
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4998–5003
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

4998

Grammar Induction with Neural Language Models:

An Unusual Replication

Phu Mon Htut
1

AdeptMind Scholar
pmh330@nyu.edu

Kyunghyun Cho
1,2

CIFAR Global Scholar
kyunghyun.cho@nyu.edu

Samuel R. Bowman
1,2,3

bowman@nyu.edu

1Center for Data Science
New York University

60 Fifth Avenue
New York, NY 10011

2Dept. of Computer Science
New York University

60 Fifth Avenue
New York, NY 10011

3Dept. of Linguistics
New York University
10 Washington Place
New York, NY 10003

Abstract

A substantial thread of recent work on latent
tree learning has attempted to develop neural
network models with parse-valued latent vari-
ables and train them on non-parsing tasks, in
the hope of having them discover interpretable
tree structure. In a recent paper, Shen et al.
(2018) introduce such a model and report near-
state-of-the-art results on the target task of lan-
guage modeling, and the first strong latent tree
learning result on constituency parsing. In an
attempt to reproduce these results, we discover
issues that make the original results hard to
trust, including tuning and even training on
what is effectively the test set. Here, we at-
tempt to reproduce these results in a fair exper-
iment and to extend them to two new datasets.
We find that the results of this work are robust:
All variants of the model under study outper-
form all latent tree learning baselines, and per-
form competitively with symbolic grammar
induction systems. We find that this model
represents the first empirical success for la-
tent tree learning, and that neural network lan-
guage modeling warrants further study as a
setting for grammar induction.

1 Introduction and Background

Work on grammar induction attempts to find
methods for syntactic parsing that do not re-
quire expensive and difficult-to-design expert-
labeled treebanks for training (Charniak and Car-
roll, 1992; Klein and Manning, 2002; Smith and
Eisner, 2005). Recent work on latent tree learning
offers a new family of approaches to the problem
(Yogatama et al., 2017; Maillard et al., 2017; Choi
et al., 2018). Latent tree learning models attempt
to induce syntactic structure using the supervision
from a downstream NLP task such as textual en-
tailment. Though these models tend to show good
task performance, they are often not evaluated us-
ing standard parsing metrics, and Williams et al.

(2018a) report that the parses they produce tend to
be no better than random trees in a standard evalu-
ation on the full Wall Street Journal section of the
Penn Treebank (WSJ; Marcus et al., 1993).

This paper addresses the Parsing-Reading-
Predict Network (PRPN; Shen et al., 2018), which
was recently published at ICLR, and which reports
near-state-of-the-art results on language modeling
and strong results on grammar induction, a first
for latent tree models (though they do not use that
term). PRPN is built around a substantially novel
architecture, and uses convolutional networks with
a form of structured attention (Kim et al., 2017)
rather than recursive neural networks (Goller and
Kuchler, 1996; Socher et al., 2011) to evaluate and
learn trees while performing straightforward back-
propagation training on a language modeling ob-
jective. In this work, we aim to understand what
the PRPN model learns that allows it to succeed,
and to identify the conditions under which this
success is possible.

Their experiments on language modeling and
parsing are carried out using different configura-
tions of the PRPN model, which were claimed to
be optimized for the corresponding tasks. PRPN-
LM is tuned for language modeling performance,
and PRPN-UP for (unsupervised) parsing perfor-
mance. In the parsing experiments, we also ob-
serve that the WSJ data is not split, such that
the test data is used without parse information
for training. This approach follows the previ-
ous works on grammar induction using non-neural
models where the entire dataset is used for train-
ing (Klein and Manning, 2002). However, this
implies that the parsing results of PRPN-UP may
not be generalizable in the way usually expected
of machine learning evaluation results. Addition-
ally, it is not obvious that the model should be able
to learn to parse reliably: (1) Since the parser is
trained as part of a language model, it makes pars-



4999

There ’s nothing worth seeing in the tourist offices . There ’s nothing worth seeing in the tourist offices .

The entire Minoan civilization was destroyed by a volcanic eruption . The entire Minoan civilization was destroyed by a volcanic eruption .

Figure 1: Left Parses from PRPN-LM trained on AllNLI. Right Parses from PRPN-UP trained on AllNLI
(stopping criterion: parsing). We can observe that both sets of parses tend to have roughly reasonable
high-level structure and tend to identify noun phrases correctly.

ing decisions greedily and with no access to any
words to the right of the point where each parsing
decision must be made (Collins and Roark, 2004);
(2) As RNN language models are known to be in-
sufficient for capturing syntax-sensitive dependen-
cies (Linzen et al., 2016), language modeling as
the downstream task may not be well-suited to la-
tent tree learning.

In this replication we train PRPN on two cor-
pora: The full WSJ, a staple in work on gram-
mar induction, and AllNLI, the concatenation of
the Stanford Natural Language Inference Corpus
(SNLI; Bowman et al., 2015) and the Multi-Genre
NLI Corpus (MultiNLI; Williams et al., 2018b),
which is used in other latent tree learning work for
its non-syntactic classification labels for the task
of textual entailment, and which we include for
comparison. We then evaluate the constituency
trees produced by these models on the WSJ test
set, full WSJ10,1 and the MultiNLI development
set.

Our results indicate that PRPN-LM achieves
better parsing performance than PRPN-UP on
both WSJ and WSJ10 even though PRPN-UP was
tuned—at least to some extent—for parsing. Sur-
prisingly, a PRPN-LM model trained on the large
out-of-domain AllNLI dataset achieves the best
parsing performance on WSJ despite not being
tuned for parsing. We also notice that vocabulary
size affects the language modeling significantly—
the perplexity gets higher as the vocabulary size
increases.

Overall, despite the relatively uninformative ex-
perimental design used in Shen et al. (2018), we
find that PRPN is an effective model. It outper-
forms all latent tree learning baselines by large

1A standard processed subset of WSJ used in grammar
induction in which the sentences contain no punctuation and
no more than 10 words.

margins on both WSJ and MultiNLI, and performs
competitively with symbolic grammar induction
systems on WSJ10, suggesting that PRPN in par-
ticular and language modeling in general are a vi-
able setting for latent tree learning.

2 Methods

PRPN consists of three components: (i) a parsing
network that uses a two-layer convolution kernel
to calculate the syntactic distance between suc-
cessive pairs of words, which can form an indi-
rect representation of the constituency structure of
the sentence, (ii) a recurrent reading network that
summarizes the current memory state based on
all previous memory states and the implicit con-
stituent structure, and (iii) a predict network that
uses the memory state to predict the next token.
We refer readers to the appendix and the original
work for details.

We do not re-implement or re-tune PRPN, but
rather attempt to replicate and understand the re-
sults of the work using the author’s publicly avail-
able code.2 The experiments on language model-
ing and parsing are carried out using different con-
figurations of the model, with substantially differ-
ent hyperparameter values including the size of the
word embeddings, the maximum sentence length,
the vocabulary size, and the sizes of hidden layers.
PRPN-LM is larger than PRPN-UP, with embed-
ding layer that is 4 times larger and the number of
units per layer that is 3 times larger. We use both
versions of the model in all our experiments.

We use the 49k-sentence WSJ corpus in two set-
tings. To replicate the original results, we re-run
an experiment with no train/test split, and for a
clearer picture of the model’s performance, we run
it again with the train (Section 0-21 of WSJ), val-
idation (Section 22 of WSJ), and test (Section 23

2https://github.com/yikangshen/PRPN

https://github.com/yikangshen/PRPN


5000

Training

Data

Stopping

Criterion

Vocab

Size

Parsing F1
Depth

WSJ

Accuracy on WSJ by Tag
Model WSJ10 WSJ

ADJP NP PP INTJ
µ (�) max µ (�) max

PRPN-UP AllNLI Train UP 76k 67.5 (0.6) 68.6 36.9 (0.6) 38.0 5.8 29.3 62.0 31.6 0.0
PRPN-UP AllNLI Train LM 76k 66.3 (0.8) 68.5 38.3 (0.5) 39.8 5.8 28.7 65.5 32.7 0.0
PRPN-LM AllNLI Train LM 76k 52.4 (4.9) 58.1 35.0 (5.4) 42.8 6.1 37.8 59.7 61.5 100.0

PRPN-UP WSJ Full UP 15.8k 64.7 (3.2) 70.9 26.4 (1.7) 31.1 5.8 22.5 47.2 17.9 0.0
PRPN-UP WSJ Full LM 15.8k 64.3 (3.3) 70.8 26.3 (1.8) 30.8 5.8 22.7 46.6 17.8 0.0
PRPN-UP WSJ Train UP 15.8k 63.5 (3.5) 70.7 26.2 (2.3) 33.0 5.8 24.8 55.2 18.0 0.0
PRPN-UP WSJ Train LM 15.8k 62.2 (3.9) 70.3 26.0 (2.3) 32.8 5.8 24.8 54.4 17.8 0.0
PRPN-LM WSJ Train LM 10k 70.5 (0.4) 71.3 37.4 (0.3) 38.1 5.9 26.2 63.9 24.4 0.0
PRPN-LM WSJ Train UP 10k 66.1 (0.5) 67.2 33.4 (0.8) 35.6 5.9 33.0 57.1 18.3 0.0

300D ST-Gumbel AllNLI Train NLI – – – 19.0 (1.0) 20.1 – 15.6 18.8 9.9 59.4
w/o Leaf GRU AllNLI Train NLI – – – 22.8 (1.6) 25.0 – 18.9 24.1 14.2 51.8

300D RL-SPINN AllNLI Train NLI – – – 13.2 (0.0) 13.2 – 1.7 10.8 4.6 50.6
w/o Leaf GRU AllNLI Train NLI – – – 13.1 (0.1) 13.2 – 1.6 10.9 4.6 50.0

CCM WSJ10 Full – – – 71.9 – – – – – – –
DMV+CCM WSJ10 Full – – – 77.6 – – – – – – –
UML-DOP WSJ10 Full – – – 82.9 – – – – – – –

Random Trees – – – – 34.7 21.3 (0.0) 21.4 5.3 17.4 22.3 16.0 40.4
Balanced Trees – – – – – 21.3 (0.0) 21.3 4.6 22.1 20.2 9.3 55.9
Left Branching – – – 28.7 28.7 13.1 (0.0) 13.1 12.4 – – – –
Right Branching – – – 61.7 61.7 16.5 (0.0) 16.5 12.4 – – – –

Table 1: Unlabeled parsing F1 results evaluated on full WSJ10 and WSJ test set broken down by train-
ing data and by early stopping criterion. The Accuracy columns represent the fraction of ground truth
constituents of a given type that correspond to constituents in the model parses. Italics mark results that
are worse than the random baseline. Underlining marks the best results from our runs. Results with
RL-SPINN and ST-Gumbel are from Williams et al. (2018a), and are evaluated on the full WSJ. We
run the model with 5 different random seeds to calculate the average F1. We use the model with the
best F1 score to report ADJP, NP, PP, and INTJ. WSJ10 baselines are from Klein and Manning (2002,
CCM), Klein and Manning (2005, DMV+CCM), and Bod (2006, UML-DOP). As the WSJ10 baselines
are trained using additional information such as POS tags and dependency parser, they are not strictly
comparable with the latent tree learning results.

of WSJ) splits. To compare PRPN to the models
studied in Williams et al. (2018a), we also retrain
it on AllNLI. As the MultiNLI test set is not pub-
licly available, we follow Williams et al. (2018a)
and use the development set for testing. The pars-
ing evaluation code in the original codebase does
not support PRPN-LM, and we modify it in our
experiments only to add this support.

For early stopping, we remove 10k random sen-
tences from the MultiNLI training set and combine
them with the SNLI development set to create a
validation set. Our AllNLI training set contains
280.5K unique sentences (1.8M sentences in total
including duplicate premise sentences), and cov-
ers six distinct genres of spoken and written En-
glish. We do not remove the duplicate sentences.
We train the model for 100 epochs for WSJ and 15
epochs for AllNLI. We run the model five times
with random initializations and average the results

from the five runs. The generated parses from the
trained models with the best F1 scores and the
pre-trained model that provides the highest F1 are
available online.3

3 Experimental Results

Table 2 shows our results for language modeling.
PRPN-UP, configured as-is with parsing criterion
and language modeling criterion, performs dra-
matically worse than the standard PRPN-LM (a
vs. d and e). However, this is not a fair comparison
as the larger vocabulary gives PRPN-UP a harder
task to solve. Adjusting the vocabulary of PRPN-
UP down to 10k to make a fairer comparison pos-
sible, the PPL of PRPN-UP improves significantly
(c vs. d), but not enough to match PRPN-LM (a
vs. c). We also observe that early stopping on

3https://github.com/nyu-mll/
PRPN-Analysis

https://github.com/nyu-mll/PRPN-Analysis
https://github.com/nyu-mll/PRPN-Analysis


5001

Training Stopping Vocab PPL

Model Data Criterion Size Median

(a) PRPN-LM WSJ Train LM 10k 61.4

(b) PRPN-LM WSJ Train UP 10k 81.6
(c) PRPN-UP WSJ Train LM 10k 92.8
(d) PRPN-UP WSJ Train LM 15.8k 112.1
(e) PRPN-UP WSJ Train UP 15.8k 112.8

(f) PRPN-UP AllNLI Train LM 76k 797.5
(g) PRPN-UP AllNLI Train UP 76k 848.9

Table 2: Language modeling performance (per-
plexity) on the WSJ test set, broken down by train-
ing data used and by whether early stopping is
done using the parsing objective (UP) or the lan-
guage modeling objective (LM).

parsing leads to incomplete training and a substan-
tial decrease in perplexity (a vs. b and d vs. e).
The models stop training at around the 13th epoch
when we early-stop on parsing objective, while
they stop training around the 65th epoch when we
early-stop on language modeling objective. Both
PRPN models trained on AllNLI do even worse
(f and g), though the mismatch in vocabulary and
domain may explain this effect. In addition, since
it takes much longer to train PRPN on the larger
AllNLI dataset, we train PRPN on AllNLI for only
15 epochs while we train the PRPN on WSJ for
100 epochs. Although the parsing objective con-
verges within 15 epochs, we notice that language
modeling perplexity is still improving. We expect
that the perplexity of the PRPN models trained on
AllNLI could be lower if we increase the number
of training epochs.

Turning toward parsing performance, Table 1
shows results with all the models under study, plus
several baselines, on WSJ test set and full WSJ10.
On full WSJ10, we reproduce the main parsing
result of Shen et al. (2018) with their UP model
trained on WSJ without a data split. We also find
the choice of parse quality as an early stopping
criterion does not have a substantial effect and
that training on the (unlabeled) test set does not
give a significant improvement in performance.
In addition and unexpectedly, we observe that
PRPN-LM models achieve higher parsing perfor-
mance than PRPN-UP. This shows that any tuning
done to separate PRPN-UP from PRPN-LM was
not necessary, and more importantly, that the re-
sults described in the paper can be largely repro-
duced by a unified model in a fair setting. More-
over, the PRPN models trained on WSJ achieves

Stopping F1 wrt.

Model Criterion LB RB SP Depth

300D SPINN NLI 19.3 36.9 70.2 6.2
w/o Leaf GRU NLI 21.2 39.0 63.5 6.4

300D SPINN-NC NLI 19.2 36.2 70.5 6.1
w/o Leaf GRU NLI 20.6 38.9 64.1 6.3

300D ST-Gumbel NLI 32.6 37.5 23.7 4.1
w/o Leaf GRU NLI 30.8 35.6 27.5 4.6

300D RL-SPINN NLI 95.0 13.5 18.8 8.6
w/o Leaf GRU NLI 99.1 10.7 18.1 8.6

PRPN-LM LM 25.6 26.9 45.7 4.9
PRPN-UP UP 19.4 41.0 46.3 4.9
PRPN-UP LM 19.9 37.4 48.6 4.9

Random Trees – 27.9 28.0 27.0 4.4
Balanced Trees – 21.7 36.8 21.3 3.9

Table 3: Unlabeled parsing F1 on the MultiNLI
development set for models trained on AllNLI. F1
wrt. shows F1 with respect to strictly right- and
left-branching (LB/RB) trees and with respect to
the Stanford Parser (SP) trees supplied with the
corpus; The evaluations of SPINN, RL-SPINN,
and ST-Gumbel are from Williams et al. (2018a).
SPINN is a supervised parsing model, and the oth-
ers are latent tree models. Median F1 of each
model trained with 5 different random seeds is re-
ported.

comparable results with CCM (Klein and Man-
ning, 2002). The PRPN models are outperformed
by DMV+CCM(Klein and Manning, 2005), and
UML-DOP(Bod, 2006). However, these models
use additional information such as POS and de-
pendency parser so they are not strictly compara-
ble with the PRPN models.

Turning to the WSJ test set, the results look
somewhat different: Although the differences in
WSJ10 performance across models are small, the
same is not true for the WSJ in terms of average
F1. PRPN-LM outperforms all the other mod-
els on WSJ test set, even the potentially-overfit
PRPN-UP model. Moreover, the PRPN models
trained on the larger, out-of-domain AllNLI per-
form better than those trained on WSJ. Surpris-
ingly, PRPN-LM tained on out-of-domain AllNLI
achieves the best F1 score on WSJ test set among
all the models we experimented, even though its
performance on WSJ10 is the lowest of all. This
mean that PRPN-LM trained on AllNLI is strik-
ingly good at parsing longer sentences though its
performance on shorter sentences is worse than
other models. Under all the configurations we
tested, the PRPN model yields much better per-



5002

formance than the baselines from Yogatama et al.
(2017, called RL-SPINN) and Choi et al. (2018,
called ST-Gumbel), despite the fact that the model
was tuned exclusively for WSJ10 parsing. This
suggests that PRPN is consistently effective at la-
tent tree learning.

We also show detailed results for several spe-
cific constituent types, following Williams et al.
(2018a). We observe that the accuracy for NP
(noun phrases) on the WSJ test set is above 46%
(Table 1) for all PRPN models, much higher than
any of the baseline models. These runs also per-
form substantially better than the random baseline
in the two other categories Williams et al. (2018a)
report: ADJP (adjective phrases) and PP (preposi-
tional phrases). However, as WSJ test set contains
only one INTJ (interjection phrases), the results on
INTJ are either 0.0% or 100%.

In addition, Table 3 shows that the PRPN-UP
models achieve the median parsing F1 scores of
46.3 and 48.6 respectively on the MultiNLI dev
set while PRPN-LM performs the median F1 of
45.7; setting the state of the art in parsing perfor-
mance on this dataset among latent tree models by
a large margin. We conclude that PRPN does ac-
quire some substantial knowledge of syntax, and
that this knowledge agrees with Penn Treebank
(PTB) grammar significantly better than chance.

Qualitatively, the parses produced by most of
the best performing PRPN models are relatively
balanced (F1 score of 36.5 w.r.t balanced trees)
and tend toward right branching (F1 score of 42.0
with respect to balanced trees). They are also shal-
lower than average ground truth PTB parsed trees.
These models can parse short sentences relatively
well, as shown by their high WSJ10 performance.

For a large proportion of long sentences, most
of the best performing models can produce rea-
sonable constituents (Table 1). The best perform-
ing model, PRPN-LM trained on AllNLI, achieves
the best accuracy at identifying ADJP (adjective
phrases), PP (prepositional phrases), and INTJ (in-
terjection phrases) constituents, and a high accu-
racy on NP (noun phrases). In a more informal
inspection, we also observe that our best PRPN-
LM and PRPN-UP runs are fairly good at pairing
determiners with NPs as we can observe in Fig-
ure 1). Although lower level tree constituents ap-
pear random in many cases for both PRPN-LM
and PRPN-UP, the intermediate and higher-level
constituents are generally reasonable. For exam-

ple, in Figure 1, although the parse for lower level
constituents like The entire Minoan seem random,
the higher-level constituents, such as The entire
Minoan civilization and nothing worth seeing in
the tourist offices, are reasonable.

4 Conclusion

In our attempt to replicate the grammar induction
results reported in Shen et al. (2018), we find sev-
eral experimental design problems that make the
results difficult to interpret. However, in exper-
iments and analyses going well beyond the scope
of the original paper, we find that the PRPN model
presented in that work is nonetheless robust. It
represents a viable method for grammar induction
and the first clear success for latent tree learning
with neural networks, and we expect that it her-
alds further work on language modeling as a tool
for grammar induction research.

Acknowledgments

This project has benefited from financial support
to SB by Google and Tencent Holdings, and was
partly supported by Samsung Electronics (Improv-
ing Deep Learning using Latent Structure). We
thank Adina Williams, Katharina Kann, Ryan Cot-
terell, and the anonymous reviewers for their help-
ful comments and suggestions, and NVIDIA for
their support.

References

Rens Bod. 2006. An All-Subtrees Approach to Un-
supervised Parsing. Proceedings of the 21st Inter-
national Conference on Computational Linguistics
and the 44th annual meeting of the Association for
Computational Linguistics, pages 865–872.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Eugene Charniak and Glen Carroll. 1992. Two exper-
iments on learning probabilistic dependency gram-
mars from corpora. In Proceedings of the AAAI
Workshop on Statistically-Based NLP Techniques,
page 113.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018.
Learning to compose task-specific tree structures.
In Proceedings of the Thirty-Second Association for
the Advancement of Artificial Intelligence Confer-
ence on Artificial Intelligence (AAAI-18), volume 2.



5003

Michael Collins and Brian Roark. 2004. Incremen-
tal parsing with the perceptron algorithm. In Pro-
ceedings of the 42nd Annual Meeting of the Asso-
ciation for Computational Linguistics, 21-26 July,
2004, Barcelona, Spain., pages 111–118.

Christoph Goller and Andreas Kuchler. 1996. Learn-
ing task-dependent distributed representations by
backpropagation through structure. In Proceedings
of International Conference on Neural Networks
(ICNN’96).

Sepp Hochreiter and Jürgen Schmidhuber. 1996. Long
Short Term Memory. Memory, (1993):1–28.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.

Dan Klein and Christopher D. Manning. 2002. A
generative constituent-context model for improved
grammar induction. In Proceedings of the 40th An-
nual Meeting on Association for Computational Lin-
guistics - ACL ’02, page 128.

Dan Klein and Christopher D. Manning. 2005. Nat-
ural language grammar induction with a genera-
tive constituent-context model. Pattern Recognition,
38(9):1407–1419.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. TACL, 4:521–535.

Jean Maillard, Stephen Clark, and Dani Yogatama.
2017. Jointly learning sentence embeddings and
syntax with unsupervised Tree-LSTMs. arXiv
preprint 1705.09189.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics, 19(2):313–330.

Yikang Shen, Zhouhan Lin, Chin wei Huang, and
Aaron Courville. 2018. Neural language modeling
by jointly learning syntax and lexicon. In Interna-
tional Conference on Learning Representations.

Noah A. Smith and Jason Eisner. 2005. Guiding un-
supervised grammar induction using contrastive es-
timation. In Proceedings of IJCAI Workshop on
Grammatical Inference Applications, pages 73–82.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Ng, and
Chris Manning. 2011. Parsing Natural Scenes and
Natural Language with Recursive Neural Networks.
In Proceedings of the 28th International Conference
on Machine Learning, pages 129–136.

Adina Williams, Andrew Drozdov, and Samuel R.
Bowman. 2018a. Do latent tree learning models
identify meaningful structure in sentences? Trans-
actions of the Association for Computational Lin-
guistics (TACL).

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018b. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL).

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
Compose Words into Setences with Reinforcement
Learning. Proceedings of the International Confer-
ence on Learning Representations, pages 1–17.


