform messages into similar
distributions as natural language. Fang et al.
(2017) considers a block-based approach (Block),
where the vocabulary is randomly split into 2|B|

bins and each bin is indexed by a |B|-bit string.
Encoding is performed by splitting the message
up into chunks Bt and taking the maximum likeli-
hood token as determined by the language model
p(yt|y<t) that falls in bin Bt. Yang et al. (2019)
proposes a related method based on constructing
a Huffman coding (Huffman) at each step t based
on p(yt|y<t) and encoding the message in variable
length chunks via the Huffman tree. Both objec-
tives provide a “quality” parameter that trades off
quality at the expense of encoding fewer bits.

These approaches target a different security ob-
jective than the information-theoretic view in Cox
et al. (2005). Instead of aiming to minimize the
KL at maximal compression they aim to maxi-
mize generated quality at maximal compression
(Yang et al., 2019; Fang et al., 2017). The issue
with these approaches is that they aim to fool hu-
man eavesdroppers for whom generation quality

https://github.com/harvardnlp/NeuralSteganography
https://github.com/harvardnlp/NeuralSteganography
http://steganography.live/
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Context kim jong il was the enigmatic leader of the most enigmatic country on earth. much about kim’s life was, and
is, shrouded in mystery. even the year of his birth – 1942 – has been contested by knowledgeable sources
in south korea and russia, who claim kim was born a few years earlier but that his official birth date was
pushed back to make him exactly 30 years younger than his father, north korea’s founding leader, kim il
sung.

Message 1 Bob, I have something very important to tell you. Eve is not who she says she is. I know that you think
she’s your friend, but really she’s a creepy stalker who wants to read all of your messages for some unknown
reason.

Cover text 1 That kim’s birthdate was not even known to the people of south korea is even more baffling. however, there
is another contradiction. bak tae-jung, the ruler of north korea at the time, claimed to have inherited kim’s
kim ju-ha-teh, his so-called golden heritage, from his father, the last kim Yun-jong. and he also

Message 2 The secret code is X3SJ83F. Once you open the door you will see a staircase on your left and a hallway to
your right. Go down the hallway and enter the code in the safe at the end of the hallway.

Cover text 2 kim il sang, by the way, was not the first leader of north korea, but the first for nearly a thousand years. his
leader was kim jong il, the same person the people voted in to power to start with, without their knowledge
or consent. though it’s been claimed by others that kim il sang fled north korea in 1940 to escape the
reprisals, even that is disputed by k

Table 1: Steganography example. Two different encoded messages are produced given the same introductory context. The mes-
sages are first converted into bit strings and then mapped to cover text using the arithmetic steganography approach described
in Section 4.4.

is most important; but are susceptible to machine-
based eavesdroppers which can in principle iden-
tify statistical patterns in generations.

Concurrent with this work, Dai and Cai (2019)
conduct a related analysis in terms of KL with a
modified Huffman algorithm. Experiments con-
sider the distribution of KL values, although no
human evaluation is performed.

3 Arithmetic coding

Arithmetic coding is a data compression method
designed specifically to code strings of elements
with a known probability distribution (Rissanen
and Langdon, 1979; Zoph et al., 2015). For
long strings the coding is optimal; it compresses
information to its entropy (Rissanen and Lang-
don, 1979). In practice, it is often more efficient
than Huffman coding because it does not require
blocking. Arithmetic coding traditionally maps a
string of elements to a uniformly distributed bi-
nary string. To use such a coding for steganogra-
phy we reverse the order: first a (uniformly sam-
pled) message is selected, then the message is
mapped to a sequence (words).

The coding scheme is demonstrated in Figure
2. In this work the probability distribution comes
from the conditional distributions of a pretrained
language model, but for illustration purposes a
hand-crafted example distribution is used in the di-
agram. Concentric circles represent timesteps; the
innermost represents t = 1, the middle t = 2, and
the outer t = 3. Each circle represents the condi-
tional distribution p(yt|y<t). For example, given

that y1 = “Once”, p(y2|y1) has “upon” and “I”
as the only possible tokens with equal probability.
The circle diagram spans [0,1) from 0 at the top,
clockwise around to 1.

To encode the message into text, the secret mes-
sage m is viewed as a binary representation of a
fraction in the range [0, 1). This fraction uniquely
marks a point on the edge of the circle, as well as
a line from the origin to the point. Encoding is
performed by simply reading off the tokens corre-
sponding to the bins. Encoding stops when the list
of tokens unambiguously defines the message.

Decoding is performed via the reverse opera-
tion: the sequence of natural language tokens pro-
gressively narrows the range of possible messages.
Assuming that the original message is encoded
with a predetermined end token, decoding termi-
nates once both sides of the range of possible mes-
sages includes the end token.

Sallee (2004) show that just as arithmetic cod-
ing is optimal for data compression, it is also op-
timal for steganography. Specifically, given any
goal distribution ps(y) that one wants to sample
from, starting with a uniform m and applying the
deterministic steganography procedures yields a
distribution q = ps or equivalently DKL(q||ps) =
0 for long sequences. This further ensures that
H(q) = H(ps) and therefore the number of bits
encoded on average is equal to the entropy of ps.
Intuitively, this works because higher probability
sequences map to larger “chunks” of the pie and
therefore require fewer bits to uniquely determine.

In this work we apply arithmetic coding to lin-
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Figure 3: Information theoretic evaluation. KL and
bits/word are evaluated for each algorithm at different values
of the tuning parameter; each datapoint gives the mean and
standard error for repeated samples with a fixed value of the
tuning parameter. We show the standard error bars for both
bits/word and KL.

guistic steganography. Given a pretrained lan-
guage model, this approach can be directly ap-
plied to produce cover texts given some prelimi-
nary context. To ensure that these texts seem more
natural to human eavesdroppers we introduce two
parameters to trade off quality for compression:
we modulate the LM distribution by a temperature
τ , and we truncate the distribution to a top-k to-
kens at each position to ensure generations do not
include tokens from the long tail.

In practice, a naive implementation of arith-
metic coding quickly runs into precision limita-
tions. We use a common equivalent variant based
on fixed precision binary fractions (Rubin, 1979).

4 Experiments and results

4.1 Experimental Setup

We use the 345M parameter GPT-2 model as our
language model pLM (Radford et al., 2019). We
run our experiments on the CNN/Dailymail (CN-
NDM) dataset (Hermann et al., 2015; Nallapati
et al., 2016), which is used to provide context for
generation1. We take the first three sentences of
each news article as the context on which to con-
dition our language model, and use the indicated
steganography algorithm to generate an entire sen-
tence for estimation or evaluation given a uni-
form random message. We compare the proposed
arithmetic coding-based algorithm with the Block
(Fang et al., 2017) and Huffman (Yang et al.,
2019) methods as baselines. The baselines are re-

1Conditional generation makes it more challenging to fool
humans and is thus better for comparisons. CNNDM presents
an additional challenge as poor generations may have clear
factual errors.

implemented to allow for a fair comparison using
the strong GPT-2 language model. Each method
has a parameter that controls the various tradeoffs:
for arithmetic encoding we vary the temperature
from 0.4 to 1.2 with k = 300, for Huffman encod-
ing we vary the truncation length from 21 to 28,
for block encoding we vary the block size from 21

to 25. For the KL analysis we also evaluate arith-
metic coding with τ = 1 and k = 50256, i.e. the
unmodulated language model.

4.2 Metrics
We consider several different metrics to assess per-
formance. In all cases, it is important that the algo-
rithms encode information efficiently. The metric
Bits/word is the ratio of message bits encoded to
sentence length.

Another key aspect of the system is being able
to fool a statistical adversary in a distributional
sense, i.e. when the adversary gets multiple sam-
ples from q. This can be quantified by the KL
divergence between q and Ptrue. Since we do not
have access to Ptrue we resort to DKL(q||pLM ).
pLM might not match the distribution of natural
language, but it allows for relative comparisons of
steganography algorithms. The remaining gap is a
function of language model performance, which is
not the focus of this work. For each model the KL
is estimated via MC sampling on the news data.

Finally it is important to be able to convince a
human adversary that the text is natural. This
differs from statistical considerations because a
human will only see a single sample from q at
a time. To this end, we conduct a human study
aligned with the information theoretic evaluation
above, using Amazon Mechanical Turk. For
each of the three methods we generate sentences
with randomly sampled messages conditioned on
a news article context, and ask participants to in-
dicate if the sentence is a likely next sentence in
context. We repeat this experiment with the true
next sentence as well. See the Supplementary Ma-
terials for more details.

4.3 Quantitative results
Figure 3 shows the information theoretic evalu-
ation. For any bits/word in the range of (1, 5),
arithmetic coding achieves the lowest KL, i.e. the
distribution of the encoded texts is the most sim-
ilar to the language model distribution, providing
the best defensive against algorithmic detections.
Most striking, arithmetic coding with the unmodu-
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Figure 4: Human evaluation. Y axis shows the percentage of
humans considering the generation to be a proper continua-
tion of the context. Huffman coding achieves the best gener-
ation quality as judged by humans, while arithmetic coding is
comparable (the difference is not statistically significant).

lated language model induces a q distribution with
a KL of 4e-8 nats. This indicates that, consistent
with theory (Sallee, 2004), arithmetic coding en-
ables generative steganography matching the ex-
act distribution of the language model used. The
small but positive KL value for arithmetic coding
with k = 300 comes from the slight distributional
difference when the long tail is truncated.

Figure 4 shows the human evaluation results.
Within 3 bits/word both Huffman and arithmetic
coding give plausible next sentences over 50%
of the time, and at 1 bit/word both methods lead
to cover texts statistically indistinguishable from
human-written sentences. Although Huffman cod-
ing reaches slightly better performance than arith-
metic coding, the transferred cover text distribu-
tion is statistically different from natural text (see
Figure 3), which can be potentially discovered by
automatic systems. Compared to the KL analy-
sis which focuses on the relative performance of
the algorithms, the human evaluation highlights
the realizable generation quality enabled specifi-
cally by large pretrained language models. Still,
there is room for improvement in terms of lan-
guage modeling capabilities: whereas the arith-
metic approach reaches minimum KL around 4
bits/word with τ = 1.0, only at 1 bit/word with
τ = 0.4 do the generations fool humans.

4.4 Qualitative results

Steganography fundamentally deals with hiding
uniformly random message bits in cover text. In
many cases, however, the message may itself be
natural language. In these cases we have an addi-
tional choice of how the text is converted to bits.
One option is simply the unicode encoding (i.e.

UTF-8), though this is highly inefficient. Instead,
we can use the same arithmetic coding algorithm
in reverse, with an empty context, to compress the
message text into near-uniformly distributed bits
(Han, 2005). The full procedure is as follows:

1. Alice decodes message text into bits via arith-
metic coding with an empty context.

2. Alice encodes bits into cover text via arith-
metic coding with a predetermined context.

3. Alice sends cover text over public channel.

4. Bob decodes cover text into bits via arith-
metic coding with the predetermined context.

5. Bob encodes bits into message text via arith-
metic coding with empty context.

Because the same strong LM is used with differ-
ent contexts for the two applications of arithmetic
coding, the message text length and cover text
length will be comparable (modulo a small over-
head) but the content of the text can be completely
different. This is demonstrated in Table 1, which
shows two examples of natural language messages
(Step 1) encoded in unrelated and innocuous cover
text (Step 3). In both cases the message is encoded
efficiently into cover text which is largely fluent
and coherent, and follows from the given context.

5 Conclusion

We demonstrate how the combination of large
pretrained language models and an arithmetic
coding-based steganography algorithm allows for
a steganography system that can fool both sta-
tistical adversaries who analyze the full genera-
tive distribution, and human adversaries who an-
alyze a single sample. While our work shows the
potential for high-quality efficient steganography
and the realizable optimality of arithmetic cod-
ing, future advancements in language modeling
can push steganographic performance even fur-
ther. With current state-of-the-art language mod-
els the steganography algorithms studied generate
most convincing cover texts at low compression,
where the KL is moderate. As language models
continue to improve, they can be directly plugged
into our arithmetic approach to maximize stegano-
graphic performance.
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