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Abstract

We introduce a novel type of text represen-
tation that preserves the 2D layout of a doc-
ument. This is achieved by encoding each
document page as a two-dimensional grid
of characters. Based on this representation,
we present a generic document understand-
ing pipeline for structured documents. This
pipeline makes use of a fully convolutional
encoder-decoder network that predicts a seg-
mentation mask and bounding boxes. We
demonstrate its capabilities on an information
extraction task from invoices and show that it
significantly outperforms approaches based on
sequential text or document images.

1 Introduction

Textual information is often represented through
structured documents which have an inherent 2D
structure. This is even more so the case with the
advent of new types of media and communica-
tions such as presentations, websites, blogs and
formatted notebooks. In such documents, the lay-
out, positioning, and sizing might be crucial to un-
derstand its semantic content and provide a strong
guidance to the human perception.

NLP addresses the task of processing and un-
derstanding natural language texts through sub-
tasks like language modeling, classification, in-
formation extraction, summarization, translation,
and question answering among others. NLP meth-
ods typically operate on serialized text, which is
a 1D sequence of characters. Such methods have
been proven very successful for various tasks on
unformatted text (e.g. books, reviews, news arti-
cles, short text snippets). However, when process-
ing structured and formatted documents in which
the relation between words is impacted not only
by the sequential order, but also by the document
layout, NLP can result in significant shortcomings.

∗Equal contribution

Computer vision algorithms, on the other hand,
are designed to exploit 2D information in the vi-
sual domain. Images are commonly processed
with convolutional neural networks (LeCun et al.,
1998; Krizhevsky et al., 2012; Ren et al., 2015b;
Pinheiro et al., 2016) (or likes) that preserve and
exploit the 2D correlation between neighboring
pixels. While it is feasible to convert structured
documents into images and then apply computer
vision algorithms, this approach is not optimal
for understanding their semantics as it is driven
mostly by the visual content and not by the textual
content. As a result, a machine learning model
would first need to extract the text from the image
followed by learning the semantics. This purely
visual approach requires a more complex model
and significantly larger training data compared to
text-based approaches.

We propose a novel paradigm for processing
and understanding structured documents. Instead
of serializing a document into a 1D text, the pro-
posed method, named chargrid, preserves the spa-
tial structure of the document by representing it as
a sparse 2D grid of characters. We then formu-
late the document understanding task as instance-
level semantic segmentation on chargrid. More
precisely, the model predicts a segmentation mask
with pixel-level labels and object bounding boxes
to group multiple instances of the same class. We
apply the chargrid paradigm on an information ex-
traction task from invoices and demonstrate that
this method is superior to both, state-of-the-art
NLP algorithms as well as computer vision algo-
rithms.

The rest of the document is organized in three
parts: we first introduce the chargrid paradigm;
we then describe a specific application of infor-
mation extraction from documents; finally, we
present experimental results and conclusion.
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2 Related Work

NLP focuses on understanding natural language
text through tasks like classification (Kim, 2014),
translation (Bahdanau et al., 2014), summarization
(Rush et al., 2015), and named entity recognition
(Lample et al., 2016). Such methods expect unfor-
matted text as input and, therefore, do not assume
any intrinsic 2D structure.

Document Analysis, on the other hand, deals
largely with problems such as recognizing
printed/hand-written characters from a variety of
documents (Graves and Schmidhuber, 2009), pro-
cessing document images for document localiza-
tion (Javed and Shafait, 2018), binarization (Tens-
meyer and Martinez, 2017), and layout segmenta-
tion (Chen et al., 2015). As a result, it does not fo-
cus on understanding the character- and/or word-
level semantics of the document the same way as
NLP.

Within computer vision, problems such as scene
text detection and recognition (Goodfellow et al.,
2013), semantic segmentation (Badrinarayanan
et al., 2017) as well as object detection (Gupta
et al., 2014; Lin et al., 2017) can be considered as
related problems to ours, but applied on a different
domain, i.e., processing natural images instead of
documents as input.

The closest to our work is Yang et al. (2017)
that performs pixel-wise layout segmentation on a
structured document, using sentence embeddings
as additional input to an encoder-decoder network
architecture. For each pixel inside the area of a
sentence, the sentence embedding is appended to
the visual feature embedding at the last layer of
the decoder. The authors show that the layout seg-
mentation accuracy can be significantly improved
when using the textual features. Another related
work is Palm et al. (2017) which extracts key-
value information from structured documents (in-
voices) using a recurrent neural network (RNN).
Their work addresses the problem of document
understanding, however, the RNN operates on se-
rialized 1D text.

Combining approaches from computer vision,
NLP, and document analysis, our work is the first
to systematically address the task of understanding
2D documents the same way as NLP while still
retaining the 2D structure in structured documents.

3 Document Understanding with
Chargrid

A human observer comprehends a document by
understanding the semantic content of characters,
words, paragraphs, and layout components. We
encapsulate all such tasks under the common um-
brella of document understanding. Therefore, we
can formulate this problem as an instance segmen-
tation task of characters on the page. In the fol-
lowing sections, we describe a new approach for
solving that task.

3.1 Chargrid

Chargrid is a novel representation of a document
that preserves its 2D layout. A chargrid can be
constructed from character boxes, i.e., bounding
boxes that each surround a single character some-
where on a given document page. This positional
information can come from an optical character
recognition (OCR) engine, or can be directly ex-
tracted from the layout information in the docu-
ment as provided by, e.g., PDF or HTML. The
coordinate space of a character box is defined by
page height H and width W , and is usually mea-
sured in units of pixels.

The complete text of a document page can
thus be represented as a set of tuples D =
{(ck,bk) | k = 0, ..., n}, where ck denotes the
k-th character in the page and bk the associated
character box of the k-th character, which is for-
malized by the top-left pixel position, width and
height, thus bk = (xk, yk, wk, hk).

We can now construct the chargrid g ∈ NH×W

of the original document page, and its character-
pixel gij from the set D with

gij =

{
E(ck) if (i, j) ≺ bk

0
(1)

where ≺ means ’overlaps with’, and where each
point (i, j) corresponds to some pixel in the origi-
nal document page pixel coordinate space defined
by (H,W ). E(ck) is some encoding of the char-
acter in the k-th character box, i.e. the value of
character ck may be mapped to a specific integer
index. For instance, we may map the alphabet
(or any character of interest) to non-zero indices
{a, b, c, ...} → {1, 2, 3, ...}. Note that we assume
that character boxes cannot overlap, i.e. each char-
acter on a document page occupies a unique region
on the page. In practice, it may happen that the
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Raw document Chargrid

Figure 1: Example for a document page (left) and
corresponding chargrid representation g (right).

corners and edges of a character box may overlap
with other closeby characters. We solve such cor-
ner cases by assigning the character-pixel to the
box that has the closest box center.

In other words, the chargrid representation is
constructed as follows: for each character ck at
location bk, the area covered by that character
is filled with some constant index value E(ck).
All remaining character-pixels corresponding to
empty regions on the original document page are
initialized with 0. Figure 1 visualizes the chargrid
representation of an example input document.

The advantage of the new chargrid representa-
tion is twofold: (i) we directly encode a character
by a single scalar value rather than by a granular
collection of grayscale pixels as is the case for im-
ages, thus making it easy for the subsequent doc-
ument analysis algorithms to understand the doc-
ument, and (ii), because the group of pixels that
belonged to a given character are now all mapped
to the same constant value, we can significantly
downsample the chargrid representation without
loss of any information. For instance, if the small-
est character occupied a 10×10 pixel region in the
original document, we can downsample the char-
grid representation by a factor of 10×10. This sig-
nificantly reduces the computational time of sub-
sequent processing steps, such as training a ma-
chine learning model on this data representation.

We point out that a character can occupy a re-
gion spanning several character pixels. This is in
contrast to traditional NLP where each character is
represented by exactly one token. In our represen-
tation, therefore, the larger a given character, the
more character-pixels represent that single charac-

ter. We do not find this to be a problem, instead,
it even helps since it implicitly encodes additional
information, for example, the font size, that would
otherwise not be available.

Before the chargrid representation is used as in-
put to, e.g., a neural network (see Sec. 3.2), we
apply 1-hot encoding to the chargrid g. Thus, the
original chargrid representation g ∈ NH×W be-
comes a vector representation g̃ ∈ RH×W×NC ,
where NC denotes the number of characters in
the vocabulary including a padding/background
character (in our case this is mapped to 0) and
an unknown character (all characters that are not
mapped by our encoding E will be mapped to this
character).

We note that similar to using characters for con-
structing the chargrid, one can also use words to
construct a wordgrid in the same way. In that case,
rather than using 1-hot encoding, one may use a
word embedding like word2vec or GloVe. While
the construction of a wordgrid seems straight-
forward, we have not experimented with it in the
present work as our dataset contains too many
unusual words and spans multiple languages (see
Sec. 4).

3.2 Network Architecture

We use the 1-hot encoded chargrid representation
g̃ as input to a fully convolutional neural network
to perform semantic segmentation on the chargrid
and predict a class label for each character-pixel
on the document. As there can be multiple and an
unknown number of instances of the same class,
we further perform instance segmentation. This
means, in addition to predicting a segmentation
mask, we may also predict bounding boxes using
the techniques from object detection. This allows
the model to assign characters from the same seg-
mentation class to distinct instances.

Our model is described in Figure 2. It is com-
prised of two main parts: The encoder network
and the decoder network. The decoder network
is further made up of two branches: The seg-
mentation branch and the bounding box regression
branch. The encoder boils down to a VGG-type
network (Simonyan and Zisserman, 2014) with di-
lated convolutions (Yu and Koltun, 2016), batch
normalization (Ioffe and Szegedy, 2015), and spa-
tial dropout (Tompson et al., 2015). Essentially,
the encoder consists of five blocks where each
block consists of three 3 × 3 convolutions (which



4462

C

H
xW

d=2 d=4 d=8

2C

4C 8C

4C

2C

8C

C

Decoder: Semantic SegmentationEncoder
C

4C

2C

C
Decoder: Bounding Box Regression

C C

a

b

cc d

e f

Concat

1x1 Conv

3x3 Conv
Transposed

3x3 Conv

Dropout

3x3 Conv

b

Concat

1x1 Conv

3x3 Conv
Transposed

cc

3x3 Conv

3x3 Conv
Softmax

3x3 Conv

d

3x3 Conv

3x3 Conv
Softmax

3x3 Conv

e
3x3 Conv

3x3 Conv
Linear

3x3 Conv

f

a

a" a"

b

b

b

cc

a 3x3 Conv 
Stride-2

3x3 Conv

3x3 Conv

Dropout

Raw data Chargrid

a'

3x3 Conv
with dilation

Dropout

3x3 Conv
with dilation

3x3 Conv
with dilation

a"

a' 3x3 Conv 
Stride-2

Dropout

3x3 Conv
with dilation

3x3 Conv
with dilation

Figure 2: Network architecture for document understanding, the chargrid-net. Each convolutional block
in the network is represented as a box. The height of a box is a proxy for feature map resolution while
the width is a proxy for the number of output channels. C corresponds to the number of ’base’ channels,
which in turns corresponds to the number of output channels in the first encoder block. d denotes dilation
rate.

themselves are made of convolution, batch nor-
malization, ReLU activation) followed by spatial
dropout at the end of a block. The first convolution
in a block is a stride-2 convolution to downsample
the input to that block. Whenever we downsam-
ple, we increase the number of output channels C
of each convolution by a factor of two. We have
found stride-2 convolutions to yield slightly bet-
ter results compared to max pooling. In block four
and five of the encoder, we do not apply any down-
sampling, and we leave the number of channels at
512 (the first block has C = 64 channels). We use
dilated convolutions in block three, four, five with
rates d = 2, 4, 8, respectively.

The decoder for semantic segmentation and for
bounding box regression are both made of con-
volutional blocks which essentially reverse the
downsampling of the encoder via stride-2 trans-
posed convolutions. Each block first concatenates
features from the encoder via lateral connections
followed by 1×1 convolutions (Ronneberger et al.,
2015; Pinheiro et al., 2016). Subsequently, we up-
sample via a 3×3 stride-2 transposed convolution.
This is followed by two 3 × 3 convolutions. Note
that whenever we upsample, we decrease the num-
ber of channels by a factor of two.

The two decoder branches are identical in archi-
tecture up to the last convolutional block. The de-
coder for semantic segmentation has an additional
convolutional layer without batch normalization,
but with bias and with softmax activation. The

number of output channels of the last convolution
corresponds to the number of classes. Together
with the encoder, the decoder for the bounding box
regression task forms a one-stage detector which
makes use of focal loss (Lin et al., 2017). We
also make use of the anchor box representation and
corresponding bounding box regression targets as
discussed in Ren et al. (2015a). The anchor-box
representation allows us to handle bounding boxes
that vary widely with respect to size and aspect ra-
tios. Moreover, the anchor-box representation al-
lows us to detect boxes of different classes. The
number of output channels are 2Na for the box
mask (foreground versus background) and 4Na for
the four box coordinates, where Na is the num-
ber of anchors per pixel. The weights of all layers
are initialized following He et al. (2015), except
for the last ones, which are initialized with a small
constant value 1e− 3 for stabilization purposes.

In total, we have three equally contributing loss
terms:

Ltotal = Lseg + Lboxmask + Lboxcoord, (2)

where Lseg is the cross entropy loss for segmen-
tation, e.g. (Ronneberger et al., 2015), Lboxmask

is the binary cross entropy loss for box masks,
and Lboxcoord is the Huber loss for box coordi-
nate regression (Ren et al., 2015a). Both cross en-
tropy loss terms are augmented following the fo-
cal loss idea (Lin et al., 2017). We also make use
of aggressive static class weighting in both cross



4463

entropy loss terms mainly to counter the strong
class imbalance between irrelevant and ”easy”
pixels (the ”background” class) versus relevant
and ”hard” pixels (all other classes; see Sec. 4.2
for further details).

We refer to the network depicted in Figure 2 as
the chargrid-net.

4 Information Extraction from Invoices

As a concrete example for understanding struc-
tured 2D documents, we extract key-value infor-
mation from invoices. We make no assumption
on the format of the invoice, the country of origin
(and consequently taxes, date formats, amount for-
mats, currency etc.) or the language. In addition to
that, real-world invoices often contain incomplete
sentences, nouns, and abbreviations.

We want our model to parse an invoice and to
extract 5 header fields (i.e., Invoice Number, In-
voice Date, Invoice Amount, Vendor Name and
Vendor Address) as well as the list of product
items purchased, referred to as the line-items.
Line-items include details for each item such as
Line-item Description, Line-item Quantity and
Line-item Amount. Together with the background
class, this yields 9 classes and each character on
the invoice is associated to exactly one class. We
note that while header fields may only appear once
on an invoice (are unique), line-items may occur in
multiple instances.

To extract the values for each field, we collect
all characters that are classified as belonging to
the corresponding class. For line-items, we further
group the characters by the predicted item bound-
ing boxes.

4.1 Data

Our invoice dataset consists of 12k scanned sam-
ple invoices from a large variety of different ven-
dors and languages. We assign 10k samples for
training, 1k for validation and 1k for test on which
we report our results (see Sec. 5). We ensure that
vendors that appear in one set do not appear in
any other set. This is more restrictive than nec-
essary but gives a good estimate on how well the
model generalizes to unseen invoice layouts. Fig-
ure 3 shows the distribution over vendors and lan-
guages. From the vendor distribution, it can be
seen that most vendors contribute only one invoice
to the dataset with at most 6 invoices coming from
a single vendor. From the language distribution,

Figure 3: The left image shows a histogram of
number of vendors over the number of contribut-
ing invoices in the dataset. Most vendors appear
only once in the dataset. The right image shows a
distribution over languages, illustrating the diver-
sity of the invoice data.

it can be seen that while English is the predomi-
nant language, there are large representations from
French, Spanish, Norwegian, and German.

For all invoices, we collected manual annota-
tions with bounding boxes around the fields of in-
terest. Considerable efforts were spent to ensure
that the labels are correct. In particular, each in-
voice was analyzed by three annotators plus a re-
viewer. Over 35k invoices were investigated and
finally only clean set of 12k invoices were se-
lected. Furthermore, detailed instructions were
given to the annotators for each field. Figure 4
visualizes the locations of annotated boxes on in-
voices for Invoice Amount and Line-item Quan-
tity. It can be seen that while some regions are
denser, the occurrences are spread widely over the
whole invoice thereby illustrating the diversity in
the invoice format.

4.2 Implementation Details

The invoices were processed with an open-source
engine for OCR, Tesseract (v4), to extract the text
from the documents.

We limit the number of distinct characters in our
encoding E (in Eq. 1) to the most frequent ones,
which in our present case means NC = 54 differ-
ent characters including the background/padding
and unknown character. Thus, the 1-hot encoded
chargrid g̃ has 54 channels. Each page of an in-
voice is processed independently.

Once we created the chargrid representation of a
document page, we downsample to a fixed resolu-
tion using nearest neighbor interpolation to ensure
that all chargrid representations have the same res-
olution for training (and inference). Note that this
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downsampling operation is still performed in the
token space (i.e., before 1-hot encoding). To fur-
ther ensure that no tokens in the chargrid repre-
sentation are lost due to nearest neighbor interpo-
lation, we downsample to twice the target resolu-
tion. This resolution is determined by the smallest
characters in the training set. A second downsam-
pling step, now in the 1-hot encoding to the final
target resolution of 336x256 in our case, is per-
formed using bilinear interpolation and fed into
the network. Note that we could have also first
performed 1-hot encoding on the document and
applied bilinear interpolation directly to the target
resolution. Computationally, however, this two-
stage downsampling is more efficient.

We handle landscape documents by simply
squeezing all input pages into our target resolution
using interpolation (similar to image re-sizing).
We have found that this approach is not harmful
and for simplicity stick to it.

Line-items can occur in an unknown number of
distinct instances. Therefore, we require instance
segmentation of characters on the document. To
accomplish this, the model is trained to predict
bounding boxes that span across the entire row
of one instance of a line-item, while the segmen-
tation mask classifies those characters belonging
to given column classes (such as, e.g., Line-item
Quantity, or Line-item Description) of that line-
item instance.

We implemented our model in TensorFlow 1.4.
We use SGD with momentum β = 0.9 and learn-
ing rate α = 0.05. We used weight decay of
λ = 10−4, and spatial dropout with probability
P = 0.1. We perform random cropping of the
chargrid for data augmentation (that is we pad by
16 character pixels in each direction after down-
sampling and then crop with a random offset in
range (16, 16)).

We use aggressive class weighting in the cross-
entropy loss for semantic segmentation and for
the bounding box mask. We have found this
to be more effective than the focal loss (which
can bee seen as a form of dynamic class weight-
ing). We implement class weighting following
(Paszke et al., 2016) with a constant of c = 1.04.
In early stages of our experiments not yet using
class weights, we noted poor performance on the
bounding box regression task as well as the seg-
mentation task.

The distribution of line-items on invoices in

Figure 4: Spatial distribution of Invoice Amount
(left) and Line-item Quantity (right) over the in-
voice. This depicts the variation in the invoice lay-
outs contained in our dataset.

our dataset reveals that around 50% of all in-
voices only contain less than three line-items. We
found that repeating those invoices with more than
three line-items during training more often than
those with only few line-items significantly boosts
bounding box regression accuracy. With a mini
batch size of 7, each model took around 360k it-
erations and 3 days to fully converge on a single
Nvidia Tesla V100.

4.3 Evaluation Measure

For evaluating our model, we would like to mea-
sure how much work would be saved by using
the extraction system, compared to performing the
field extraction manually. To capture this, we use
a measure similar to the word error rate (Prab-
havalkar et al., 2017) used in speech recognition
or translation tasks.

For a given field, we count the number of in-
sertions, deletions, and modifications of the pre-
dicted instances (pooled across the entire test set)
to match the ground truth instances. Evaluations
are made on the string level. We compute this
measure as follows:

1− #[insertions] + #[deletions] + #[modifications]

N

whereN is the total number of instances occurring
in the ground truth of the entire test set. This mea-
sure can be negative, meaning that it would be less
work to perform the extraction manually. In our
present case, the error caused by the OCR engine
does not affect this measure, because the same er-
rors are present in the prediction and in the ground
truth and are not considered a mismatch.
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Figure 5: Sample invoices and their corresponding network predictions: the top row shows the chargrid
input, the bottom row shows the predicted segmentation mask with overlaid bounding box predictions.
Our model is able to handle a large diversity of layouts. The encoding of the characters on the chargrid
has been scrambled to preserve privacy.

5 Experiments and Results

Figure 5 shows some sample predictions. It can
be seen that the model can successfully extract
key-value information on sample invoices despite
significant diversity and complexity in the invoice
layouts.

We show the quantitative results in Table 1.
We compare the proposed model, chargrid-net
(Sec. 3.2), against four other models. The first one
is a sequential model based purely on text. It is
a stack of bi-directional GRUs (Cho et al., 2014)
taking a sequence of characters as input, and pro-
ducing a sequence of labels as output. This model
is our implementation of Palm et al. (2017) and
serves as a baseline comparison against a more tra-
ditional NLP approach which is based on sequen-
tial input. We note that we have also experimented
with a extension of this model that along with the
characters also takes as input the position of each
character on the document, however, with negli-
gible returns. Therefore, we stick to this simpler
model.

The second image-only model is identical to
chargrid-net (Figure 2), except that we directly
take the original image of the document page as
network input rather than the chargrid g̃. This
model serves as a baseline comparison to a purely
image-based approach using directly the raw pixel
information as input. We note that we downsam-
ple the image to the same input resolution as the
chargrid representation, that is 336x256.

The third and fourth models are both a hy-

brid between the chargrid-net, and the image-only
model. In both models, we replicate the encoder:
one encoder for the chargrid input g̃, and one en-
coder for the image of the document page. Infor-
mation from the two encoders is concatenated in
the decoder: whenever a lateral connection from
the encoder of the original chargrid-net is concate-
nated in a decoder block, we now concatenate lat-
eral connections from the two encoders in a de-
coder block.

We distinguish two configurations of the hybrid
model: model chargrid-hybrid-C64 where char-
grid and image encoders both have C = 64 base
channels, and model chargrid-hybrid-C32 where
chargrid and image encoders have C = 32 base
channels while the decoder still retains C = 64
base channels. The latter model is used to assess
the influence on the number of encoder parame-
ters since the hybrid model effectively has more
parameters due to the two encoders.

It can be seen that compared to the purely text-
based approach, the chargrid-net performs equiva-
lently on single-instance single-word fields where
the 2D structure is not as important. Examples
of single-instance, single-word fields are ’Invoice
Number’, ’Invoice Amount’, and ’Invoice Date’.
The extraction of these fields could essentially also
be easily tackled with named entity recognition
approaches based on serialized text (Gillick et al.,
2015; Lample et al., 2016).

The chargrid-net, however, significantly outper-



4466

Model/Field Invoice
Number

Invoice
Amount

Invoice
Date

Vendor
Name

Vendor
Address

Line-item
Description

Line-item
Quantity

Line-item
Amount

sequential 80.98% 79.13% 83.98% 28.97% 16.94% -0.01% -0.18% 0.22%
image-only 47.79% 68.91% 45.67% 19.68% 13.99% 49.50% 46.79% 63.49%
chargrid-net 80.48% 80.74% 83.78% 36.00% 39.13% 52.80% 65.20% 65.57%
chargrid-hybrid-C32 74.85% 77.93% 80.40% 32.00% 31.48% 46.27% 64.04% 63.25%
chargrid-hybrid-C64 82.49% 80.14% 84.28% 34.27% 36.83% 48.81% 64.59% 64.53%

Table 1: Accuracy measure (c.f. Sec. 4.3) for an 8-class information extraction problem on invoices. The
proposed chargrid models perform consistently well on all extracted fields compared to sequential and
image models.
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example 1 example 2 example 3

Figure 6: In example 1, chargrid-net attributes
unrelated rows of text to the line-item’s descrip-
tion. Moreover, some character-pixels are mis-
classified such that the predicted header field
above the line-item is incorrect. Thus, we ob-
serve errors in both, the segmentation mask and
the bounding box predictions. In example 2, the
model predicts the segmentation mask mostly cor-
rect, but it fails to predict boxes for two of the
four line-items. In example 3, the model fails to
separate adjacent multi-row line-items from each
other correctly. Please note that the ground truth
is debatable in some cases; for example, it may
be hard to decide which information belongs to a
line-item’s description and which does not.

forms the sequential model on multi-instance or
multi-word fields where 2D relationships between
text entities are important. Examples of such fields
are Line-item Description, Line-item Quantity and
Line-item Amount, which are all grouped as sub-
fields to a specific line-item. Each of those fields
may span a varying number of rows per line-item,
see Figure 5. The sequential model fails to cor-
rectly identify those line-item fields which is man-
ifested in a negative accuracy measure (Sec. 4.3).
This implies that it is better to perform manual
extraction over using automatic extraction. This
is understandable since the line-item fields have a
strong 2D structure that the sequential approach is
not designed to capture.

In comparison with the image-only model,
chargrid-net still performs much better. This is es-
pecially true for smaller fields which need to be
read to be accurately localized. On the other hand,
for larger fields like Line-item Description, which
can be localized by only vision, the gap is much
smaller.

The values for the hybrid models are a bit more
interesting. One could expect that combining two
complementary inputs such as the chargrid repre-
sentation and image - one capturing the content
and the other capturing, e.g. table delineations -
would boost the accuracy. It turns out, however,
that at least in the case of our invoice dataset, the
additional image encoder does not bring additional
benefits. Model chargrid-hybrid-C64, where the
chargrid encoder branch has the same number of
base channels C = 64 as the original chargrid-net,
is essentially as accurate as chargrid-net. Model
chargrid-hybrid-C32, where the image and char-
grid encoder combined have the same number of
channels (that is the chargrid encoder branch only
has C = 32 base channels), the accuracy is signif-
icantly reduced.

We conclude that at least in our present extrac-
tion problem, most of the discriminative informa-
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tion comes from the chargrid encoder branch and
thus from the chargrid representation.

Error examples of the chargrid-net model are
depicted in Figure 6. One frequent error-type is
that the model may fail to disentangle line-items,
if they have a peculiar structure. While this is also
challenging for human experts, other erroneous
predictions are observed in samples for which the
ground truth annotations are debatable.

6 Discussion

We introduce a new way of modeling documents
by using a character grid as document representa-
tion. The chargrid allows models to capture 2D re-
lationships between characters, words, and larger
units of text. The idea of the chargrid paradigm is
inspired by the human perception which is heav-
ily guided by 2D shapes and structures for under-
standing this type of documents. Therefore, the
chargrid allows to encode the positioning, size and
alignment for textual components in a meaningful
manner. While the chargrid paradigm could be ap-
plied to various kinds of NLP tasks, we demon-
strate its potential on an information extraction
task from invoices. We train a deep neural net-
work with an encoder-decoder architecture and we
show that the network computes accurate segmen-
tation masks and bounding boxes, which pinpoint
the relevant information on the invoice.

We evaluate the accuracy of the model and com-
pare it to state-of-the-art NLP and computer vi-
sion approaches. While those baseline models
achieve accurate predictions for individual fields,
only the chargrid performs well on all informa-
tion extraction tasks. Some fields such as Invoice
Number are relatively easy to detect for a model
that operates on serialized text, as discriminative
keywords are commonly preceding the words to
be extracted. However, more complex extraction
tasks (e.g. Vendor Address or Line-item Quantity)
cannot be performed accurately as they require to
exploit both, textual components and 2D layout
structures. The traditional image-only computer
vision model yields accurate predictions only for
large visual columns (such as Line-item Amount)
and it fails to locate extractions that require to un-
derstand the text.

However, compared to traditional sequential
neural NLP models, the benefits in accuracy come
at a larger computational cost compared. Even
though the proposed model is fully convolutional

and parallelizes very well on a single (or even mul-
tiple) GPU(s), the added complexity introduced by
using a 2D data representation can significantly in-
crease the total data dimensionality. In our cur-
rent use case, a chargrid-net training requires up
to three days until full convergence, whereas our
sequential model converges after only a few hours.

Comparing chargrid to semantic segmentation
on natural images, one should note that character-
pixels, unlike pixels of a gray-scale image, are cat-
egorical. This requires the character-pixels to be
encoded as 1-hot. This yields a highly sparse data
representation. While such representation is very
common for NLP problems, it is new for segmen-
tation networks that have previously only been ap-
plied to image segmentation.

7 Conclusion

Chargrid is a generic representation for 2D text.
Using this as a base, one could solve any task on a
2D text such as document classification, named-
entity recognition, information extraction, parts-
of-speech tagging etc. Furthermore,chargrid is
highly beneficial for scenarios where text and nat-
ural images are blended. One could imagine per-
forming all the above NLP tasks also on such in-
puts. This work demonstrates the advantages of
chargrid for an information extraction task but we
believe that it is only the first step towards in-
corporating the 2D document structure into doc-
ument understanding tasks. Some follow-up di-
rection could be solving other NLP tasks on struc-
tured documents using chargrid or experimenting
with other computer vision algorithms on char-
grid. Furthermore, it may be interesting to use
word embeddings rather than 1-hot encoded char-
acters, i.e. a wordgrid, as 2D text input representa-
tion.
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