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Abstract

Deep learning systems thrive on abundance of
labeled training data but such data is not al-
ways available, calling for alternative methods
of supervision. One such method is expecta-
tion regularization (XR) (Mann and McCal-
lum, 2007), where models are trained based
on expected label proportions. We propose
a novel application of the XR framework for
transfer learning between related tasks, where
knowing the labels of task A provides an es-
timation of the label proportion of task B.
We then use a model trained for A to label
a large corpus, and use this corpus with an
XR loss to train a model for task B. To make
the XR framework applicable to large-scale
deep-learning setups, we propose a stochastic
batched approximation procedure. We demon-
strate the approach on the task of Aspect-
based Sentiment classification, where we ef-
fectively use a sentence-level sentiment pre-
dictor to train accurate aspect-based predictor.
The method improves upon fully supervised
neural system trained on aspect-level data, and
is also cumulative with LM-based pretrain-
ing, as we demonstrate by improving a BERT-
based Aspect-based Sentiment model.

1 Introduction

Data annotation is a key bottleneck in many data
driven algorithms. Specifically, deep learning
models, which became a prominent tool in many
data driven tasks in recent years, require large
datasets to work well. However, many tasks re-
quire manual annotations which are relatively hard
to obtain at scale. An attractive alternative is
lightly supervised learning (Schapire et al., 2002;
Jin and Liu, 2005; Chang et al., 2007; Graça et al.,
2007; Quadrianto et al., 2009a; Mann and Mc-
Callum, 2010a; Ganchev et al., 2010; Hope and
Shahaf, 2016), in which the objective function is
supplemented by a set of domain-specific soft-

constraints over the model’s predictions on unla-
beled data. For example, in label regularization
(Mann and McCallum, 2007) the model is trained
to fit the true label proportions of an unlabeled
dataset. Label regularization is special case of ex-
pectation regularization (XR) (Mann and McCal-
lum, 2007), in which the model is trained to fit the
conditional probabilities of labels given features.

In this work we consider the case of correlated
tasks, in the sense that knowing the labels for
task A provides information on the expected la-
bel composition of task B. We demonstrate the ap-
proach using sentence-level and aspect-level senti-
ment analysis, which we use as a running example:
knowing that a sentence has positive sentiment
label (task A), we can expect that most aspects
within this sentence (task B) will also have pos-
itive label. While this expectation may be noisy
on the individual example level, it holds well in
aggregate: given a set of positively-labeled sen-
tences, we can robustly estimate the proportion of
positively-labeled aspects within this set. For ex-
ample, in a random set of positive sentences, we
expect to find 90% positive aspects, while in a set
of negative sentences, we expect to find 70% nega-
tive aspects. These proportions can be easily either
guessed or estimated from a small set.

We propose a novel application of the XR
framework for transfer learning in this setup. We
present an algorithm (Sec 3.1) that, given a cor-
pus labeled for task A (sentence-level sentiment),
learns a classifier for performing task B (aspect-
level sentiment) instead, without a direct supervi-
sion signal for task B. We note that the label in-
formation for task A is only used at training time.
Furthermore, due to the stochastic nature of the
estimation, the task A labels need not be fully ac-
curate, allowing us to make use of noisy predic-
tions which are assigned by an automatic classi-
fier (Sections 3.1 and 4). In other words, given
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a medium-sized sentiment corpus with sentence-
level labels, and a large collection of un-annotated
text from the same distribution, we can train an ac-
curate aspect-level sentiment classifier.

The XR loss allows us to use task A labels for
training task B predictors. This ability seamlessly
integrates into other semi-supervised schemes: we
can use the XR loss on top of a pre-trained model
to fine-tune the pre-trained representation to the
target task, and we can also take the model trained
using XR loss and plentiful data and fine-tune it to
the target task using the available small-scale an-
notated data. In Section 5.3 we explore these op-
tions and show that our XR framework improves
the results also when applied on top of a pre-
trained BERT-based model (Devlin et al., 2018).

Finally, to make the XR framework applicable
to large-scale deep-learning setups, we propose a
stochastic batched approximation procedure (Sec-
tion 3.2). Source code is available at https:
//github.com/MatanBN/XRTransfer.

2 Background and Related Work

2.1 Lightly Supervised Learning

An effective way to supplement small annotated
datasets is to use lightly supervised learning, in
which the objective function is supplemented by
a set of domain-specific soft-constraints over the
model’s predictions on unlabeled data. Previ-
ous work in lightly-supervised learning focused
on training classifiers by using prior knowledge
of label proportions (Jin and Liu, 2005; Chang
et al., 2007; Musicant et al., 2007; Mann and Mc-
Callum, 2007; Quadrianto et al., 2009b; Liang
et al., 2009; Ganchev et al., 2010; Mann and Mc-
Callum, 2010b; Chang et al., 2012; Wang et al.,
2012; Zhu et al., 2014; Hope and Shahaf, 2016)
or prior knowledge of features label associations
(Schapire et al., 2002; Haghighi and Klein, 2006;
Druck et al., 2008; Melville et al., 2009; Moham-
mady and Culotta, 2015). In the context of NLP,
Haghighi and Klein (2006) suggested to use dis-
tributional similarities of words to train sequence
models for part-of-speech tagging and a classi-
fied ads information extraction task. Melville
et al. (2009) used background lexical information
in terms of word-class associations to train a sen-
timent classifier. Ganchev and Das (2013); Wang
and Manning (2014) suggested to exploit the bilin-
gual correlations between a resource rich language
and a resource poor language to train a classifier

for the resource poor language in a lightly super-
vised manner.

2.2 Expectation Regularization (XR)

Expectation Regularization (XR) (Mann and Mc-
Callum, 2007) is a lightly supervised learning
method, in which the model is trained to fit the
conditional probabilities of labels given features.
In the context of NLP, XR was used by Moham-
mady and Culotta (2015) to train twitter-user at-
tribute prediction using hundreds of noisy distri-
butional expectations based on census demograph-
ics. Here, we suggest using XR to train a target
task (aspect-level sentiment) based on the output
of a related source-task classifier (sentence-level
sentiment).

Learning Setup The main idea of XR is mov-
ing from a fully supervised situation in which each
data-point xi has an associated label yi, to a setup
in which sets of data points Uj are associated with
corresponding label proportions p̃j over that set.

Formally, let X = {x1, x2, . . . , xn} ⊆ X be a
set of data points, Y be a set of |Y| class labels,
U = {U1, U2, . . . , Um} be a set of sets where
Uj ⊆ X for every j ∈ {1, 2, . . . ,m}, and let
p̃j ∈ R|Y| be the label distribution of set Uj .
For example, p̃j = {.7, .2, .1} would indicate that
70% of data points inUj are expected to have class
0, 20% are expected to have class 1 and 10% are
expected to have class 2. Let pθ(x) be a param-
eterized function with parameters θ from X to a
vector of conditional probabilities over labels in
Y . We write pθ(y|x) to denote the probability as-
signed to the yth event (the conditional probability
of y given x).

A typically objective when training on fully la-
beled data of (xi, yi) pairs is to maximize likeli-
hood of labeled data using the cross entropy loss,

Lcross(θ) = −
n∑
i

log pθ(yi|xi)

Instead, in XR our data comes in the form of pairs
(Uj , p̃j) of sets and their corresponding expected
label proportions, and we aim to optimize θ to fit
the label distribution p̃j over Uj , for all j.

XR Loss As counting the number of pre-
dicted class labels over a set U leads to a non-
differentiable objective, Mann and McCallum
(2007) suggest to relax it and use instead the

https://github.com/MatanBN/XRTransfer
https://github.com/MatanBN/XRTransfer
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model’s posterior distribution p̂j over the set:

q̂j(y) =
∑
x∈Uj

pθ(y|x) (1)

p̂j(y) =
q̂j(y)∑
y′ q̂j(y′)

(2)

where q(y) indicates the yth entry in q. Then, we
would like to set θ such that p̂j and p̃j are close.
Mann and McCallum (2007) suggest to use KL-
divergence for this. KL-divergence is composed
of two parts:

DKL(p̃j||p̂j) = −p̃j · log p̂j + p̃j · log p̃j

= H(p̃j, p̂j)−H(p̃j)

Since H(p̃j) is constant, we only need to min-
imize H(p̃j, p̂j), therefore the loss function be-
comes:1

LXR(θ) = −
m∑
j=1

p̃j · log p̂j (3)

Notice that computing q̂j requires summation
over pθ(x) for the entire set Uj , which can be pro-
hibitive. We present batched approximation (Sec-
tion 3.2) to overcome this.

Temperature Parameter Mann and McCallum
(2007) find that XR might find a degenerate solu-
tion. For example, in a three class classification
task, where p̃j = {.5, .35, .15}, it might find a so-
lution such that p̂θ(y) = {.5, .35, .15} for every
instance, as a result, every instance will be classi-
fied the same. To avoid this, Mann and McCallum
(2007) suggest to penalize flat distributions by us-
ing a temperature coefficient T likewise:

pθ(y|x) =
(

ezW+b∑
k

e(zW+b)k

) 1
T

(4)

Where z is a feature vector and W and b are the
linear classifier parameters.

2.3 Aspect-based Sentiment Classification
In the aspect-based sentiment classification
(ABSC) task, we are given a sentence and an
aspect, and need to determine the sentiment that
is expressed towards the aspect. For example
the sentence “Excellent food, although the in-
terior could use some help.“ has two aspects:

1Note also that ∀j |Uj | = 1 ⇐⇒ LXR(θ) = Lcross(θ)

Algorithm 1 Stochastic Batched XR
Inputs: A dataset (U1, ..., Um, p̃1, ..., p̃m), batch
size k, differentiable classifier pθ(y|x)

while not converged do
j ← random(1, ...,m)
U ′ ← random-choice(Uj ,k)
q̂′u ←

∑
x∈U ′ pθ(x)

p̂′u ← normalize(q̂′u)
`← −p̃j log p̂u . Compute loss ` (eq (4))
Compute gradients and update θ

end while
return θ

food and interior, a positive sentiment is ex-
pressed about the food, but a negative sentiment
is expressed about the interior. A sentence
α = (w1, w2, . . . , wn), may contain 0 or more
aspects ai, where each aspect corresponds to a
sub-sequence of the original sentence, and has an
associated sentiment label (NEG, POS, or NEU).
Concretely, we follow the task definition in the
SemEval-2015 and SemEval-2016 shared tasks
(Pontiki et al., 2015, 2016), in which the relevant
aspects are given and the task focuses on finding
the sentiment label of the aspects.

While sentence-level sentiment labels are rela-
tively easy to obtain, aspect-level annotation are
much more scarce, as demonstrated in the small
datasets of the SemEval shared tasks.

3 Technical Contributions

3.1 Transfer-training between related tasks
with XR

Consider two classification tasks over a shared in-
put space, a source task s from X to Ys and a tar-
get task t from X to Yt, which are related through
a conditional distribution P (yt = i|ys = j). In
other words, a labeling decision for task s induces
an expected label distribution over the task t. For
a set of datapoints x1, ..., xn that share a source la-
bel ys, we expect to see a target label distribution
of P (yt|ys) = p̃ys .

Given a large unlabeled dataset Du =
(xu1 , ..., x

u
|Du|), a small labeled dataset for the tar-

get task Dt = ((xt1, y
t
1), ..., (x

t
|Dt|, y

t
|Dt|)), classi-

fier Cs : X 7→ Ys (or sufficient training data to
train one) for the source task,2 we wish to use Cs

2Note that the classifier does not need to be trainable or
differentiable. It can be a human, a rule based system, a non-
parametric model, a probabilistic model, a deep learning net-
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and Du to train a good classifier Ct : X 7→ Yt
for the target task. This can be achieved using the
following procedure.

• Apply Cs to Dt, resulting in a noisy source-
side labels ỹsi = Cs(xti) for the target task.

• Estimate the conditional probability P (yt|ỹs)
table using MLE estimates over Dt

p̃j(y
t = i|ỹs = j) =

#(yt = i, ỹs = j)

#(ỹs = j)

where # is a counting function over Dt.3

• Apply Cs to the unlabeled data Du resulting
in labels Cs(xui ). Split Du into |Ys| sets Uj
according to the labeling induced by Cs:

Uj = {xui | xui ∈ Du ∧ Cs(xui ) = j}

• Use Algorithm 1 to train a classifier for the
target task using input pairs (Uj , p̃j) and the
XR loss.

In words, by using XR training, we use the ex-
pected label proportions over the target task given
predicted labels of the source task, to train a target-
class classifier.

3.2 Stochastic Batched Training for Deep XR

Mann and McCallum (2007) and following work
take the base classifier pθ(y|x) to be a logistic re-
gression classifier, for which they manually derive
gradients for the XR loss and train with LBFGs
(Byrd et al., 1995). However, nothing precludes
us from using an arbitrary neural network instead,
as long as it culminates in a softmax layer.

One complicating factor is that the computa-
tion of q̂j in equation (1) requires a summation
over pθ(x) for the entire set Uj , which in our
setup may contain hundreds of thousands of exam-
ples, making gradient computation and optimiza-
tion impractical. We instead proposed a stochastic
batched approximation in which, instead of requir-
ing that the full constraint setUj will match the ex-
pected label posterior distribution, we require that
sufficiently large random subsets of it will match

work, etc. In this work, we use a neural classification model.
3In theory, we could estimate—or even “guess”—these

|Ys|× |Yt| values without usingDt at all. In practice, and in
particular because we care about the target label proportions
given noisy source labels ỹs assigned by Cs, we use MLE
estimates over the tagged Dt.

the distribution. At each training step we com-
pute the loss and update the gradient with respect
to a different random subset. Specifically, in each
training step we sample a random pair (Uj , p̃j),
sample a random subset U ′ of Uj of size k, and
compute the local XR loss of set U ′:

LXR(θ; j, U
′) = −p̃j · log p̂u′ (5)

where p̂u′ is computed by summing over the ele-
ments of U ′ rather than of Uj in equations (1–2).
The stochastic batched XR training algorithm is
given in Algorithm 1. For large enough k, the ex-
pected label distribution of the subset is the same
as that of the complete set.

4 Application to Aspect-based Sentiment

We demonstrate the procedure given above
by training Aspect-based Sentiment Classifier
(ABSC) using sentence-level4 sentiment signals.

4.1 Relating the classification tasks

We observe that while the sentence-level senti-
ment does not determine the sentiment of individ-
ual aspects (a positive sentence may contain nega-
tive remarks about some aspects), it is very pre-
dictive of the proportion of sentiment labels of
the fragments within a sentence. Positively la-
beled sentences are likely to have more positive as-
pects and fewer negative ones, and vice-versa for
negatively-labeled sentences. While these propor-
tions may vary on the individual sentence level,
we expect them to be stable when aggregating
fragments from several sentences: when consid-
ering a large enough sample of fragments that all
come from positively labeled sentences, we expect
the different samples to have roughly similar label
proportions to each other. This situation is idealy
suited for performing XR training, as described in
section 3.1.

The application to ABSC is almost straight-
forward, but is complicated a bit by the decom-
position of sentences into fragments: each sen-
tence level decision now corresponds to multi-
ple fragment-level decisions. Thus, we apply the
sentence-level (task A) classifier Cs on the aspect-
level corpus Dt by applying it on the sentence
level and then associating the predicted sentence
labels with each of the fragments, resulting in

4In practice, our “sentences” are in fact short documents,
some of which are composed of two or more sentences.
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Figure 1: Illustration of the algorithm. Cs is applied to Du resulting in ỹ for each sentence, Uj is built according
with the fragments of the same labelled sentences, the probabilities for each fragment in Uj are summed and
normalized, the XR loss in equation (4) is calculated and the network is updated.

Figure 2: Illustration of the decomposition procedure,
when given a1=“duck confit“ and a2= “foie gras terrine
with figs“ as the pivot phrases.

fragment-level labeling. Similarly, when we ap-
ply Cs to the unlabeled data Du we again do it at
the sentence level, but the sets Uj are composed of
fragments, not sentences:

Uj = {fαi | α ∈ Du∧fαi ∈ frags(α)∧Cs(α) = j}

We then apply algorithm 1 as is: at each
step of training we sample a source label j ∈
{POS,NEG,NEU}, sample k fragments from Uj ,
and use the XR loss to fit the expected fragment-
label proportions over these k fragments to p̃j.
Figure 1 illustrates the procedure.

4.2 Classification Architecture
We model the ABSC problem by associating each
(sentence,aspect) pair with a sentence-fragment,
and constructing a neural classifier from fragments

to sentiment labels. We heuristically decompose a
sentence into fragments. We use the same BiL-
STM based neural architecture for both sentence
classification and fragment classification.

Fragment-decomposition We now describe the
procedure we use to associate a sentence fragment
with each (sentence,aspect) pairs. The shared
tasks data associates each aspect with a pivot-
phrase a, where pivot phrase (w1, w2, ...wl) is de-
fined as a pre-determined sequence of words that
is contained within the sentence. For a sentence α,
a set of pivot phrases A = (a1, ..., am) and a spe-
cific pivot phrase ai, we consult the constituency
parse tree of α and look for tree nodes that satisfy
the following conditions:5

1. The node governs the desired pivot phrase ai.

2. The node governs either a verb (VB, VBD,
VBN, VBG, VBP, VBZ) or an adjective (JJ,
JJR, JJS), which is different than any aj ∈ A.

3. The node governs a minimal number of pivot
phrases from (a1, ..., am), ideally only ai.

We then select the highest node in the tree that
satisfies all conditions. The span governed by this
node is taken as the fragment associated with as-

5Condition (2) coupled with selecting the highest node
pushes towards complete phrases that contain opinions
(which are usually expressed with adjectives or verbs), while
the other conditions focus the attention on the desired pivot
phrase.
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pect ai.6 The decomposition procedure is demon-
strated in Figure 2.

When aspect-level information is given, we
take the pivot-phrases to be the requested aspects.
When aspect-level information is not available,
we take each noun in the sentence to be a pivot-
phrase.

Neural Classifier Our classification model is a
simple 1-layer BiLSTM encoder (a concatenation
of the last states of a forward and a backward run-
ning LSTMs) followed by a linear-predictor. The
encoder is fed either a complete sentence or a sen-
tence fragment.

5 Experiments

Data Our target task is aspect-based fragment-
classification, with small labeled datasets from the
SemEval 2015 and 2016 shared tasks, each dataset
containing aspect-level predictions for about 2000
sentences in the restaurants reviews domain. Our
source classifier is based on training on up to
10,000 sentences from the same domain and 2000
sentences for validation, labeled for only for
sentence-level sentiment. We additionally have an
unlabeled dataset of up to 670,000 sentences from
the same domain7. We tokenized all datasets us-
ing the Tweet Tokenizer from NLTK package8 and
parsed the tokenized sentences with AllenNLP
parser.9

Training Details Both the sentence level classi-
fication models and the models trained with XR
have a hidden state vector dimension of size 300,
they use dropout (Hinton et al., 2012) on the
sentence representation or fragment representa-
tion vector (rate=0.5) and optimized using Adam
(Kingma and Ba, 2014). The sentence classifica-
tion is trained with a batch size of 30 and XR mod-
els are trained with batch sizes k that each contain
450 fragments10. We used a temperature param-

6On the rare occasions where we cannot find such a node,
we take the root node of the tree (the entire sentence) as the
fragment for the given aspect.

7All of the sentence-level sentiment data is obtained from
the Yelp dataset challenge: https://www.yelp.com/
dataset/challenge

8https://www.nltk.org/
9https://allennlp.org/

10We also increased the batch sizes of the baselines to
match those of the XR setups. This decreased the perfor-
mance of the baselines, which is consistent with the folk
knowledge in the community according to which smaller
batch sizes are more effective overall.

eter of 111. We use pre-trained 300-dimensional
GloVe embeddings12 (Pennington et al., 2014),
and fine-tune them during training. The XR train-
ing was validated with a validation set of 20% of
SemEval-2015 training set, the sentence level BiL-
STM classifiers were validated with a validation of
2000 sentences.13 When fine-tuning to the aspect
based task we used 20% of train in each dataset as
validation and evaluated on this set. On each train-
ing method the models were evaluated on the vali-
dation set, after each epoch and the best model was
chosen. The data is highly imbalanced, with only
very few sentences receiving a NEU label. We do
not deal with this imbalance directly and train both
the sentence level and the XR aspect-based train-
ing on the imbalanced data. However, when train-
ing Cs, we trained five models and chose the best
model that predicts correctly at least 20% of the
neutral sentences. The models are implemented
using DyNet14 (Neubig et al., 2017).

Baseline models In recent years many neural
network architectures with increasing sophistica-
tion were applied to the ABSC task (Nguyen and
Shirai, 2015; Vo and Zhang, 2015; Tang et al.,
2016a,b; Wang et al., 2016; Zhang et al., 2016;
Ruder et al., 2016; Ma et al., 2017; Liu and
Zhang, 2017; Chen et al., 2017; Liu et al., 2018;
Yang et al., 2018; Wang et al., 2018b,a; Fan
et al., 2018a,b; Li et al., 2018; Ouyang and Su,
2018). We compare to a series of state-of-the-
art ABSC neural classifiers that participated in
the shared tasks. TDLSTM-ATT (Tang et al.,
2016a) encodes the information around an aspect
using forward and backward LSTMs, followed
by an attention mechanism. ATAE-LSTM (Wang
et al., 2016) is an attention based LSTM vari-
ant. MM (Tang et al., 2016b) is a deep mem-
ory network with multiple-hops of attention lay-
ers. RAM (Chen et al., 2017) uses multiple atten-
tion mechanisms combined with a recurrent neu-
ral networks and a weighted memory mechanism.
LSTM+SynATT+TarRep (He et al., 2018a) is an
attention based LSTM which incorporates syn-

11Despite (Mann and McCallum, 2007) claim regarding
the temperature parameter, we observed lower performance
when using it in our setup. However, in other setups this pa-
rameter might be found to be beneficial.

12https://nlp.stanford.edu/projects/
glove/

13We also tested the sentence BiLSTM baselines with a
SemEval validation set, and received slightly lower results
without a significant statistical difference.

14https://github.com/clab/dynet

https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
https://www.nltk.org/
https://allennlp.org/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/clab/dynet
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Data Method SemEval-15 SemEval-16
Acc. Macro-F1 Acc. Macro-F1

A TDLSTM+ATT (Tang et al., 2016a) 77.10 59.46 83.11 57.53
A ATAE-LSTM (Wang et al., 2016) 78.48 62.84 83.77 61.71
A MM (Tang et al., 2016b) 77.89 59.52 83.04 57.91
A RAM (Chen et al., 2017) 79.98 60.57 83.88 62.14
A LSTM+SynATT+TarRep (He et al., 2018a) 81.67 66.05 84.61 67.45
S+A Semisupervised (He et al., 2018b) 81.30 68.74 85.58 69.76
S BiLSTM-104 Sentence Training 80.24 ±1.64 61.89 ±0.94 80.89 ±2.79 61.40 ±2.49
S+A BiLSTM-104 Sentence Training →Aspect Based Finetuning 77.75 ±2.09 60.83 ±4.53 84.87±0.31 61.87 ±5.44
N BiLSTM-XR-Dev Estimation 83.31∗ ± 0.62 62.24 ±0.66 87.68∗ ± 0.47 63.23 ±1.81
N BiLSTM-XR 83.31∗ ± 0.77 64.42 ± 2.78 88.12∗ ± 0.24 68.60 ±1.79
N+A BiLSTM-XR →Aspect Based Finetuning 83.44∗ ± 0.74 67.23 ± 1.42 87.66∗ ± 0.28 71.19†± 1.40

Table 1: Average accuracies and Macro-F1 scores over five runs with random initialization along with their stan-
dard deviations. Bold: best results or within std of them. ∗ indicates that the method’s result is significantly better
than all baseline methods, † indicates that the method’s result is significantly better than all baselines methods that
use the aspect-based data only, with p < 0.05 according to a one-tailed unpaired t-test. The data annotations S, N
and A indicate training with Sentence-level, Noisy sentence-level and Aspect-level data respectively. Numbers for
TDLSTM+Att,ATAE-LSTM,MM,RAM and LSTM+SynATT+TarRep are from (He et al., 2018a). Numbers for
Semisupervised are from (He et al., 2018b).

tactic information into the attention mechanism
and uses an auto-encoder structure to produce an
aspect representations. All of these models are
trained only on the small, fully-supervised ABSC
datasets.

“Semisupervised” is the semi-supervised setup
of (He et al., 2018b), it train an attention-
based LSTM model on 30,000 documents addi-
tional to an aspect-based train set, 10,000 doc-
uments to each class. We consider additional
two simple but strong semi-supervised baselines.
Sentence-BiLSTM is our BiLSTM model trained
on the 104 sentence-level annotations, and ap-
plied as-is to the individual fragments. Sentence-
BiLSTM+Finetuning is the same model, but fine-
tuned on the aspect-based data as explained above.
Finetuning is performed using our own implemen-
tation of the attention-based model of He et al.
(2018b).15 Both these models are on par with the
fully-supervised ABSC models.

Empirical Proportions The proportion con-
straint sets p̃j based on the SemEval-2015
aspect-based train data are:
p̃POS = {POS : 0.93,NEG : 0.06,NEU : 0.01}
p̃NEG = {POS : 0.27,NEG : 0.7,NEU : 0.03}
p̃NEU = {POS : 0.45,NEG : 0.41,NEU : 0.14}

5.1 Main Results

Table 1 compares these baselines to three XR con-
ditions.16

15We changed the LSTM component to a BiLSTM.
16To be consistent with existing research (He et al., 2018b),

aspects with conflicted polarity are removed.

The first condition, BiLSTM-XR-Dev, per-
forms XR training on the automatically-labeled
sentence-level dataset. The only access it has
to aspect-level annotation is for estimating the
proportions of labels for each sentence-level la-
bel, which is done based on the validation set of
SemEval-2015 (i.e., 20% of the train set). The XR
setting is very effective: without using any in-task
data, this model already surpasses all other mod-
els, both supervised and semi-supervised, except
for the (He et al., 2018b,a) models which achieve
higher F1 scores. We note that in contrast to XR,
the competing models have complete access to the
supervised aspect-based labels. The second con-
dition, BiLSTM-XR, is similar but now the model
is allowed to estimate the conditional label pro-
portions based on the entire aspect-based training
set (the classifier still does not have direct access
to the labels beyond the aggregate proportion in-
formation). This improves results further, show-
ing the importance of accurately estimating the
proportions. Finally, in BiLSTM-XR+Finetuning,
we follow the XR training with fully supervised
fine-tuning on the small labeled dataset, using the
attention-based model of He et al. (2018b). This
achieves the best results, and surpasses also the
semi-supervised He et al. (2018b) baseline on ac-
curacy, and matching it on F1.17

We report significance tests for the robustness

17We note that their setup uses clean and more balanced
annotations, i.e. they use 10,000 samples for each label,
which helps predicting the infrequent neutral sentiment. We
however, use noisy sentence sentiment labels which are auto-
matically obtained from a trained classifier, which trains on
10,000 samples in their natural imbalanced distribution.
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of the method under random parameter initializa-
tion. Our reported numbers are averaged over five
random initialization. Since the datasets are un-
balanced w.r.t the label distribution, we report both
accuracy and macro-F1.

The XR training is also more stable than the
other semi-supervised baselines, achieving sub-
stantially lower standard deviations across differ-
ent runs.

5.2 Further experiments

In each experiment in this section we estimate the
proportions using the SemEval-2015 train set.

Effect of unlabeled data size How does the XR
training scale with the amount of unlabeled data?
Figure 3a shows the macro-F1 scores on the entire
SemEval-2016 dataset, with different unlabeled
corpus sizes (measured in number of sentences).
An unannotated corpus of 5×104 sentences is suf-
ficient to surpass the results of the 104 sentence-
level trained classifier, and more unannotated data
further improves the results.

Effect of Base-classifier Quality Our method
requires a sentence level classifier Cs to label both
the target-task corpus and the unlabeled corpus.
How does the quality of this classifier affect the
overall XR training? We vary the amount of su-
pervision used to train Cs from 0 sentences (as-
signing the same label to all sentences), to 100,
1000, 5000 and 10000 sentences. We again mea-
sure macro-F1 on the entire SemEval 2016 corpus.
The results in Figure 3b show that when using the
prior distributions of aspects (0), the model strug-
gles to learn from this signal, it learns mostly to
predict the majority class, and hence reaches very
low F1 scores of 35.28. The more data given to the
sentence level classifier, the better the potential re-
sults will be when training with our method using
the classifier labels, with a classifiers trained on
100,1000,5000 and 10000 labeled sentences, we
get a F1 scores of 53.81, 58.84, 61.81, 65.58 re-
spectively. Improvements in the source task clas-
sifier’s quality clearly contribute to the target task
accuracy.

Effect of k The Stochastic Batched XR algo-
rithm (Algorithm 1) samples a batch of k examples
at each step to estimate the posterior label distri-
bution used in the loss computation. How does the
size of k affect the results? We use k = 450 frag-
ments in our main experiments, but smaller values

of k reduce GPU memory load and may train bet-
ter in practice. We tested our method with varying
values of k on a sample of 5× 104, using batches
that are composed of fragments of 5, 25, 100, 450,
1000 and 4500 sentences. The results are shown
in Figure 3c. Setting k = 5 result in low scores.
Setting k = 25 yields better F1 score but with high
variance across runs. For k = 100 fragments the
results begin to stabilize, we also see a slight de-
crease in F1-scores with larger batch sizes. We
attribute this drop despite having better estimation
of the gradients to the general trend of larger batch
sizes being harder to train with stochastic gradient
methods.

5.3 Pre-training, BERT

The XR training can be performed also over pre-
trained representations. We experiment with two
pre-training methods: (1) pre-training by training
the BiLSTM model to predict the noisy sentence-
level predictions. (2) Using the pre-trained BERT

representation (Devlin et al., 2018). For (1), we
compare the effect of pre-train on unlabeled cor-
pora of sizes of 5 × 104, 105 and 6.7 × 105 sen-
tences. Results in Figure 3d show that this form of
pre-training is effective for smaller unlabeled cor-
pora but evens out for larger ones.

BERT For the BERT experiments, we experi-
ment with the BERT-base model18 with k = 450
sets, 30 epochs for XR training or sentence level
fine-tuning19 and 15 epochs for aspect based fine-
tuning, on each training method we evaluated the
model on the dev set after each epoch and the best
model was chosen20. We compare the following
setups:
-BERT→Aspect Based Finetuning: pretrained
BERT model finetuned to the aspect based task.
-BERT→ 104: A pretrained BERT model finetuned
to the sentence level task on the 104 sentences, and
tested by predicting fragment-level sentiment.
-BERT→104→Aspect Based Finetuning: pre-
trained BERT model finetuned to the sentence level
task, and finetuned again to the aspect based one.
-BERT→XR: pretrained BERT model followed by

18We could not fit k = 450 sets of BERT-large on our
GPU.

19When fine-tuning to the sentence level task, we provide
the sentence as input. When fine-tuning to the aspect-level
task, we provide the sentence, a seperator and then the aspect.

20The other configuration parameters were the de-
fault ones in https://github.com/huggingface/
pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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(a) (b) (c) (d)

Figure 3: Macro-F1 scores for the entire SemEval-2016 dataset of the different analyses. (a) the contribution of
unlabeled data. (b) the effect of sentence classifier quality. (c) the effect of k. (d) the effect of sentence-level
pretraining vs. corpus size.

Data Training SemEval-15 SemEval-16
Acc. Macro-F1 Acc. Macro-F1

N BiLSTM-XR 83.31 ± 0.77 64.42 ± 2.78 88.12 ± 0.24 68.60 ±1.79
N+A BiLSTM-XR →Aspect Based Finetuning 83.44 ± 0.74 67.23 ± 1.42 87.66 ± 0.28 71.19 ± 1.40
A BERT→Aspect Based Finetuning 81.87 ±1.12 59.24 ±4.94 85.81 ±1.07 62.46 ±6.76
S BERT→104 Sent Finetuning 83.29 ±0.77 66.79 ±1.99 84.53 ±1.66 65.53 ±3.03
S+A BERT→104 Sent Finetuning →Aspect Based Finetuning 82.54 ±1.21 64.13 ±5.05 85.67 ±1.14 64.13 ±7.07
N BERT→XR 85.46∗ ±0.59 66.86 ±2.8 89.5∗ ±0.55 70.86†±2.96
N+A BERT→XR →Aspect Based Finetuning 85.78∗ ± 0.65 68.74 ± 1.36 89.57∗ ± 1.4 73.89∗ ± 2.05

Table 2: BERT pre-training: average accuracies and Macro-F1 scores from five runs and their stdev. ∗ indicates
that the method’s result is significantly better than all baseline methods, † indicates that the method’s result is
significantly better than all non XR baseline methods, with p < 0.05 according to a one-tailed unpaired t-test.
The data annotations S, N and A indicate training with Sentence-level, Noisy sentence-level and Aspect-level data
respectively.

XR training using our method.
-BERT→ XR → Aspect Based Finetuning: pre-
trained BERT followed by XR training and then
fine-tuned to the aspect level task.

The results are presented in Table 2. As before,
aspect-based fine-tuning is beneficial for both
SemEval-16 and SemEval-15. Training a BiL-
STM with XR surpasses pre-trained BERT models
and using XR training on top of the pre-trained
BERT models substantially increases the results
even further.

6 Discussion

We presented a transfer learning method based
on expectation regularization (XR), and demon-
strated its effectiveness for training aspect-based
sentiment classifiers using sentence-level supervi-
sion. The method achieves state-of-the-art results
for the task, and is also effective for improving on
top of a strong pre-trained BERT model. The pro-
posed method provides an additional data-efficient
tool in the modeling arsenal, which can be ap-
plied on its own or together with another training
method, in situations where there is a conditional

relations between the labels of a source task for
which we have supervision, and a target task for
which we don’t.

While we demonstrated the approach on the
sentiment domain, the required conditional depen-
dence between task labels is present in many sit-
uations. Other possible application of the method
includes training language identification of tweets
given geo-location supervision (knowing the geo-
graphical region gives a prior on languages spo-
ken), training predictors for renal failure from tex-
tual medical records given classifier for diabetes
(there is a strong correlation between the two con-
ditions), training a political affiliation classifier
from social media tweets based on age-group clas-
sifiers, zip-code information, or social-status clas-
sifiers (there are known correlations between all of
these to political affiliation), training hate-speech
detection based on emotion detection, and so on.
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