
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4909–4914
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

4909

Sanskrit Sandhi Splitting using seq2(seq)2seq2(seq)2seq2(seq)2

Rahul Aralikatte
IBM Research

Neelamadhav Gantayat
IBM Research

{rahul.a.r, neelamadhav, naveen.panwar}@in.ibm.com

Naveen Panwar
IBM Research

Anush Sankaran
IBM Research

anussank@in.ibm.com

Senthil Mani
IBM Research

sentmani@in.ibm.com

Abstract

In Sanskrit, small words (morphemes) are
combined to form compound words through
a process known as Sandhi. Sandhi split-
ting is the process of splitting a given com-
pound word into its constituent morphemes.
Although rules governing word splitting ex-
ists in the language, it is highly challenging
to identify the location of the splits in a com-
pound word. Though existing Sandhi splitting
systems incorporate these pre-defined splitting
rules, they have a low accuracy as the same
compound word might be broken down in
multiple ways to provide syntactically correct
splits.

In this research, we propose a novel deep
learning architecture called Double Decoder
RNN (DD-RNN), which (i) predicts the lo-
cation of the split(s) with 95% accuracy, and
(ii) predicts the constituent words (learning the
Sandhi splitting rules) with 79.5% accuracy,
outperforming the state-of-art by 20%. Addi-
tionally, we show the generalization capability
of our deep learning model, by showing com-
petitive results in the problem of Chinese word
segmentation, as well.

1 Introduction

Compound word formation in Sanskrit is gov-
erned by a set of deterministic rules follow-
ing a well-defined structure described in Pān. ini’s
As. t.ādhyāyı̄, a seminal work on Sanskrit grammar.
The process of merging two or more morphemes
to form a word in Sanskrit is called Sandhi and the
process of breaking a compound word into its con-
stituent morphemes is called Sandhi splitting. In
Japanese, Rendaku (‘sequential voicing’) is sim-
ilar to Sandhi. For example, ‘origami’ consists
of ‘ori’ (paper) + ‘kami’ (folding), where ‘kami’
changes to ‘gami’ due to Rendaku.

Figure 1: Different possible splits for the word
paropakārah. and protsāhah. , provided by a standard
Sandhi splitter.

Learning the process of sandhi splitting for San-
skrit could provide linguistic insights into the for-
mation of words in a wide-variety of Dravidian
languages. From an NLP perspective, automated
learning of word formations in Sanskrit could
provide a framework for learning word organiza-
tion in other Indian languages, as well (Bharati
et al., 2006). In literature, past works have ex-
plored sandhi splitting (Gillon, 2009) (Kulkarni
and Shukl, 2009), as a rule based problem by ap-
plying the rules from As. t.ādhyāyı̄ in a brute force
manner. Consider the example in Figure 1 illus-
trating the different possible splits of a compound
word paropakārah. . While the correct split is para
+ upakārah. , other forms of splits such as, para +
apa + kārah. are syntactically possible while se-
mantically incorrect1. Thus, knowing all the rules
of splitting is insufficient and it is essential to iden-
tify the location(s) of split(s) in a given compound
word.

In this research, we propose an approach for au-

1Different syntactic splits given by one of the pop-
ular Sandhi splitters: https://goo.gl/0M5CPS and
https://goo.gl/JHnpJw

https://goo.gl/0M5CPS
https://goo.gl/JHnpJw

4910

tomated generation of split words by first learn-
ing the potential split locations in a compound
word. We use a deep bi-directional character
RNN encoder and two decoders with attention,
seq2(seq)2seq2(seq)2seq2(seq)2. The accuracy of our approach on the
benchmark dataset for split location prediction is
95% and for split words prediction is 79.5% re-
spectively. To the best of our knowledge, this is the
first research work to explore deep learning tech-
niques for the problem of Sanskrit Sandhi split-
ting, along with producing state-of-art results. Ad-
ditionally, we show the performance of our pro-
posed model for Chinese word segmentation to
demonstrate the model’s generalization capability.

2 seq2(seq)2seq2(seq)2seq2(seq)2: Model Description

In this section, we present our double decoder
model to address the Sandhi splitting problem. We
first outline the issues with basic deep learning ar-
chitectures and conceptually highlight the advan-
tages of the double decoder model.

2.1 Issues with standard architectures

Consider an example of splitting a sequence
abcdefg as abcdx + efg. The primary task is to
identify d as the split location. Further, for a given
location d in the character sequence, the algorithm
should take into account (i) the context of char-
acter sequence abc, (ii) the immediate previous
character c, (iii) the immediate succeeding char-
acter e, to make an effective split. For such se-
quence learning problems, RNNs have become the
most popular deep learning model (Pascanu et al.,
2013) (Sak et al., 2014).

A basic RNN encoder-decoder model (Cho
et al., 2014) with LSTM units (Hochreiter and
Schmidhuber, 1997), similar to a machine transla-
tion model, was trained initially. The compound
word’s characters is fed as input to the encoder
and is translated to a sequence of characters repre-
senting the split words (‘+’ symbol acts as a sep-
arator between the generated split words). How-
ever, the model did not yield adequate perfor-
mance as it encoded only the context of the char-
acters that appeared before the potential split lo-
cation(s). Though we tried making the encoder
bi-directional (referred to as B-RNN), the model’s
performance only improved marginally. Adding
global attention (referred to as B-RNN-A) to the
decoder enabled the model to attend to the charac-
ters surrounding the potential split location(s) and

improved the split prediction performance, mak-
ing it comparable with some of the best perform-
ing tools in the literature.

2.2 Double Decoder RNN (DD-RNN) model
The critical part of learning to split compound
words is to correctly identify the location(s) of the
split(s). Therefore, we added a two decoders to
our bi-directional encoder-decoder model: (i) lo-
cation decoder which learns to predict the split lo-
cations and (ii) character decoder which generates
the split words. A compound word is fed into the
encoder character by character. Each character’s
embedding xi is passed to the encoders LSTM
units. There are two LSTM layers which encode
the word, one in forward direction and the other
backward. The encoded context vector ei is then
passed to a global attention layer.

In the first phase of training, only the loca-
tion decoder is trained and the character decoder
is frozen. The character embeddings are learned
from scratch in this phase along with the attention
weights and other parameters. Here, the model
learns to identify the split locations. For example,
if the inputs are the embeddings for the compound
word protsāhah. , the location decoder will gener-
ate a binary vector [0, 0, 1, 0, 0, 0, 0, 0, 0] which in-
dicates that the split occurs between the third and
fourth characters. In the second phase, the loca-
tion decoder is frozen and the character decoder
is trained. The encoder and attention weights are
allowed to be fine-tuned. This decoder learns the
underlying rules of Sandhi splitting. Since the at-
tention layer is already pre-trained to identify po-
tential split locations in the previous phase, the
character decoder can use this context and learn
to split the words more accurately. For example,
for the same input word protsāhah. , the character
decoder will generate [p, r, a, +, u, t, s, ā, h, a, h.]
as the output. Here the character o is split into two
characters a and u.

In both the training phases, we use negative log
likelihood as the loss function. Let X be the se-
quence of the input compound word’s characters
and Y be the binary vector which indicates the lo-
cation of the split(s) in the first phase and the true
target sequence of characters which form the split
words in the second phase. If Y = y1, y2, ..., yn,
then the loss function is defined as:

loss = −
|Y |∑
i=1

logP (yi|yi−1, · · · , y1, X)

4911

Figure 2: The bi-directional encoder and decoders with attention

We evaluate the DD-RNN and compare it with
other tools and architectures in Section 4.

2.3 Implementation details

The architecture of the DD-RNN is shown in Fig-
ure 2. We used a character embedding size of 128.
The bi-directional encoder and the two decoders
are 2 layers deep with 512 LSTM units in each
layer. A dropout layer with p = 0.3 is applied
after each LSTM layer. The entire network is im-
plemented in Torch 2.

Of the 71, 747 words in our benchmark dataset,
we randomly sampled 80% of the data for training
our models. The remaining 20% was used for test-
ing. We used stochastic gradient descent for opti-
mizing the model parameters with an initial learn-
ing rate of 1.0. The learning rate was decayed by
a factor of 0.5 if the validation perplexity did not
improve after an epoch. We used a batch size of
64 and trained the network for 10 epochs on four
Tesla K80 GPUs. This setup remains the same for
all the experiments we conduct.

3 Existing Datasets and Tools

In this section, we briefly introduce various San-
skirt Sandhi datasets and splitting tools available
in literature. We also discuss the tools’ drawbacks

2http://torch.ch/

and the major challenges faced while creating such
tools.

Datasets: The UoH corpus, created at the Uni-
versity of Hyderabad3 contains 113, 913 words
and their splits. This dataset is noisy with typ-
ing errors and incorrect splits. The recent Sand-
hiKosh corpus (Shubham Bhardwaj, 2018) is a set
of 13, 930 annotated splits. We combine these
datasets and heuristically prune them to finally get
71, 747 words and their splits. The pruning is done
by considering a data point to be valid only if
the compound word and it’s splits are present in
a standard Sanskrit dictionary (Monier-Williams,
1970). We use this as our benchmark dataset and
run all our experiments on it.

Tools: There exist multiple Sandhi splitters in
the open domain such as (i) JNU splitter (Sachin,
2007), (ii) UoH splitter (Kumar et al., 2010)
and (iii) INRIA sanskrit reader companion (Huet,
2003) (Goyal and Huet, 2013). Though each tool
addresses the splitting problem in a specialized
way, the general principle remains constant. For
a given compound word, the set of all rules are
applied to every character in the word and a large
potential candidate list of word splits is obtained.
Then, a morpheme dictionary of Sanskrit words
is used with other heuristics to remove infeasible

3Available at: http://sanskrit.uohyd.ac.in/
Corpus/

http://torch.ch/
http://sanskrit.uohyd.ac.in/Corpus/
http://sanskrit.uohyd.ac.in/Corpus/

4912

Figure 3: Top-1 split prediction accuracy comparison
of different publicly available tools with DD-RNN

word split combinations. However, none of the
approaches address the fundamental problem of
identifying the location of the split before apply-
ing the rules, which will significantly reduce the
number of rules that can be applied, hence result-
ing in more accurate splits.

4 Evaluation and Results

We evaluate the performance of our DD-RNN
model by: (i) comparing the split prediction ac-
curacy with other publicly available sandhi split-
ting tools, (ii) comparing the split prediction
accuracy with other standard RNN architectures
such as RNN, B-RNN, and B-RNN-A, and (iii)
comparing the location prediction accuracy with
the RNNs used for Chinese word segmentation (as
they only predict the split locations and do not
learn the rules of splitting)

4.1 Comparison with publicly available tools

The tools discussed in Section 3 take a compound
word as input and provide a list of all possible
splits as output (UoH and INRIA splitters pro-
vide weighted lists). Initially, we compared only
the top prediction in each list with the true out-
put. This gave a very low precision for the tools
as shown in Figure 3. Therefore, we relaxed this
constraint and considered an output to be correct
if the true split is present in the top ten predictions
of the list. This increased the precision of the tools
as shown in Figure 4 and Table 1.

Even though DD-RNN generates only one out-
put for every input, it clearly out-performs the
other publicly available tools by a fair margin.

Figure 4: Split prediction accuracy comparison of dif-
ferent publicly available tools (Top-10) with DD-RNN
(Top-1)

Accuracy (%)

Model Location
Prediction

Split
Prediction

JNU (Top 10) - 8.1
UoH (Top 10) - 47.2

INRIA (Top 10) - 59.9
RNN 79.10 56.6

B-RNN 84.62 58.6
B-RNN-A 88.53 69.3
DD-RNN 95.0 79.5
LSTM-4 70.2 -
GRNN-5 67.7 -

Table 1: Location and split prediction accuracy of all
the tools and models under comparison

4.2 Comparison with standard RNN
architectures

To compare the performance of DD-RNN with
other standard RNN architectures, we trained
the following three models to generate the split
predictions on our benchmark dataset: (i) uni-
directional encoder and decoder without attention
(RNN), (ii) bi-directional encoder and decoder
without attention (B-RNN), and (iii) bi-directional
encoder and decoder with attention (B-RNN-A)

As seen from the middle part of Table 1, the
DD-RNN performs much better than the other ar-
chitectures with an accuracy of 79.5%. It is to
be noted that B-RNN-A is the same as DD-RNN
without the location decoder. However, the ac-
curacy of DD-RNN is 14.7% more than that the
B-RNN-A and consistently outperforms B-RNN-
A on almost all word lengths (Figure 5). This in-

4913

Figure 5: Split prediction accuracy comparison of dif-
ferent variations of RNN on words of different lengths

dicates that the attention mechanism of DD-RNN
has learned to better identify the split location(s)
due to its pre-training with the location decoder.

4.3 Comparison with similar works

(Reddy et al., 2018) propsed a seq2seq model
using RNN with attention to tackle the Sandhi
problem. Their model is similar to B-RNN-A
and is outperformed by our proposed DD-RNN
by 6̃.47%. We also compared our proposed DD-
RNN with a uni-directional LSTM with a depth
of 4 (Chen et al., 2015b) (LSTM-4) and a Gated
Recursive Neural Network with a depth of 5 (Chen
et al., 2015a) (GRNN-5). These models were used
to get state of the art results for Chinese word
segmentation and their source code is made avail-
able online.4 Since these models can only predict
the location(s) of the split(s) and cannot gener-
ate the split words themselves, we used the loca-
tion prediction accuracy as the metric. We trained
these models on our benchmark dataset and the
results are shown in Table 1. DD-RNN’s pre-
cision is 35.3% and 40.3% better than LSTM-4
and GRNN-5 respectively. Conversely, we trained
the DD-RNN for the Chinese word segmenta-
tion task to test the generalizability of the model.
Since there are no morphological changes during
segmentation in Chinese, the character decoder
is redundant and the model collapses to simple
seq2seq. We used the PKU dataset which is also
used in (Chen et al., 2015b) & (Chen et al., 2015a)
and obtained an accuracy of 64.25% which is com-
parable to the results of other standard models.

To summarize, we have used our benchmark

4https://github.com/FudanNLP

dataset to compare the DD-RNN model with ex-
isting publicly available Sandhi splitting tools,
other RNN architectures and models used for Chi-
nese word segmentation task. Among the exist-
ing tools, the INRIA splitter gives the highest split
prediction accuracy of 59.9%. Among the stan-
dard RNN architectures, B-RNN-A performs the
best with a split prediction accuracy of 69.3%.
LSTM-4 performs the best among the Chinese
word segmentation models with a location predic-
tion accuracy of 70.2%. DD-RNN outperforms all
the models both in location and split predictions
with 95% and 79.5% accuracies, respectively.

5 Research Impact

This work can be foundational to other Sanskrit
based NLP tasks. Let us consider translation as an
example. In Sanskrit, arbitrary number of words
can be joined together to form a compound word.
Literary works, especially from the Vedic era of-
ten contain words which are a concatenation of
three or more simpler words. Presence of such
compound words will increase the vocabulary size
exponentially and hinder the translation process.
However, as a pre-processing step, if all the com-
pound words are split before training a translation
model, the number of unique words in the vocabu-
lary reduces which will ease the learning process.

6 Conclusion

In this research, we propose a novel double de-
coder RNN architecture with attention for Sanskrit
Sandhi splitting. Learning such a model would
provide further insights into the fundamental lin-
guistic word formation rules of the language. A
deep bi-directional encoder is used to encode the
character sequence of a Sanskrit word. Using this
encoded context vector, a location decoder is first
used to learn the location(s) of the split(s). Then
the character decoder is used to generate the split
words. We evaluate the performance of the pro-
posed approach on the benchmark dataset in com-
parison with other publicly available tools, stan-
dard RNN architectures and with prior work which
tackle similar problems in other languages. As fu-
ture work, we intend to tackle the harder Samasa
problem which requires semantic information of a
word in addition to the characters’ context.

https://github.com/FudanNLP

4914

References
Akshar Bharati, Amba P Kulkarni, and V Sheeba.

2006. Building a wide coverage sanskrit morpho-
logical analyser: A practical approach. In The
First National Symposium on Modelling and Shal-
low Parsing of Indian Languages, IIT-Bombay.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, and Xuan-
jing Huang. 2015a. Gated recursive neural network
for chinese word segmentation. In ACL (1), pages
1744–1753.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu,
and Xuanjing Huang. 2015b. Long short-term mem-
ory neural networks for chinese word segmentation.
In EMNLP, pages 1197–1206.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Brendan S. Gillon. 2009. Tagging Classical Sanskrit
Compounds. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Pawan Goyal and Gérard Huet. 2013. Complete-
ness analysis of a sanskrit reader. In International
Symposium on Sanskrit Computational Linguistics,
pages 130–171.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Gérard Huet. 2003. Towards computational processing
of sanskrit. In International Conference on Natural
Language Processing (ICON). Citeseer.

Amba Kulkarni and Devanand Shukl. 2009. Sanskrit
morphological analyser: Some issues. Indian Lin-
guistics, 70(1-4):169–177.

Anil Kumar, Vipul Mittal, and Amba Kulkarni. 2010.
Sanskrit Compound Processor. Springer Berlin Hei-
delberg, Berlin, Heidelberg.

Monier Monier-Williams. 1970. Sanskrit-English Dic-
tionary.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2013. How to construct
deep recurrent neural networks. arXiv preprint
arXiv:1312.6026.

Vikas Reddy, Amrith Krishna, Vishnu Dutt Sharma,
Prateek Gupta, Vineeth M. R, and Pawan Goyal.
2018. Building a word segmenter for sanskrit
overnight. CoRR, abs/1802.06185.

Kumar Sachin. 2007. Sandhi splitter and analyzer for
sanskrit (with reference to ac sandhi). M. Phil. de-
gree at SCSS, JNU (submitted, 2007).

Hasim Sak, Andrew W Senior, and Françoise Bea-
ufays. 2014. Long short-term memory recurrent
neural network architectures for large scale acoustic
modeling. In INTERSPEECH, pages 338–342.

Rahul Garg Sumeet Agarwal Shubham Bhardwaj, Nee-
lamadhav Gantayat. 2018. Sandhikosh: A bench-
mark corpus for evaluating sanskrit sandhi tools.
In 11th International Conference on Language Re-
sources and Evaluation.

