
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4165–4176
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

4165

Frustratingly Easy Model Ensemble for Abstractive Summarization

Hayato Kobayashi
Yahoo Japan Corporation / RIKEN AIP

hakobaya@yahoo-corp.jp

Abstract

Ensemble methods, which combine multiple
models at decoding time, are now widely
known to be effective for text-generation tasks.
However, they generally increase computa-
tional costs, and thus, there have been many
studies on compressing or distilling ensemble
models. In this paper, we propose an alter-
native, simple but effective unsupervised en-
semble method, post-ensemble, that combines
multiple models by selecting a majority-like
output in post-processing. We theoretically
prove that our method is closely related to ker-
nel density estimation based on the von Mises-
Fisher kernel. Experimental results on a news-
headline-generation task show that the pro-
posed method performs better than the current
ensemble methods.

1 Introduction

Recent success in deep learning, especially
encoder-decoder models (Sutskever et al., 2014;
Bahdanau et al., 2015), has dramatically improved
the performance of various text-generation tasks,
such as translation (Johnson et al., 2017), summa-
rization (Ayana et al., 2017), question-answering
(Choi et al., 2017), and dialogue response genera-
tion (Dhingra et al., 2017). In these studies on neu-
ral text generation, it has been known that a model-
ensemble method, which predicts output text by
averaging multiple text-generation models at de-
coding time, is effective even for text-generation
tasks, and many state-of-the-art results have been
obtained with ensemble models. However, an en-
semble method has a clear drawback in that it in-
creases computational costs, i.e., the increase in
time as the number of models increases, since it
averages the word-prediction probabilities of all
models in each decoding step. Therefore, there
have been many studies on model compression or
distillation for ensemble methods, each of which

(a) Runtime-ensemble (b) Post-ensemble

Figure 1: Flow charts of current runtime-ensemble (a)
and our proposed post-ensemble (b).

has successfully shrunk an ensemble model (Hin-
ton et al., 2015; Chebotar and Waters, 2016; Kun-
coro et al., 2016; Kim and Rush, 2016; Stahlberg
and Byrne, 2017; Freitag et al., 2017).

In this paper, we propose an alternative method
for model ensemble inspired by the majority vote
in classification tasks (Littlestone and Warmuth,
1994). Majority vote is a method that selects
the most frequent label from the predicted labels
of multiple classifiers in post-processing. Simi-
larly, our method involves selecting a majority-
like output from the generated outputs of multi-
ple text-generation models in post-processing as
in Fig. 1(b), instead of averaging models at decod-
ing time as in Fig. 1(a). The difference between a
classification task and text-generation task is that
we need to consider a sequence of labels for each
model output in a text-generation task, although
we consider only one label in a classification task.
This means a majority output may not exist since
each output will be basically different from other
outputs, which are generated from different mod-
els. To overcome this problem, we propose an
unsupervised method for selecting a majority-like
output close to the other outputs by using cosine
similarity. The idea is quite simple, but experi-
ments showed that our method is more effective
than the current ensemble methods.

4166

Our work can open up a new direction for two
research communities: model ensemble and hy-
potheses reranking (see Sec. 6 for detailed descrip-
tions of the related studies). For the first, we sug-
gest a new category of ensemble algorithms that
corresponds to the output selection in classifica-
tion tasks. In classification tasks, there are roughly
three approaches for model ensemble: model se-
lection in preprocessing, model average at run-
time, and output selection in post-processing. In
text generation studies, model selection by cross-
validation and model average with an ensemble
decoder have been frequently used, but output se-
lection as typified by majority vote has received
less attention because of the fact that a majority
output may not exist, as described above. There-
fore, there is enough room to study this direction
in the future. Since our algorithm in this paper
is quite simple, we expect that more sophisticated
methods can improve the results even over our ap-
proach.

For the hypotheses reranking research commu-
nity, we suggest a new category of reranking tasks,
where we need to select the best output from the
generated outputs of multiple models, instead of
the N-best hypotheses of a single model. Hy-
potheses reranking for a text-generation model is
related to our task, but in this case, a reranking
method based on a language model is frequently
used and is basically enough to correct the scoring
of a beam search with a single model (Chen et al.,
2006; Vaswani et al., 2013; Luong and Popescu-
Belis, 2016) since the purpose is to obtain a flu-
ent output and remove erroneous outputs, assum-
ing the model can generate good outputs. A clear
difference between our task and the reranking task
is that we should consider all outputs to decide the
goodness of an output because a fluent output is
not always appropriate in this task. This is simi-
lar to extractive summarization (Erkan and Radev,
2004) but is significantly different from our task
in that our output candidates have almost the same
meaning.

Our contributions in this paper are as follows.

• We propose a simple, fast, and effective method
for unsupervised ensembles of text generation
models, where (i) the implementation is “frus-
tratingly easy” without any modification of
model code (Alg. 1), (ii) the computational time
is enough for practical use (Sec. 5.3), i.e., an
ensemble time of 3.7 ms per sentence against

a decoding time of 44 ms, and (iii) the perfor-
mance is competitive with the state-of-the-art
results (Sec. 5.2), i.e., our method (ensemble
of 32 models) for 37.52 ROUGE-1 against the
state-of-the-art method (single model) for 37.27
ROUGE-1 on a news-headline-generation task.
• We prove that our method is an approximation

of finding the maximum density point by ker-
nel density estimation based on the von Mises-
Fisher kernel (Sec. 4). In addition, we derive a
formula of the error bound of this approxima-
tion.
• We will release the 128 prepared models used in

this paper (Sec. 5.1), each of which was trained
for more than two days, as a new dataset to im-
prove ensemble methods.

2 Preliminaries

In Sec. 2.1, we briefly explain an encoder-decoder
model for text generation, and in Sec. 2.2, we dis-
cuss the current ensemble methods for combining
multiple text generation models at decoding time.

2.1 Encoder-Decoder Model

An encoder-decoder model is a conditional lan-
guage generation model, which can learn rules for
generating an appropriate output sequence corre-
sponding to an input sequence by using the statis-
tics of many correct pairs of input and output se-
quences, e.g., news articles and their headlines.
When training this model, we calculate a condi-
tional likelihood,

p(y | x) =
∏T−1
t=1 p(yt+1 | y≤t, x), (1)

with respect to each pair (x, y) of input sequence
x = x1 · · ·xS and output sequence y = y1 · · · yT ,
where y≤t = y1 · · · yt, and maximize its mean.
The model p(y | x) in Eq. (1) is achieved by com-
bining two recurrent neural networks, called an
encoder and decoder. The former reads an input
sequence x to recognize its content, and the latter
predicts an output sequence y corresponding to the
content.

After training, we can obtain an output y from
an input x by using a learned model p(y |
x). Since the calculation of an optimal output
is clearly intractable, most studies used a beam
search, which is a greedy search algorithm that
keeps a limited number of best partial solutions,
whose size is called the beam size. Formally, a set
of best partial solutions of beam size b at step t
is represented as Y b

≤t, which is recursively defined

4167

as the top b elements with respect to p(y≤t | x),
where y≤t ∈ Y b

≤t−1 × Y . The Y is a set of avail-
able elements for yi, or a target dictionary. Let
start and goal meta symbols be <s> and </s>, re-
spectively. A beam search procedure starts from
Y≤0 = {<s>} and finishes when the last symbols
of all elements in Y b

≤t are the goal element </s> or
when its length t becomes larger than some thresh-
old.

2.2 Runtime-Ensemble

In a text-generation task, model ensemble is a
method of predicting a next word by averaging
the word-prediction probabilities of multiple text-
generation models at decoding time. Fig. 1(a)
shows a flow chart of the current ensemble meth-
ods, which we call runtime-ensemble to distin-
guish them from our method. There are mainly
two variants of runtime-ensemble using arithmetic
mean pa and geometric mean pg, which are defined
as

pa(y≤t | x) = 1
|M |
∑

p∈M p(y≤t | x), (2)

pg(y≤t | x) =
(∏

p∈M p(y≤t | x)
) 1
|M|

, (3)

where M is a set of learned models. We call the
former EnsSum and the latter EnsMul. Although
there have been no comparative experiments,
EnsMul is usually used since most decoding pro-
grams keep log p and calculating

∑
p∈M log p is

enough to obtain the top b words with respect to
pg for a beam search procedure.

3 Post-Ensemble

Our alternative ensemble method combines mul-
tiple text-generation models by selecting a
majority-like output close to the other outputs,
which is calculated with a similarity function such
as cosine similarity. We call this method post-
ensemble since it is executed in post-processing,
i.e., after a decoding process. Fig. 1(b) shows a
flow chart of post-ensemble, and Alg. 1 shows its
algorithm. When our method receives an input x,
a normal decoder calculates the output s of each
model p from the input in parallel (lines 2–4), and
the output selector selects the majority-like output
y from all outputs (lines 6–9). In line 7, we cal-
culate the score c of each output s by using a sim-
ilarity function K, where K(s, s′) represents the
similarity between s and s′. A higher score means
that the output s is in a denser part in the output

Input: Input text x, set M of learned models, and
similarity function K, such as cos.

Output: Output prediction y.

1 S ← ∅;
2 foreach p ∈M do
3 s← output of model p for input x;
4 S ← S ∪ {s};
5 C ← {}; // as a hash map
6 foreach s ∈ S do
7 c← 1

|S|
∑

s′∈S K(s, s′);
8 C[s]← c;

9 y = argmaxs∈S C[s];
10 return y

Algorithm 1: Post-ensemble procedure.

space since the score c means the average similar-
ity in other outputs.

The post-ensemble procedure has two main
advantages compared with the current runtime-
ensemble procedure. One is that we do not need
to develop an ensemble decoder by modifying a
decoding program on a deep learning framework.
The concept of runtime-ensemble is simple, but
its implementation is not that simple in recent so-
phisticated open source software. For example, we
need to modify about 100 lines to add an ensemble
feature to the decoding program of an open source
neural machine translator, OpenNMT1, which re-
quires understanding the overall mechanism of the
software. The other advantage is that we can eas-
ily parallelize decoding processes in our method
since each output can be calculated by using a sin-
gle model. If we have a server program for text
generation, we can improve its performance with
all our machine resources (ideally) by assigning a
server to each model and allowing the output se-
lector to communicate with it.

One drawback of our method is that its expres-
sive power is basically the same as that of each
single model. However, this alternatively means
that the lower bound of the quality of each output
is guaranteed with the worst case of the outputs of
single models, while the current runtime-ensemble
method can perform worse than each single model
for the worst case input. Furthermore, experiments
showed our post-ensemble method is more effec-
tive than the current runtime-ensemble methods.

4 Theoretical Analysis

In this section, we prove that when K(s, s′) =
cos(s, s′), Alg. 1 is an approximation of find-

1https://github.com/OpenNMT/OpenNMT-py

4168

ing the maximum density point by kernel den-
sity estimation based on the von Mises-Fisher ker-
nel. First, we briefly explain kernel density es-
timation and how to apply it to our method in
Sec. 4.1. Then, we introduce the von Mises-Fisher
kernel used in this analysis and later experiments
in Sec. 4.2. Finally, we prove a theorem that guar-
antees the approximation error in Sec. 4.3.

4.1 Kernel Density Estimation

Kernel density estimation is a non-parametric
method for estimating the probability density
function of a random variable. Let (X1, · · · , Xn)
be an independent and identically distributed
(i.i.d.) sample that was drawn from a distribution
with an unknown density function f . The kernel
density estimator based on the sample is defined
as

f̃(X) = 1
n

∑n
i=1K(X,Xi). (4)

Using an appropriate kernel such as the Gaussian
kernel, this estimator f̃ converges to the true den-
sity f , and it can be proved that there is no non-
parametric estimator that converges faster than this
kernel density estimator (Wahba, 1975).

Here, let us consider our outputs (s1, · · · , sn),
which correspond to S in Alg. 1. They are gen-
erated from text generation models (p1, · · · , pn),
which correspond to M in Alg. 1. We assume that
these models are trained with randomly initialized
parameters (θ1, · · · , θn), each of which includes a
random seed for the optimizer, and the other set-
tings are deterministic. In this case, we can con-
struct a function F : P → O that maps the param-
eter space P onto the output space O. In other
words, if each parameter θi is an i.i.d. random
variable, the corresponding output si = F (θi) is
also an i.i.d. random variable. Therefore, Eq. (4)
can be directly used for line 7 in Alg. 1.

Our method can be regarded as a heuristic ap-
proach based on the characteristics of our encoder-
decoder model, where there are many local solu-
tions for optimization. We expect that our method
can be applied to other models on the basis of a
theoretical study (Kawaguchi, 2016), that showed
that deep neural networks can have many local op-
tima, but there are no poor local optima (formally,
every local minimum of deep neural networks is
a global minimum under a certain condition). We
do not consider this direction since theoretical jus-
tification is beyond our scope.

4.2 von Mises-Fisher Kernel

The von Mises-Fisher kernel (Hall et al., 1987) is
a natural extension of the Gaussian kernel to a unit
hypersphere. This kernel is especially useful for
directional or angular statistics, so it is expected
to be compatible with the cosine similarity fre-
quently used in natural language processing. The
definition is

Kvmf(s, s
′) = Cq(κ) exp(κ cos(s, s

′)), (5)

where κ is a smoothing factor called the concen-
tration parameter, and cos is a cosine similarity,
i.e., cos(s, s′) = s·s′

||s||2||s′||2 . Cq(κ) is the normal-
ization constant, which is defined as

Cq(κ) =
(
κ

q−1
2

)/(
(2π)

q+1
2 I q−1

2
(κ)
)
, (6)

where Iv is the modified Bessel function of the
first kind at order v, and q is the dimension of di-
rectional data (angular expression of data).

In the experiments described later, we im-
plemented Alg. 1 with this kernel by us-
ing the log-sum-exp trick (Nielsen and Sun,
2016) to avoid overflow/underflow problems since
argmax

∑
exp(x) = argmax log

∑
exp(x).

In addition, we used Garcia-Portugues’s rule
(Garcia-Portugues, 2013) to adjust the concentra-
tion parameter κ = ĥ−2, defined as

ĥ =

 4π
1
2 I q−1

2
(κ̃)2

κ̃
q+1
2

(
2qI q+1

2
(2κ̃)+(2+q)κ̃I q+3

2
(2κ̃)

)
n

 1
4+q

(7)

where κ̃ is an approximation of κ derived from the
maximum likelihood estimation (Sra, 2012), de-
fined as κ̃ = µ̃(q−µ̃)

1−µ̃2 , where µ̃ is the sample mean
of the directional data in a unit hypersphere.

4.3 Approximation Error Analysis

We prove an approximation error bound of Alg. 1
when K(s, s′) = cos(s, s′), as shown in the fol-
lowing theorem.

Theorem 1. The output y of Alg. 1 with
K(s, s′) = cos(s, s′) is equivalent to the maxi-
mization of the first order Taylor series approxi-
mation p̃ of the kernel density estimator p based
on the von Mises-Fisher kernel, i.e.,

p̃(y) = maxs∈S p̃(s), (8)

where the approximation error R∗ of the output y
with respect to the true density estimator p, i.e,.
R∗ = maxs∈S p(s)− p(y), is bounded by

R∗ ≤ Cq(κ)κ2 exp(κ)(σ2 + µ2), (9)

where µ = maxs∈S Es′ [cos(s, s′)], and σ2 =
maxs∈S Vs′ [cos(s, s′)].

4169

Proof sketch. Eq. (8) can be obtained by using
the first order Taylor series approximation at 0
of exp(x), i.e., exp(x) ≈ 1 + x, and the nature
of argmax, i,e., argmax(1 + κx) = argmaxx.
Eq. (9) can be derived by the Lagrange error bound
R̃(x) for exp(x) ≈ 1+ x, where x = κ cos(s, s′),
and −κ ≤ x ≤ κ, as

R̃(x) =
maxx′ exp(x

′)

2!
x2 ≤ exp(κ)

2
x2. (10)

See Appendix A for the complete proof.

This theorem implies that the approximation er-
ror becomes smaller as κ becomes smaller. Since
κ is the concentration parameter, the shape of the
density estimation will be smooth when κ is small,
while it will be a peak when κ is large. This means
that, when κ is large, the density estimation is al-
most the same as the majority vote. Therefore, we
can naturally choose a small value for κ for our
purpose. In fact, the concentration parameter was
set as κ = 0.69 by using Garcia-Portugues’s rule
in our experiments. The normalization constant
using κ was calculated as Cq(κ) = 0.14, and the
average values of µ and σ with respect to the set
S of output candidates were ES [σ] = 0.30 and
ES [µ] = 0.78, respectively. In this case, the theo-
retical average approximation error was calculated
as ES [R∗] ≤ 0.093 = 0.14×0.692×exp(0.69)×
(0.782 + 0.302). This is quite small in view of
the approximation error for a probability. In addi-
tion, the actual average approximation error can be
much smaller, and it was about 1.95× 10−7 in our
experiments. The accuracy defined by the rate at
which the approximate maximum is the true maxi-
mum, i.e., p(y) = maxs∈S p(s), was 96.36%. De-
tail on the settings of our experiments will be given
in the next section.

5 Experiments

We first explain the basic settings of our ex-
periments in Sec. 5.1 and report a comparative
experiment and analysis on the news-headline-
generation task in Sec. 5.2. Then, we discuss the
change in some of the settings to conduct an ex-
periment by changing the number of models and
the settings of model preparation in Sec. 5.3 and
Sec. 5.4, respectively.

5.1 Basic Settings
Dataset: We used a well-known dataset
Gigaword of a news-headline-generation task,
which was prepared by Rush et al. (2015). This

dataset has been extensively used in recent studies
on abstractive summarization (Takase et al., 2016;
Chopra et al., 2016; Kiyono et al., 2017; Zhou
et al., 2017; Suzuki and Nagata, 2017; Cao et al.,
2018). The Gigaword dataset was created from
the English Gigaword corpus2, in which the input
is the first sentence in a news article, and the
output is the headline of the article. The training,
validation, and test sets included 3.8M, 189K, and
2K sentences, respectively. The preprocessed data
are publicly available3. The dataset is also used to
train official pretrained models of OpenNMT4.
Model and Training: We basically used the de-
fault PyTorch implementation of OpenNMT5 on
June 11, 2017 throughout our experiments, but the
unidirectional long short-term memory (LSTM)
for the encoder was replaced with a bidirectional
one to obtain nearly state-of-the-art results. The
basic settings are as follows. Our model con-
sisted of a bidirectional LSTM for the encoder and
a stacked LSTM with input feeding for the de-
coder. These LSTMs had two layers with 500-
dimensional hidden layers whose dropout rates
were 0.3, and their input vectors were created by a
500-dimensional word-embedding layer.

The model was trained with a stochastic gra-
dient descent method with a learning rate of 1.0,
where the mini-batch size was set to 64. The
learning process ended in 13 epochs, decaying the
learning rate with a decay factor of 0.5 in each
epoch after 8 epochs. These training settings are
the same as the training of the official pretrained
models of OpenNMT, and we confirmed that these
settings performed better than training with Adam
(Kingma and Ba, 2014) in our preliminary experi-
ments. We prepared 10 learned models by random
initialization for the ensemble methods in our ex-
periments.
Decoding and Evaluation: When decoding input
sequences, we used a beam-search algorithm with
a beam width of 5. The maximum size of decoded
sequences was 100. The generated unknown token
<unk> was replaced by the source word with the
highest attention weight.

To evaluate decoded sequences, we calcu-
lated ROUGE-1, ROUGE-2, and ROUGE-L (Lin,
2004), mainly used in the headline-generation-
task (Rush et al., 2015). ROUGE-1 and ROUGE-

2https://catalog.ldc.upenn.edu/LDC2012T21
3https://github.com/harvardnlp/sent-summary
4http://opennmt.net/Models/
5SHA: c13a558767cbc19b612968eb4d01a1f26d5df688

4170

2 are the co-occurrence rates of unigrams and bi-
grams, respectively, between a generated headline
and its reference. ROUGE-L is the rate of the
longest common subsequence between them to the
reference length. We used a Python wrapper of
the ROUGE-1.5.5.pl script6 and took the average
value of 10 times, each of which used 10 models.
Compared Methods: We compared the follow-
ing methods. Single is a baseline with a single
model. EnsSum and EnsMul are strong baselines
with runtime-ensemble. MaxLik and MajVote

are weak baselines with naive post-processing.
LexRank and LMRank are simple unsupervised
methods from two other related tasks, extrac-
tive summarization and hypotheses reranking, re-
spectively. PostCosE and PostCosB are vari-
ants of the proposed method with post-ensemble.
PostVmfE and PostVmfB are true density estima-
tors corresponding to PostCosE and PostCosB,
respectively. Their descriptions are listed below in
detail.
• Single decodes an output by using the best sin-

gle model with respect to the word level accu-
racy on a validation set.
• EnsSum and EnsMul decode an output averag-

ing multiple models with Eq. (2) and Eq. (3),
respectively.
• MaxLik selects an output with the maximum

likelihood, which is calculated by the corre-
sponding model p in Alg. 1, from candidate out-
puts generated by multiple models.
• MajVote selects an output by major-

ity vote based on exact matching, i.e.,
y = argmaxs∈S |{s′ ∈ S | s = s′}|.
• LexRank selects an output with the LexRank al-

gorithm (Erkan and Radev, 2004). We used a
Python implementation7, where a graph is con-
structed on the basis of cosine similarities be-
tween the tf-idf vectors (without stop-words) of
candidate outputs. The idf weights are calcu-
lated from the training set.
• LMRank selects an output that maximizes

the likelihood of a (non-conditional) language
model pLM, i.e., y = argmaxs∈S pLM(s), as in
(Vaswani et al., 2013). We used the decoder
part of the encoder-decoder model described in
Sec. 5.1, which was trained with both source
and target sentences in the training set. This
allows this model to learn the fluency in both

6https://github.com/pltrdy/files2rouge
7https://github.com/wikibusiness/lexrank

normal and headline-like sentences.
• PostCosE and PostVmfE select an output on

the basis of Alg. 1 with the cosine similarity
i.e., K(s, s′) = cos(s, s′), and the von Mises-
Fisher kernel, i.e., K(s, s′) = Kvmf(s, s

′) in
Eq. (5), respectively. The feature of each out-
put is the average of pretrained 300-dimensional
word embeddings8.
• PostCosB and PostVmfB are variants of
PostCosE and PostVmfE with simple bag-of-
words features (sparse vectors), respectively.
In addition, we used the following measure-

ments for analysis. MaxRef represents the upper
bound for the performance of our method. Mean,
Max, and Min represent the performance statistics
of the single models.
• MaxRef selects the best output with respect to

ROUGE-1, which is calculated by using the ref-
erences in the test set.
• Mean, Max, and Min are the mean, maximum,

and minimum of the (non-ensemble) ROUGE-
1 values for the 10 models, respectively. The
difference between Single and Max is that the
former uses the validation set, while the latter
uses the test set.

5.2 Main Results

We conducted a comparative experiment on the
news-headline-generation task to verify the effec-
tiveness of our post-ensemble method compared
with the current runtime-ensemble methods.

Tab. 1 shows the experimental results for the
Gigaword dataset, including the results of our
method with 32 models and other previous results.
First of all, we can see that the variant of our
post-ensemble method, PostCosB, clearly out-
performed the runtime-ensemble methods (strong
baselines), EnsSum and EnsMul, and the other
baselines. The differences between our best
method PostCosB and the best baseline EnsSum

were all statistically significant on the basis of a
one-tailed, paired t-test (p < 0.05). Comparing
with the recent results of Cao et al. (2018) ob-
tained with open information extraction and de-
pendency parse technologies and the other pre-
vious results9, our method with 32 models also
performed better, although the algorithm of our

8https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

9We did not present the results of Raffel et al. (2017) since
Kiyono et al. (2017) pointed out that their settings are differ-
ent from the previous studies.

4171

0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.4

0.2

0.0

0.2

0.4

0 (63.16)
1 (66.67)

2 (66.67)
3 (55.56)

4 (40.00)

5 (55.56)
6 (55.56)

7 (33.33)

8 (35.29)

9 (31.58)

0.242

0.243

0.244

0.245

0.246

0.247

0: interpol asks members to devise rules for policing ...

1: interpol asks members to devise rules for policing
2: interpol asks members to devise rules for policing at ...

3: interpol asks members to devise rules on policing
4: interpol asks members to devise rules and procedures ...

5: interpol seeks rules for policing of global level

6: interpol seeks rules for policing at global level

7: interpol asks members to act against wanted fugitives

8: interpol asks members to help fight fugitives

9: interpol asks for legal status for red corner notices

Figure 2: Left scatter-plot shows two-dimensional visualization of outputs generated from 10 models on basis of
multi-dimensional scaling (Cox and Cox, 2008), and right list shows their contents. Each point in plot represents
sentence embedding of corresponding output, and label indicates model ID and ROUGE-1, i.e., “ID (ROUGE).”
Color intensity means score of kernel density estimation of PostCosE (see right color bar), and outputs are sorted
by scores. Reference and input are as follows. Each bold word in above list means co-occurrence with reference
below.
Reference: interpol asks world govts to make rules for global policing
Input: top interpol officers on wednesday asked its members to devise rules and procedures for policing at the
global level and providing legal status to red corner notices against wanted fugitives .

R-1 R-2 R-L
Single 35.57 17.47 33.19
EnsSum 36.55 18.48 34.24
EnsMul 36.47 18.35 34.16
MaxLik 35.04 17.37 32.80
MajVote 35.97 18.09 33.67
LexRank 36.03 17.64 33.60
LMRank 35.07 17.12 32.61
PostCosE 37.02 18.46 34.54
PostVmfE 37.06 18.53 34.60
PostCosB 37.05 18.59 34.61
PostVmfB 37.02 18.58 34.59
MaxRef∗ 45.40 24.61 42.09
Mean∗ 35.57 17.48 33.19
Max∗ 36.03 17.83 33.63
Min∗ 35.00 17.08 32.67
PostCosE (32 models) 37.52 18.55 34.86
PostCosB (32 models) 37.48 18.76 34.99
(Rush et al., 2015)] 31.00 12.65 28.34
(Takase et al., 2016)] 31.64 12.94 28.54
(Chopra et al., 2016)] 33.78 15.96 31.15
(Kiyono et al., 2017)] 35.79 17.84 33.34
(Zhou et al., 2017)] 36.15 17.54 33.63
(Suzuki and Nagata, 2017)] 36.30 17.31 33.88
(Cao et al., 2018)] 37.27 17.65 34.24

Table 1: F-measure ROUGE-1, ROUGE-2, and
ROUGE-L scores (%) for news-headline-generation
task. Bold and underlined scores represent best scores
for ensembles of 10 models and all methods excluding
measurements with “∗,” respectively. Results with “]”
are taken from corresponding papers.

method is quite simple. Note that our method
can be easily applied to their models to improve
their results. Looking at the row for MaxRef, the
results imply that our post-ensemble method still

has room for improvement without any changes
to model structure. Although we also conducted
an experiment by changing the settings of model
preparation, the results had a similar tendency to
those of the main results (see Sec. 5.4).

Fig. 2 illustrates how our method worked with
kernel density estimation (see the figure caption
for detailed descriptions). The left scatter-plot
shows a two-dimensional visualization of 10 out-
puts generated from the 10 models and the esti-
mated densities (represented by color intensity in
the right bar). Looking at the center part of the
plot, we can see that there are many good outputs
with high ROUGE-1 results (noted in brackets in
the plot) in the dense part. The right list shows the
corresponding outputs of the points in the left plot,
where these outputs are sorted by the estimated
density. The list shows that our method success-
fully obtained the majority-like output (model ID
of 0) in the dense part of the output space, although
there are no exact match outputs. Looking at the
bottom part of the list, we can see that our method
clearly eliminated unpromising outputs (model ID
of 7, 8, and 9) with less information, since they are
scattered.

5.3 Effect of Number of Models

We compared the effect of changing the number
of models on the performance of our best method
PostCosB and the best baseline EnsSum. We pre-

4172

21 22 23 24 25 26 27

35.5

36.0

36.5

37.0

37.5

PostCosB
PostVmfB
EnsSum
LexRank

Figure 3: F-measure ROUGE-1 performance (%) vs.
number of models for news-headline-generation task.
X-axis is log scale (21–27).

pared 128 models, in which each training took
more than two days. The ROUGE-1 performance
was measured by varying the number of models,
i.e., 2, 4, · · · , 128.

Fig. 3 shows the performance of our best
method PostCosB, the corresponding true esti-
mator PostVmfB, the best baseline EnsMul, and
the most widely-used baseline LexRank versus the
number of models. Note that we could not calcu-
late the results of EnsMul for more than 16 models
due to out of memory errors. The figure shows that
PostCosB performed better than EnsMul even for
these 16 models. We obtained a 37.48 ROUGE-
1 score with 32 models, which was better than
the state-of-the-art results in Tab. 1, but the per-
formance seems to be saturated with more than
32 models. Looking at PostCosB and PostVmfB,
we can see that the performances are almost the
same, which also supports our theoretical analysis
in Sec. 4. LexRank did not work well even though
the number of models was large.

The complexity of the post-ensemble procedure
in Alg. 1 isO(βν+δν2), where ν is the number of
models, δ is the dimension of the output space, and
β is the number of operations of the beam-search.
We can reduce it toO(β+δν) by simply paralleliz-
ing lines 2–4 and 6–8 in Alg. 1 without any change
to the model code on the deep learning framework.
Since the operations of β includes all matrix cal-
culations in the model, we can basically assume
β � δν. In fact, the actual calculation times of
PostCosE and PostCosB with a naive implemen-
tation in Python were 0.0097 and 0.0037 seconds
per sentence when ν = 32, respectively. They are
enough for practical use in comparison with the
decoding speeds of 0.044 (GPU) and 0.49 (CPU)
seconds per sentence. In addition, the complex-
ity of the runtime-ensemble is O(βν), which can-
not be parallelized without modifying more than a

Random Self Hetero Bagging
Single 35.57 35.34 35.67 34.87
EnsSum 36.55 35.46 36.42 36.25
EnsMul 36.47 35.22 36.49 35.80
MaxLik 35.04 34.21 34.86 34.95
MajVote 35.97 35.49 35.89 35.22
LexRank 36.03 33.57 35.91 35.72
LMRank 35.07 33.47 34.71 34.39
PostCosE 37.02 35.91 36.57 36.89
PostVmfE 37.06 35.72 36.69 36.84
PostCosB 37.05 35.74 36.76 36.78
PostVmfB 37.02 35.75 36.75 36.81
MaxRef∗ 45.40 43.37 45.32 46.44
Mean∗ 35.57 34.43 35.28 34.85
Max∗ 36.03 35.34 35.96 35.31
Min∗ 35.00 33.43 34.49 34.36

Table 2: F-measure ROUGE-1 scores (%) of random-
ensemble (Random), self-ensemble (Self), hetero-
ensemble (Hetero), and bagging-ensemble (Bagging)
for news-headline-generation task. Bold scores rep-
resent best scores for all methods excluding measure-
ments with “∗.”

hundred lines of code after understanding a whole
system.

5.4 Effect of Model Preparation
We conducted experiments to verify the effect of
changing the model preparation on post-ensemble
performance. In addition to random initializa-
tion (random-ensemble), we address three varia-
tions of model preparation: self-ensemble, hetero-
ensemble, and bagging-ensemble. The first one,
self-ensemble, is a method of extracting models
from “checkpoints” saved in each epoch in a train-
ing. We prepared the models of self-ensemble by
using 10 checkpoints from 4–13 epochs. The sec-
ond one, hetero-ensemble, is a method of train-
ing models varying in model structure. We pre-
pared 10 models for hetero-ensemble, consisting
of 8 models prepared by changing the number of
layers in the LSTM encoder/decoder in {2, 3},
the size of LSTM hidden states in {250, 500},
and the size of word embedding in {250, 500},
and two models prepared by replacing the bidi-
rectional encoder with a unidirectional encoder
and a bidirectional encoder with a different merge
action, i.e., summation instead of concatenation.
The third one, bagging-ensemble, is a method
of training models by bagging of training data.
We randomly extracted 80% of the training data
10 times and prepared 10 models for bagging-
ensemble. We used the same dictionary of the
original data for these models, since the runtime-
ensemble methods, EnsSum and EnsMul, failed
to average the models with different dictionaries.

4173

Note that the outputs for self-ensemble and hetero-
ensemble cannot be regarded as i.i.d samples, but
we believe the basic idea can be practically ap-
plied.

Tab. 2 shows the F-measure ROUGE-1 scores
for the Gigaword dataset of the above three vari-
ations, self-, hetero-, and bagging-ensembles, as
well as random-ensemble. The table indicates
that all variants of our post-ensemble method per-
formed better than the current runtime-ensemble
methods, EnsSum and EnsMul, for all variations
of model preparation. Looking at the row for
PostCosE, random-ensemble was the most effec-
tive, while self-ensemble was the worst, as ex-
pected. Bagging-ensemble was relatively effective
for post-ensemble according to the relative im-
provement from Single, despite the fact that we
trained the models with 80% of the training data.
Hetero-ensemble performed worse than random-
ensemble for these settings, but we expect that
if the model structure can be randomly chosen,
hetero-ensemble will perform better.

6 Related Work

Distillation techniques for an ensemble of mul-
tiple models have been widely studied (Kuncoro
et al., 2016; Chebotar and Waters, 2016; Kim and
Rush, 2016; Freitag et al., 2017; Stahlberg and
Byrne, 2017), especially after a study by Hinton
et al. (2015). Kuncoro et al. (2016) and Chebotar
and Waters (2016) studied distillation techniques
for ensembles of multiple dependency parsers and
speech recognition models, respectively. There are
several ensemble methods for ensembles of ma-
chine translation models (Kim and Rush, 2016;
Freitag et al., 2017; Stahlberg and Byrne, 2017).
For example, Stahlberg and Byrne (2017) pro-
posed a method of unfolding an ensemble of mul-
tiple translation models into a single large model
once and shrinking it down to a small one. How-
ever, all methods require extra implementation on
a deep-learning framework, and it is not easy to
apply them to other models. Our post-ensemble
method does not require such coding skills. In
addition, since the predictions of post-ensemble
can be regarded as a teacher model, these distilla-
tion techniques should be combined with a teacher
model based on post-ensemble.

Hypotheses reranking of language generation
has been extensively studied, but most studies fo-
cused on discriminative training using costly an-

notated data (Shen et al., 2004; White and Rajku-
mar, 2009; Duh et al., 2010; Kim and Mooney,
2013; Mizumoto and Matsumoto, 2016). The
main stream of our focused unsupervised ap-
proach was a reranking method based on a lan-
guage model (Chen et al., 2006; Vaswani et al.,
2013; Luong and Popescu-Belis, 2016), and other
approaches include reranking methods based on
key phrase extraction (Boudin and Morin, 2013),
dependency analysis (Hasan et al., 2010), and
search results (Peng et al., 2013). All of the
above described studies were not used for model
ensemble. Tomeh et al. (2013) used an ensem-
ble learning, but the purpose was to improve the
performance of the reranking model for hypothe-
ses reranking of a single model. Li et al. (2009),
which work is the most related one, proposed a
reranking algorithm for model ensemble. How-
ever, their method was constructed to perform at
decoding time, so it can be regarded as runtime-
ensemble.

The term “frustratingly easy” in this paper
is borrowed from “frustratingly easy” papers
(Daumé III, 2007; Daumé III et al., 2010; Tom-
masi and Caputo, 2013; Sun et al., 2016; Kim
et al., 2016).

7 Conclusion

We proposed a simple but effective model-
ensemble method, called post-ensemble, for
abstractive-summarization models, i.e., encoder-
decoder models. We verified the effectiveness of
our method on the news-headline-generation task.

We will release the 128 prepared models used in
this paper10, each of which was trained for more
than two days, as a new dataset for improving en-
semble methods. For example, future research in-
cludes applying learning-to-rank regarding all out-
puts as features, conducting active learning to se-
lect a new model setting online, and developing
boosting-like-ensemble based on the bagging of
training data.

Acknowledgments

The author would like to thank the anonymous re-
viewers of all versions of this paper for sparing
their valuable time and leaving many insightful
comments.

10https://research-lab.yahoo.co.jp/en/software/

4174

References
Ayana, Shi-Qi Shen, Yan-Kai Lin, Cun-Chao Tu,

Yu Zhao, Zhi-Yuan Liu, and Mao-Song Sun.
2017. Recent Advances on Neural Headline Gener-
ation. Journal of Computer Science and Technology,
32(4):768–784.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations (ICLR 2015).

Florian Boudin and Emmanuel Morin. 2013.
Keyphrase Extraction for N-best Reranking in
Multi-Sentence Compression. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT 2013),
pages 298–305. Association for Computational
Linguistics.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the Original: Fact Aware Neural Abstrac-
tive Summarization. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence
(AAAI 2018), pages 4784–4791. AAAI Press.

Yevgen Chebotar and Austin Waters. 2016. Distilling
Knowledge from Ensembles of Neural Networks for
Speech Recognition. In Interspeech 2016, 17th An-
nual Conference of the International Speech Com-
munication Association, pages 3439–3443.

Yi Chen, Ming Zhou, and Shilong Wang. 2006.
Reranking Answers for Definitional QA Using Lan-
guage Modeling. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the Association for Com-
putational Linguistics (COLING-ACL 2006), pages
1081–1088. Association for Computational Linguis-
tics.

Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia
Polosukhin, Alexandre Lacoste, and Jonathan Be-
rant. 2017. Coarse-to-Fine Question Answering for
Long Documents. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (ACL 2017), pages 209–220. Associa-
tion for Computational Linguistics.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive Sentence Summarization with At-
tentive Recurrent Neural Networks. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT 2016), pages 93–98. Association for Computa-
tional Linguistics.

Michael A. A. Cox and Trevor F. Cox. 2008. Multidi-
mensional Scaling. Springer Berlin Heidelberg.

Hal Daumé III. 2007. Frustratingly Easy Domain
Adaptation. In Proceedings of the 45th Annual

Meeting of the Association of Computational Lin-
guistics (ACL 2017), pages 256–263. Association
for Computational Linguistics.

Hal Daumé III, Abhishek Kumar, and Avishek Saha.
2010. Frustratingly Easy Semi-Supervised Domain
Adaptation. In Proceedings of the 2010 Workshop
on Domain Adaptation for Natural Language Pro-
cessing, pages 53–59. Association for Computa-
tional Linguistics.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2017.
Towards End-to-End Reinforcement Learning of Di-
alogue Agents for Information Access. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (ACL 2017), pages
484–495. Association for Computational Linguis-
tics.

Kevin Duh, Katsuhito Sudoh, Hajime Tsukada, Hideki
Isozaki, and Masaaki Nagata. 2010. N-best rerank-
ing by multitask learning. In Proceedings of the
Joint Fifth Workshop on Statistical Machine Trans-
lation and MetricsMATR, pages 375–383. Associa-
tion for Computational Linguistics.

Günes Erkan and Dragomir R. Radev. 2004. LexRank:
Graph-based Lexical Centrality As Salience in Text
Summarization. Journal of Artificial Intelligence
Research (JAIR), 22(1):457–479.

Markus Freitag, Yaser Al-Onaizan, and Baskaran
Sankaran. 2017. Ensemble Distillation for Neural
Machine Translation. CoRR, abs/1702.01802.

Eduardo Garcia-Portugues. 2013. Exact risk improve-
ment of bandwidth selectors for kernel density esti-
mation with directional data. Electronic Journal of
Statistics, 7:1655–1685.

Peter Hall, G. S. Watson, and Javier Cabrera. 1987.
Kernel Density Estimation with Spherical Data.
Biometrika, 74(4):751–762.

Sasa Hasan, Oliver Bender, and Hermann Ney. 2010.
Reranking Translation Hypotheses Using Structural
Properties. In Proceedings of the EACL’06 Work-
shop on Learning Structured Information in Natu-
ral Language Applications, pages 41–48. Associa-
tion for Computational Linguistics.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the Knowledge in a Neural Net-
work. CoRR, abs/1503.02531.

Melvin Johnson, Mike Schuster, Quoc Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernand a Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s Multilingual Neural Machine Translation
System: Enabling Zero-Shot Translation. Transac-
tions of the Association for Computational Linguis-
tics, 5:339–351.

4175

Kenji Kawaguchi. 2016. Deep Learning without Poor
Local Minima. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
29 (NIPS 2016), pages 586–594. Curran Associates,
Inc.

Joohyun Kim and Raymond Mooney. 2013. Adapting
Discriminative Reranking to Grounded Language
Learning. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2013), pages 218–227. Association for Com-
putational Linguistics.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
Level Knowledge Distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2016), pages 1317–
1327. Association for Computational Linguistics.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016. Frustratingly Easy Neural Domain Adap-
tation. In Proceedings of the 26th International
Conference on Computational Linguistics (COLING
2016), pages 387–396. The COLING 2016 Organiz-
ing Committee.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. CoRR,
abs/1412.6980.

Shun Kiyono, Sho Takase, Jun Suzuki, Naoaki
Okazaki, Kentaro Inui, and Masaaki Nagata. 2017.
Source-side Prediction for Neural Headline Genera-
tion . CoRR, abs/1712.08302.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an Ensemble of Greedy Dependency Parsers
into One MST Parser. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2016), pages 1744–
1753. Association for Computational Linguistics.

Mu Li, Nan Duan, Dongdong Zhang, Chi-Ho Li, and
Ming Zhou. 2009. Collaborative Decoding: Par-
tial Hypothesis Re-ranking Using Translation Con-
sensus between Decoders. In Proceedings of the
Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Confer-
ence on Natural Language Processing of the AFNLP
(ACL-IJCNLP 2009), pages 585–592. Association
for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Proceedings of
the ACL Workshop on Text Summarization Branches
Out.

Nick Littlestone and Manfred K. Warmuth. 1994. The
Weighted Majority Algorithm. Information and
Computation, 108(2):212–261.

Ngoc Quang Luong and Andrei Popescu-Belis. 2016.
A Contextual Language Model to Improve Machine
Translation of Pronouns by Re-ranking Translation

Hypotheses. Baltic Journal of Modern Computing,
4(2):292–304.

Tomoya Mizumoto and Yuji Matsumoto. 2016. Dis-
criminative reranking for grammatical error correc-
tion with statistical machine translation. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT 2016), pages 1133–1138. Association for Com-
putational Linguistics.

Frank Nielsen and Ke Sun. 2016. Guaranteed Bounds
on Information-Theoretic Measures of Univariate
Mixtures Using Piecewise Log-Sum-Exp Inequali-
ties. Entropy, 18(12).

F. Peng, S. Roy, B. Shahshahani, and F. Beaufays.
2013. Search results based N-best hypothesis
rescoring with maximum entropy classification. In
2013 IEEE Workshop on Automatic Speech Recog-
nition and Understanding, pages 422–427.

Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J.
Weiss, and Douglas Eck. 2017. Online and Linear-
Time Attention by Enforcing Monotonic Align-
ments. In Proceedings of the 34th International
Conference on Machine Learning (ICML 2017),
pages 2837–2846.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A Neural Attention Model for Abstrac-
tive Sentence Summarization. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2015), pages 379–
389. Association for Computational Linguistics.

Libin Shen, Anoop Sarkar, and Franz Josef Och.
2004. Discriminative Reranking for Machine Trans-
lation. In Human Language Technology Conference
of the North American Chapter of the Association
for Computational Linguistics (HLT-NAACL 2004),
pages 177–184. Association for Computational Lin-
guistics.

Suvrit Sra. 2012. A Short Note on Parameter Approx-
imation for Von Mises-Fisher Distributions: And
a Fast Implementation of I s (x). Computational
Statistics, 27(1):177–190.

Felix Stahlberg and Bill Byrne. 2017. Unfolding and
Shrinking Neural Machine Translation Ensembles.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2017), pages 1946–1956. Association for Computa-
tional Linguistics.

Baochen Sun, Jiashi Feng, and Kate Saenko. 2016.
Return of Frustratingly Easy Domain Adaptation.
In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (AAAI 2016), pages 2058–
2065. AAAI Press.

4176

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27 (NIPS 2014), pages 3104–3112. Cur-
ran Associates, Inc.

Jun Suzuki and Masaaki Nagata. 2017. Cutting-off re-
dundant repeating generations for neural abstractive
summarization. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL 2017), pages
291–297. Association for Computational Linguis-
tics.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hi-
rao, and Masaaki Nagata. 2016. Neural Headline
Generation on Abstract Meaning Representation. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2016), pages 1054–1059. Association for Computa-
tional Linguistics.

Nadi Tomeh, Nizar Habash, Ryan Roth, Noura Farra,
Pradeep Dasigi, and Mona Diab. 2013. Reranking
with Linguistic and Semantic Features for Arabic
Optical Character Recognition. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (ACL 2013), pages 549–555.
Association for Computational Linguistics.

Tatiana Tommasi and Barbara Caputo. 2013. Frustrat-
ingly Easy NBNN Domain Adaptation. In IEEE In-
ternational Conference on Computer Vision (ICCV
2013), pages 897–904.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and
David Chiang. 2013. Decoding with Large-Scale
Neural Language Models Improves Translation. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2013), pages 1387–1392. Association for Computa-
tional Linguistics.

Grace Wahba. 1975. Optimal Convergence Proper-
ties of Variable Knot, Kernel, and Orthogonal Se-
ries Methods for Density Estimation. The Annals of
Statistics, 3(1):15–29.

Michael White and Rajakrishnan Rajkumar. 2009. Per-
ceptron Reranking for CCG Realization. In Pro-
ceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2009), pages 410–419. Association for Computa-
tional Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou.
2017. Selective encoding for abstractive sentence
summarization. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2017), pages 1095–1104. Association
for Computational Linguistics.

