
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3729–3738
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

3729

Phrase-level Self-Attention Networks for Universal Sentence Encoding

Wei Wu†, Houfeng Wang†‡, Tianyu Liu† and Shuming Ma†

†MOE Key Lab of Computational Linguistics, Peking University, Beijing, 100871, China
‡Collaborative Innovation Center for Language Ability, Xuzhou, Jiangsu, 221009, China

{wu.wei,wanghf,tianyu0421,shumingma}@pku.edu.cn

Abstract

Universal sentence encoding is a hot topic in
recent NLP research. Attention mechanism
has been an integral part in many sentence en-
coding models, allowing the models to capture
context dependencies regardless of the dis-
tance between elements in the sequence. Fully
attention-based models have recently attracted
enormous interest due to their highly paral-
lelizable computation and significantly less
training time. However, the memory con-
sumption of their models grows quadratically
with sentence length, and the syntactic infor-
mation is neglected. To this end, we propose
Phrase-level Self-Attention Networks (PSAN)
that perform self-attention across words inside
a phrase to capture context dependencies at the
phrase level, and use the gated memory updat-
ing mechanism to refine each word’s represen-
tation hierarchically with longer-term context
dependencies captured in a larger phrase. As
a result, the memory consumption can be re-
duced because the self-attention is performed
at the phrase level instead of the sentence level.
At the same time, syntactic information can be
easily integrated in the model. Experiment re-
sults show that PSAN can achieve the state-of-
the-art transfer performance across a plethora
of NLP tasks including sentence classification,
natural language inference and sentence tex-
tual similarity.

1 Introduction

Following the success of word embeddings (Ben-
gio et al., 2003; Mikolov et al., 2013), one of
NLP’s next challenges has become the hunt for
universal sentence encoders. The goal is to learn
a general-purpose sentence encoding model on a
large corpus, which can be readily transferred to
other tasks. The learned sentence representations
are able to generalize to unseen combination of
words, which makes them highly desirable for

downstream NLP tasks, especially for those with
relatively small datasets.

Previous models for sentence encoding typi-
cally rely on Recurrent Neural Networks (RNNs)
(Hochreiter and Schmidhuber, 1997; Chung et al.,
2014) or Convolutional Neural Networks (CNNs)
(Kalchbrenner et al., 2014; dos Santos and Gatti,
2014; Kim, 2014; Mou et al., 2016) to pro-
duce context-aware representation. RNNs encode
a sentence by reading words in sequential or-
der, they are capable of learning long-term de-
pendencies but are hard to parallelize and not
time-efficient. CNNs focus on local or position-
invariant dependencies but do not perform well on
many tasks (Shen et al., 2017).

Fully attention-based neural networks have at-
tracted wide interest recently, because they can
model both dependencies while being more par-
allelizable and requiring significantly less time to
train. Vaswani et al. (2017) proposed the multi-
head attention to project a sentence to multiple
semantic subspaces, then apply self-attention in
each subspace and concatenate the attention re-
sults. Shen et al. (2017) proposed the directional
self-attention, they apply forward and backward
masks to the alignment score matrix to encode
temporal order information, and computed atten-
tion at feature level to select the features that can
best describe the word’s meaning in given context.
Effective as their models are, the memory required
to store the alignment scores of all the token pairs
grows quadratically with the sentence length. Fur-
thermore, the syntactic property that is intrinsic to
natural language is not considered at all.

Language is inherently tree structured, and the
meaning of a sentence comes largely from com-
posing the meanings of subtrees (Chomsky, 1957).
Previous syntactic tree-based sentence encoders
(Socher et al., 2013; Tai et al., 2015) mainly rely
on recursive networks. Although the composition-
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ality can be explicitly modeled, their models need
expensive recursion computation and are hard to
be trained by batched gradient descent methods.

In this paper, we propose the Phrase-level Self-
Attention Networks (PSAN), for RNN/CNN-free
sentence encoding, it inherits all the advantages of
fully attention-based models while requires much
less memory consumption. In addition, syntac-
tic information can be incorporated into the model
more easily. In our model, every sentence is split
into multiple phrases based on parse tree, self-
attention is performed at the phrase level instead
of the sentence level, thus the memory consump-
tion reduces rapidly as the number of phrases in-
creases. Furthermore, a gated memory component
is employed to refine word representations hierar-
chically by incorporating longer-term context de-
pendencies. As a result, syntactic information can
be integrated into the model without expensive re-
cursion computation. At last, multi-dimensional
attention is applied on the refined word represen-
tations to obtain the final sentence representation.

Following Conneau et al. (2017), we trained our
sentence encoder on the SNLI (Bowman et al.,
2015) dataset, and evaluate the quality of the
obtained universal sentence representations on a
wide range of transfer tasks. The SNLI dataset is
extremely suitable for training sentence encoders
because it is the largest high-quality human-
annotated dataset that involves reasoning about the
semantic relationships within sentences.

The main contributions of our work can be sum-
marized as follows:

• We propose the Phrase-level Self-Attention
mechanism (PSA) for contextualization. The
memory consumption can be reduced be-
cause self-attention is performed at the
phrase level instead of the sentence level.

• A gated memory updating mechanism is pro-
posed to refine each word representation hier-
archically by incorporating different levels of
contextual information along the parse tree.

• Our proposed PSAN model outperforms the
state-of-the-art supervised sentence encoders
on a wide range of transfer tasks with signif-
icantly less memory consumption.

2 Proposed Model

In this section, we introduce the Phrase-level Self-
Attention Networks (PSAN) for sentence encod-

ing. A phrase is a group of words that carry a
specific idiomatic meaning and function as a con-
stituent in the syntax of a sentence. Words in a
phrase are syntactically and semantically related
to each other. Therefore, it can be advantageous
to learn a context-aware representation inside a
phrase while filtering out information from outside
the phrase using self-attention mechanism. In an
attempt to better utilize the tree structure which is
intrinsic to language, we propose the gated mem-
ory updating mechanism to combine different lev-
els of context information. At last, an attention
mechanism is utilized to summarize all the token
representations into a fixed-length sentence vector.

2.1 Phrase Division

The phrase structure organizes words into nested
constituents which can be successively divided
into their parts as we move down the constituency-
based parse trees. One phrase division shows only
one aspect of context dependency. In order to
capture different levels of context dependencies,
we can split a sentence at different granularities.
The number of levels T is a hyper-parameter to be
tuned.

We can break down the nodes at T different lay-
ers in the parse tree to capture T levels of context
dependencies1, as illustrated in Figure 1.

2.2 Phrase-level Self-Attention

This is the core component of our model. It aims
to learn a context-aware representation for each to-
ken inside a phrase. In order to filter out informa-
tion that is semantically or syntactically distant,
self-attention is performed at the phrase level in-
stead of the sentence level.

Similar to directional self-attention network
(DiSAN) (Shen et al., 2017), Phrase-level Self-
Attention uses multi-dimensional attention to
compute the alignment score for each dimension
of token embedding. Therefore, it can select the
features that can best describe a word’s specific
meaning in any given context.

Given a phrase P ∈ Rl×d represented as a se-
quence of word embeddings [p1, . . . ,pl], where l
is the length of the phrase and d is the dimension
of word embedding representation, we first com-
pute the alignment score for each token pair in the

1To avoid the situation that the produced phrases are too
small, a phrase will not be further divided if its length is
smaller than 4.
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Figure 1: An example of phrase division, the sentence and its parse tree are from the SNLI training data.
The division is started from the root of a parse tree. In this example, a phrase will not be further divided
if it contains 3 or less words.

phrase:

aij = σ
(
W a1pi +W a2pj + b

a
)
+Mij

Mij =

{
0, i 6= j

−∞, i = j

(1)

where σ (·) is an activation function, W a1,W a2 ∈
Rd×d and ba ∈ Rd are parameters to be learned,
and M is a diagonal-diabled mask (Hu et al.,
2017) that aims to prevent a word from being
aligned with itself.

The output of the attention mechanism is a
weighted sum of embeddings from all tokens for
each token in the phrase:

p̃i =

l∑
j=1

[
exp (aij)∑l
k=1 exp (aik)

� pj

]
(2)

where � means point-wise product. Note that the
alignment score for each token pair is a vector
rather than a scalar in the multi-dimensional atten-
tion.

The final output of Phrase-level Self-Attention
is obtained by comparing each input representa-
tion with its attention-weighted counterpart. We
use a comparison function based on absolute dif-
ference and element-wise multiplication which
was similar to Wang and Jiang (2016). This com-
parison function has the advantage of measuring
the semantic similarity or relatedness of two se-
quences.

ci = σ (W c [|pi − p̃i| ;pi � p̃i] + bc) (3)

where W c ∈ Rd×2d and ba ∈ Rd are parameters
to be learned. ci is the representation for the i-th
word in the phrase that captures local dependen-
cies within the phrase.

At last, we put together the Phrase-level Self-
Attention results for non-overlapping phrases
from the same phrase division of a sentence.
For the t-th phrase division we can get C(t) =
[c1, . . . , cls ], the phrase-level self-attention results
for the sentence from the t-th layer split, where ls
is the sentence length.

2.3 Gated Memory Updating
Above describes the Phrase-level Self-Attention
(PSA) for one split of the parse tree. The parse
tree can be split at different granularities. We pro-
pose a novel gated memory updating mechanism
to refine each word representation hierarchically
with longer-term dependencies captured in a larger
granularity. Inspired by the idea of adaptive gate
in highway networks (Srivastava et al., 2015), our
memory mechanism add a gate to original memory
networks (Weston et al., 2014; Sukhbaatar et al.,
2015). This gate has the ability to determine the
importance of the new input and the original mem-
ory in the memory updating.

C(t) = PSA
(
M (t−1)

)
G(t) = sigmoid

(
W g

[
M (t−1);C(t)

]
+ bg

)
M (t) = G(t) � σ

(
Wm

[
M (t−1);C(t)

]
+ bm

)
(4)
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whereW g,Wm ∈ Rd×2d and bg, bm ∈ Rd are pa-
rameters to be learned. Note that in order to share
representation power and to reduce the number of
parameters, the parameters of gated memory up-
dating are shared among different layers.

2.4 Sentence Summarization
In this layer, self-attention mechanism is em-
ployed to summarize the refined representation of
a sentence into a fixed-length vector. The self-
attention mechanism can explore the dependencies
among tokens within the whole sentence. As a re-
sult, global dependencies can also be incorporated
in the model.

ei =W e2σ
(
W e1m

(T )
i + be1

)
+ be2

v =

l∑
i=1

[
exp (ei)∑l
j=1 exp (ej)

�m(T )
i

] (5)

where W g,Wm ∈ Rd×d and bg, bm ∈ Rd are
parameters to be learned. After this step, the
refined context-aware sentence representation is
compressed into a fixed-length vector.

3 Experiments

In this section, we conduct a plethora of exper-
iments to study the effectiveness of the PSAN
model. Following Conneau et al. (2017), we train
our sentence encoder using the SNLI dataset, and
evaluate it across a variety of NLP tasks including
sentence classification, natural language inference
and sentence textual similarity.

3.1 Model Configuration
300-dimensional GloVe (Pennington et al., 2014)
word embeddings (Common Crawl, uncased) are
used to represent words. Following Parikh et al.
(2016), out-of-vocabulary words are hashed to one
of 128 random embeddings initialized by uniform
distribution between (-0.05, 0.05). All the word
embeddings remain fixed during training. Hidden
dimension d is set to 300. All other parameters are
initialized with Glorot normal initialization (Glo-
rot and Bengio, 2010). Activation function σ (·) is
ELU (Clevert et al., 2015) if not specified. Mini-
batch size is set to 16. The number of levels T is
fixed to 3 in all of our experiments. The syntactic
parse trees of SNLI are provided within the cor-
pus. parse trees for all test corpus are produced by
the Stanford PCFG Parser 3.5.2 (Klein and Man-
ning, 2003), the same parser that produced parse
trees for the SNLI dataset.

To train the model, Adadelta optimizer (Zeiler,
2012) with a learning rate of 0.75 is used on
the SNLI dataset. The dropout (Srivastava et al.,
2014) rate and L2 regularization weight decay fac-
tor γ are set to 0.5 and 5e-5. To test the model,
the SentEval toolkit (Conneau and Kiela, 2018) is
used as the evaluation pipeline for fairer compari-
son.

3.2 Training Setting

Natural language inference (NLI) is a fundamental
task in the field of natural language processing that
involves reasoning about the semantic relationship
between two sentences, which makes it a suitable
task to train sentence encoding models.

We conduct experiments on the Stanford Nat-
ural Language Inference (SNLI) dataset (Bow-
man et al., 2015). The dataset has 570k
human-annotated sentence pairs, each labeled
with one of the following pre-defined relation-
ships: Entailment (the premise entails the hy-
pothesis), Contradiction (they contradict each
other) and Neutral (they are irrelevant). Fol-
lowing previous work (Bowman et al., 2015; Mou
et al., 2016), we remove the instances which an-
notators can not reach consensus on. In this
way we get 549367/9842/9824 sentence pairs for
train/validation/test set.

Following the siamese architecture (Bromley
et al., 1993), we apply PSAN to both the premise
and the hypothesis with their parameters tied. vp

and vh are fixed-length vector representations for
the premise and the hypothesis respectively. The
final sentence-pair representation is formed by
concatenating the original vectors with the ab-
solute difference and element-wise multiplication
between them:

vinp =
[
vp;vh;

∣∣∣vp − vh∣∣∣ ;vp � vh] (6)

At last, we feed the sentence-pair representation
vinp into a two layer feed-forward network and
use a softmax layer to make the classification.
This is the de facto scheme for sentence encoders
trained on SNLI. (Mou et al., 2016; Liu et al.,
2016; Shen et al., 2017)

3.3 Evaluation Setting

To show the modeling capacity and robustness of
our proposed model, we evaluate our model across
a wide range of tasks that can be solved purely
based on the encoded semantics. The set of tasks
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dataset size task output # phrases / sent. # words / phrase
1st 2nd 3rd 1st 2nd 3rd

MR 10662 sentiment 2 2.00 2.89 6.03 10.79 7.47 3.58
CR 3775 product reviews 2 1.99 3.22 6.02 10.11 6.25 3.34

MPQA 10606 opinion polarity 2 1.13 1.52 1.63 2.73 2.03 1.89
SUBJ 10000 subjectivity 2 1.98 3.29 4.51 5.61 3.40 2.48
SST2 70042 sentiment 2 1.95 3.35 5.03 5.53 3.22 2.15
SST5 11855 sentiment 5 2.00 3.53 6.10 10.08 5.71 3.31
TREC 5952 question type 6 2.00 3.73 5.59 5.03 2.98 1.99

SICK-E 9930 inference 3 1.93 3.40 4.92 5.01 2.85 1.97
SICK-R 9930 inference [0, 5] 1.93 3.40 4.92 5.01 2.85 1.97
STS14 4500 semantic similarity [0, 5] 1.96 3.58 5.12 5.34 2.92 2.04
MRPC 5803 paraphrase 2 1.99 3.31 4.55 5.59 3.37 2.65

Table 1: Statistics of the evaluation datasets. If the output is an integer, it represents the number of classes
of the classification task. If the output is an interval, it represents the output range of the regression task.
# phrases / sent. represents the average number of phrases per sentence for each layer of phrase division.
# words / phrase represents the average number of words per phrase for each layer of phrase division.

was selected based on what appears to be the com-
munity consensus regarding the appropriate eval-
uations for universal sentence representations. To
facilitate comparison, we use the same sentence
evaluation tool as Conneau et al. (2017) to auto-
mate evaluation on all the tasks mentioned in this
paper.

The transfer tasks used in evaluation can be
concluded in the following classes: sentence
classification (MR, CR, MPQA, SUBJ, SST2,
SST5, TREC), natural language inference (SICK-
E, SICK-R), semantic relatedness (STS14) and
paraphrase detection (MRPC). Table 1 presents
some statistics about the datasets 2.

3.4 Baselines
We compare our model with the following super-
vised sentence encoders:

• BiLSTM-Max (Conneau et al., 2017) is a
simple but effective baseline that performs
max-pooling over a bi-directional LSTM.

• AdaSent (Zhao et al., 2015) forms a hierar-
chy of representations from words to phrases
and then to sentences through recursive gated
local composition of adjacent segments.

• TBCNN (Mou et al., 2015) is a tree-based
CNN model where convolution is applied
over the parse tree.

2For further information on the datasets, please refer to
Conneau et al. (2017).

Model dim |θ| SNLI Micro Macro
BiLSTM-Max 4096 40M 84.5 85.2 83.7
AdaSent 4096 36M 83 .4 82.0 80.9
TBCNN 300 3.5M 82.1 81.1 79.3
DiSAN 600 2.4M 85.6 84.7 83.4
PSAN 300 2.0M 86.1 85.7 84.5

Table 2: Performance on SNLI and transfer tasks of
various sentence encoders. dim: the size of sen-
tence representation. |θ|: the number of param-
eters. Test accuracies on SNLI, micro and macro
averages of accuracies of dev set on transfer tasks
are chosen as evaluation metrics.

• DiSAN (Shen et al., 2017) is composed of a
directional self-attention block with temporal
order encoded, and a multi-dimensional at-
tention that compresses the sequence into a
vector representation.

4 Results and Analysis

4.1 Overall Performance

Experiment results of our model and four base-
lines are shown in Table 2. Micro and macro accu-
racies are two composite indicators for evaluating
transfer performance of tasks whose metric is clas-
sification accuracy. Macro accuracy is the propor-
tion of true results in the population of instances
from all tasks. Micro accuracy is the arithmetic
mean of dev accuracies for each task.

PSAN achieves the state-of-the-art performance
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Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
BiLSTM-max 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .68/.65
AdaSent 77.0 82.0 89.9 87.2 82.3 85.6 72.6/80.0 0.855 83.1 .66/.62
TBCNN 75.4 81.6 89.1 85.9 79.4 83.7 72.0/78.6 0.839 82.1 .64/.61
DiSAN 79.7 84.1 92.2 89.5 82.9 88.3 75.1/81.8 0.860 85.1 .66/.64
PSAN 80.0 84.2 91.9 89.9 83.8 89.1 74.9/82.1 0.891 86.9 .69/.67

Table 3: Transfer test results for our model and various baselines. Classification accuracy is chosen as
evaluation metric for datasets including MR, CR, SUBJ, MPQA, SST, TREC and SICK-E; Classification
accuracy and F1-score are chosen for MRPC; Pearson correlation is chosen for SICK-R; Pearson and
Spearman correlations are chosen for STS-14.

Model Acc(%)
(1) PSA on the first layer only 84.9
(2) PSA on the second layer only 85.3
(3) PSA on the third layer only 84.6
(4) w/o PSA 85.3
(5) w/o syntactic division 85.5
(6) w/o gated memory updating 85.2
(7) w/o both 84.7
(8) Full Model 86.1

Table 4: Ablation studies on the SNLI dataset.

with considerably fewer parameters, outperform-
ing a RNN-based model, a CNN-based model,
a fully attention-based model and a model that
utilize syntactic information. Especially when
compared with previous best model BiLSTM-Max,
PSAN can outperform their model with only 5%
of their parameter numbers, demonstrating the ef-
fectiveness of our model at extracting semantically
important information from a sentence.

In Table 3, we compare our model with baseline
sentence encoders in each transfer task. PSAN can
consistently outperform the baselines in almost ev-
ery task considered. On the SICK dataset, which
can be seen as an out-domain version of SNLI,
our model can outperform the baselines by a large
margin, demonstrating the semantic relationship
learned on the SNLI can be well transfered to other
domains. On the STS14 dataset, where sentence
vectors can be more directly measured by the co-
sine distance, our model can also achieve the state-
of-the-art performance, indicating that our learned
sentence representations are of high quality.

4.2 Ablation Study
For thorough comparison, we implement seven ex-
tra baselines to analyze the improvements con-

tributed by each part of our PSAN model:

• PSA on the first/second/third layer only
only uses the Phrase-level Self-Attention at
the first/second/third layer of phrase division.

• w/o PSA applies self-attention at the sen-
tence level and uses the gated memory updat-
ing mechanism to refine each token represen-
tation hierarchically.

• w/o syntactic division divides each sentence
equally into small blocks, and applies PSA
within each block. The number of blocks
equals the number of phrases in that layer.

• w/o gated memory updating concatenates
the outputs of Phrase-level Self-Attention
from three layers of phrase division and feeds
the result to a feed-forward layer.

• w/o both applies self-attention at the sen-
tence level, and uses sentence summarization
to summarize the attention results into a fixed
length vector.

The results are listed in Table 4. We can see that
(2) performs best among (1), (2) and (3), demon-
strating that the second layer split is more expres-
sive, because the number of words per phrase in
the second layer is the most suitable. It is neither
too small to capture context dependencies, nor too
large to filter out irrelevant noise. (8) outperforms
(1), (2) and (3), showing that combining phrase-
level information from different granularities can
further improve performance.

We also experiment on models where the align-
ment matrix is calculated at the sentence level or
at the syntactic-irrelevant block level. (5) per-
forms quite well, showing that hierarchical refine-
ment on smaller units can bring about reasonable
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Figure 2: Fine-grained classification accuracies for
PSAN and Sentence-level Self-Attention on the
SNLI dataset are compared on the left, how data
are distributed along sentence length is shown on
the right.

performance gain. (8) outperforms (4) and (5),
demonstrating syntactic information helps in sen-
tence representation.

When comparing (6) with (8), we can tell that
gated memory updating is a better method when
used to refine token representation along the parse
tree. We assume that memory updating resembles
the tree structure of language in that larger phrase
is composed in the knowledge of how smaller
phrases are composed inside it.

Comparing (7) with (1), (2) and (3), we can find
that performing self-attention at the phrase level
is generally better than at the sentence level, indi-
cating that reducing attention context into phrase
level can effectively filter out words that are syn-
tactically and semantically distant, thus focusing
on the interaction with important words. Compar-
ing (7) with (4), we can draw the conclusion that
memory updating is effective even when the inputs
to each layer are the same.

4.3 Analysis of Sentence Length

Long-term dependencies are typically hard to cap-
ture for sequential models like RNNs (Bengio
et al., 1994; Hochreiter and Schmidhuber, 1997).
We conduct experiments to see how performance
changes as the sentence length increases. In Fig-
ure 2, we show the relationship between classifi-
cation accuracy and the average length of sentence
pair on the SNLI dataset. Sentence-level Self-
Attention (w/o PSA model described in subsec-
tion 4.2) is used as a baseline for our model. PSAN

Model Memory(MB) Acc(%)
(1) Multi-head 1508 87.1
(2) DiSAN 2943 87.7
(3) PSAN 1192 89.1

Table 5: Memory consumption and test accuracy
of three fully attention-based models on the TREC
dataset.

outperforms Sentence-level Self-Attention model
consistently for longer sentences of length 14 to
20. This demonstrates that incorporating syntac-
tic information by performing self-attention at the
phrase level and refining each word’s representa-
tion hierarchically can help to capture long-term
dependencies across words in a sentence.

4.4 Analysis of Memory Consumption

We conduct experiments to analyze the memory
consumption reduction resulted from Phrase-level
Self-Attention. To this end, we re-implement two
fully attention-based models (Vaswani et al., 2017;
Shen et al., 2017) on the TREC dataset. To make
fair comparison, the dimensions of sentence vec-
tors are set to 300, the same number as our model.
Table 5 lists the results. Our PSAN model can out-
perform the other two fully attention-based mod-
els, while being more memory efficient. reducing
more than 20% of memory consumption.

4.5 Visualization and Case Study

In order to analyze the attention changing pro-
cess and the importance of each word in the sen-
tence vector, we visualize the attention scores
in the alignment matrix of each layer in Phrase-
level Self-Attention and sentence summarization
layer. To facilitate the visualization of the multi-
dimension attention vector, we use the l2 norm of
the attention vector for representation.

In Figure 3, we can see that, the difference in
attention weights between semantically important
and unimportant words gets larger as the context
becomes larger. This implies that token represen-
tation can be gradually refined by the gated mem-
ory updating mechanism. Furthermore, the align-
ment matrix of a phrase can be refined even if
the phrase division does not change between lay-
ers. For instance, the word “girl” gets larger at-
tention weight in the second layer division than in
the first layer. This demonstrates that the memory
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Figure 3: (a) / (b) / (c): attention weights of Phrase-level Self-Attention mechanism in the third / second
/ first layer phrase division; (d): attention weights of the sentence summarization layer.

updating mechanism can gradually pick out im-
portant words for sentence representation. Finally,
nouns and verbs dominate the attention weights,
while stop words like “a” and “its”, contribute lit-
tle to the final sentence representation, this indi-
cates that PSAN can effectively pick out semanti-
cally important words that are most representative
for the meaning of the whole sentence.

5 Related Work

Recently, self-attention mechanism has been suc-
cessfully applied to the field of sentence encod-
ing, it utilizes the attention mechanism to relate
elements at different positions from a single sen-
tence. Due to its direct access to each token repre-
sentation, both long-term and local dependencies
can be modeled flexibly. Liu et al. (2016) lever-
aged the average-pooled word representation to at-
tend words appear in the sentence itself. Cheng
et al. (2016) proposed the LSTMN model for ma-
chine reading, an attention vector is produced for
each of its hidden states during the recurrent itera-
tion, thus empowering the recurrent network with
stronger memorization capability and the ability to
discover relations among tokens. Lin et al. (2017)
obtained a fixed-size sentence embedding matrix
by introducing self-attention. Different from the
feature-level attention used in our model, their at-
tention mechanism extracted different aspects of
the sentence into multiple vector representations,
and utilized a penalization term to encourage the
diversity of different attention results.

Syntactic information can be useful for under-
standing a natural language sentence. Many pre-
vious researches utilized syntactic information to
build sentence encoder from composing the mean-

ings of subtrees. Tree-LSTM (Tai et al., 2015;
Zhu et al., 2015) composed its hidden state from
an input vector and the hidden states of arbitrar-
ily many child units. In Tree-based CNN (Mou
et al., 2015, 2016), a set of subtree feature detec-
tors slide over the parse tree of a sentence, and a
max-pooling layer is utilized to aggregate infor-
mation along different parts of the tree.

Apart from the models that use parse infor-
mation, there have been several researches that
aimed to learn the hierarchical latent structure of
text by recursively composing words into sen-
tence representation. Among them, neural tree in-
dexer (Munkhdalai and Yu, 2017b) utilized LSTM
or attentive node composition function to con-
struct full n-ary tree for input text. Gumbel Tree-
LSTM (Choi et al., 2018) used Straight-Through
Gumbel-Softmax estimator to decide the parent
node among candidates dynamically. A major
drawback of these models is that the recursion
computation can be expensive and hard to be pro-
cessed in batches.

6 Conclusion

We propose the Phrase-level Self-Attention Net-
works (PSAN), a fully attention-based model that
can utilize syntactic information for universal sen-
tence encoding. By applying self-attention at the
phrase level, we can filter out distant and unrelated
words and focus on modeling interaction between
semantically and syntactically important words, a
gated memory updating mechanism is utilized to
incorporate different levels of contextual informa-
tion along the parse tree. Empirical results on a
wide range of transfer tasks demonstrate the effec-
tiveness of our model.



3737

Acknowledgments

Our work is supported by National Natu-
ral Science Foundation of China under Grant
No.61433015 and the National Key Research
and Development Program of China under Grant
No.2017YFB1002101. The corresponding au-
thors of this paper are Houfeng Wang.

References
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