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Abstract
In natural language processing, a lot of the
tasks are successfully solved with recurrent
neural networks, but such models have a huge
number of parameters. The majority of these
parameters are often concentrated in the em-
bedding layer, which size grows proportion-
ally to the vocabulary length. We propose
a Bayesian sparsification technique for RNNs
which allows compressing the RNN dozens
or hundreds of times without time-consuming
hyperparameters tuning. We also generalize
the model for vocabulary sparsification to filter
out unnecessary words and compress the RNN
even further. We show that the choice of the
kept words is interpretable.

1 Introduction

Recurrent neural networks (RNNs) are among the
most powerful models for natural language pro-
cessing, speech recognition, question-answering
systems (Chan et al., 2016; Ha et al., 2017; Wu
et al., 2016; Ren et al., 2015). For complex tasks
such as machine translation (Wu et al., 2016) mod-
ern RNN architectures incorporate a huge number
of parameters. To use these models on portable de-
vices with limited memory the model compression
is desired.

There are a lot of RNNs compression meth-
ods based on specific weight matrix representa-
tions (Tjandra et al., 2017; Le et al., 2015) or
sparsification (Narang et al., 2017; Wen et al.,
2018). In this paper we focus on RNNs compres-
sion via sparsification. One way to sparsify RNN
is pruning where the weights with a small abso-
lute value are eliminated from the model. Such
methods are heuristic and require time-consuming
hyperparameters tuning. There is another group
of sparsification techniques based on Bayesian ap-
proach. Molchanov et al. (2017) describe a model
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called SparseVD in which parameters controlling
sparsity are tuned automatically during neural net-
work training. However, this technique was not
previously investigated for RNNs. In this pa-
per, we apply Sparse VD to RNNs taking into
account the specifics of recurrent network struc-
ture (Section 3.2). More precisely, we use the in-
sight about using the same sample of weights for
all timesteps in the sequence (Gal and Ghahra-
mani, 2016; Fortunato et al., 2017). This modifica-
tion makes local reparametrization trick (Kingma
et al., 2015; Molchanov et al., 2017) not applicable
and changes SparseVD training procedure.

In natural language processing tasks the ma-
jority of weights in RNNs are often concentrated
in the first layer that is connected to the vocabu-
lary, for example in embedding layer. However,
for some tasks the most of the words are unnec-
essary for accurate predictions. In our model we
introduce multiplicative weights for the words to
perform vocabulary sparsification (Section 3.3).
These multiplicative weights are zeroing out dur-
ing training causing filtering corresponding unnec-
essary words out of the model. It allows to boost
RNN sparsification level even further.

To sum up, our contributions are as follows:
(i) we adapt SparseVD to RNNs explaining the
specifics of the resulting model and (ii) we gen-
eralize this model by introducing multiplicative
weights for words to purposefully sparsify the vo-
cabulary. Our results show that Sparse Variational
Dropout leads to a very high level of sparsity in re-
current models without a significant quality drop.
Models with additional vocabulary sparsification
boost compression rate on text classification tasks
but do not help that much on language model-
ing tasks. In classification tasks the vocabulary
is compressed dozens of times, and the choice of
words is interpretable.
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2 Related work

Reducing RNN size is an important and rapidly
developing area of research. There are three re-
search directions: approximation of weight ma-
tries (Tjandra et al., 2017; Le et al., 2015), re-
ducing the precision of the weights (Hubara et al.,
2016) and sparsification of the weight matri-
ces (Narang et al., 2017; Wen et al., 2018). We
focus on the last one. The most popular approach
here is pruning: the weights of the RNN are cut off
on some threshold. Narang et al. (2017) choose
threshold using several hyperparameters that con-
trol the frequency, the rate and the duration of the
weights eliminating. Wen et al. (2018) propose
to prune the weights in LSTM by groups corre-
sponding to each neuron, this allows to accelerate
forward pass through the network.

Another group of sparsification methods relies
on Bayesian neural networks (Molchanov et al.,
2017; Neklyudov et al., 2017; Louizos et al.,
2017). In Bayesian NNs the weights are treated
as random variables, and our desire about sparse
weights is expressed in a prior distribution over
them. During training, the prior distribution is
transformed into the posterior distribution over
the weights, used to make predictions on test-
ing phase. Neklyudov et al. (2017) and Louizos
et al. (2017) also introduce group Bayesian sparsi-
fication techniques that allow to eliminate neurons
from the model.

The main advantage of the Bayesian sparsifica-
tion techniques is that they have a small number
of hyperparameters compared to pruning-based
methods. Also, they lead to a higher sparsity
level (Molchanov et al., 2017; Neklyudov et al.,
2017; Louizos et al., 2017).

There are several works on Bayesian recurrent
neural networks (Gal and Ghahramani, 2016; For-
tunato et al., 2017), but these methods are hard
to extend to achieve sparsification. We apply
sparse variational dropout to RNNs taking into ac-
count its recurrent specifics, including some in-
sights highlighted by Gal and Ghahramani (2016),
Fortunato et al. (2017).

3 Proposed method

3.1 Notations

In the rest of the paper x = [x0, . . . , xT ] is an in-
put sequence, y is a true output and ŷ is an out-
put predicted by the RNN (y and ŷ may be single

vectors, sequences, etc.), X,Y denotes a training
set {(x1, y1), . . . , (xN , yN )}. All weights of the
RNN except biases are denoted by ω, while a sin-
gle weight (an element of any weight matrix) is
denoted bywij . Note that we detach biases and de-
note them by B because we do not sparsify them.

For definiteness, we will illustrate our model on
an example architecture for the language modeling
task, where y = [x1, . . . , xT ]:

embedding : x̃t = wext ;

recurrent : ht+1 = σ(W hht +W xx̃t+1 + br);

fully-connected : ŷt = softmax(W dht + bd).

In this example ω = {W e,W x,W h,W d} ,
B = {br, bd}. However, the model may be di-
rectly applied to any recurrent architecture.

3.2 Sparse variational dropout for RNNs
Following Kingma et al. (2015), Molchanov
et al. (2017), we put a fully-factorized log-uniform
prior over the weights:

p(ω) =
∏
wij∈ω

p(wij), p(wij) ∝
1

|wij |

and approximate the posterior with a fully factor-
ized normal distribution:

q(w|θ, σ) =
∏
wij∈ω

N
(
wij |θij , σ2ij

)
.

The task of posterior approximation
minθ,σ,BKL(q(ω|θ, σ)||p(ω|X,Y,B)) is
equivalent to variational lower bound opti-
mization (Molchanov et al., 2017):

−
N∑
i=1

∫
q(ω|θ, σ) log p(yi|xi0, . . . , xiT , ω,B)dω+

+
∑
wij∈ω

KL(q(wij |θij , σij)||p(wij))→ min
θ,σ,B

.

(1)

Here the first term, a task-specific loss, is ap-
proximated with one sample from q(ω|θ, σ). The
second term is a regularizer that moves posterior
closer to prior and induces sparsity. This regu-
larizer can be very closely approximated analyti-
cally (Molchanov et al., 2017):

KL(q(wij |θij , σij)||p(wij)) ≈ k
(
σ2ij
θ2ij

)
, (2)
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k(α) ≈ 0.64σ(1.87 + 1.49 logα)− 1

2
log

(
1 +

1

α

)
.

To make integral estimation unbiased, sampling
from the posterior is performed with the use of
reparametrization trick (Kingma and Welling,
2014):

wij = θij + σijεij , εij ∼ N (εij |0, 1) (3)

The important difference of RNNs compared
to feed-forward networks consists in sharing the
same weight variable between different timesteps.
Thus, we should use the same sample of weights
for each timestep t while computing the like-
lihood p(yi|xi0, . . . , xiT , ω,B) (Gal and Ghahra-
mani, 2016; Fortunato et al., 2017).

Kingma et al. (2015), Molchanov et al. (2017)
also use local reparametrization trick (LRT) that
is sampling preactivation instead of individual
weights. For example,

(W xxt)i =
∑
j

θxijxtj + εi
∑
j

(σxij)
2x2tj .

Tied weight sampling makes LRT not applicable
to weight matrices that are used in more than one
timestep in the RNN.

For the hidden-to-hidden matrix W h the linear
combination (W hht) is not normally distributed
because ht depends on W h from the previous
timestep. As a result, the rule about the sum of in-
dependent normal distributions with constant co-
efficients is not applicable. In practice, network
with LRT on hidden-to-hidden weights cannot be
trained properly.

For the input-to-hidden matrix W x the lin-
ear combination (W xxt) is normally distributed.
However, sampling the same W x for all timesteps
and sampling the same noise εi for preactivations
for all timesteps are not equivalent. The same
sample of W x corresponds to different samples of
noise εi at different timesteps because of the differ-
ent xt. Hence theoretically LRT is not applicable
here. In practice, networks with LRT on input-to-
hidden weights may give the same results and in
some experiments, they even converge a little bit
faster.

Since the training procedure is effective only
with 2D noise tensor, we propose to sample the
noise on the weights per mini-batch, not per indi-
vidual object.

To sum up, the training procedure is as fol-
lows. To perform forward pass for a mini-batch,

we firstly sample all weights ω following (3) and
then apply RNN as usual. Then the gradients of (1)
are computed w.r.t θ, log σ,B.

During the testing stage, we use the mean
weights θ (Molchanov et al., 2017). Regular-
izer (2) causes the majority of θ components ap-
proach 0, and the weights are sparsified. More
precisely, we eliminate weights with low signal-

to-noise ratio
θ2ij
σ2
ij
< τ (Molchanov et al., 2017).

3.3 Multiplicative weights for vocabulary
sparsification

One of the advantages of Bayesian sparsification is
an easy generalization for the sparsification of any
groups of the weights that doesn’t complicate the
training procedure (Louizos et al., 2017). To do so,
one should introduce shared multiplicative weight
per each group, and elimination of this multiplica-
tive weight will mean the elimination of the cor-
responding group. In our work we utilize this ap-
proach to achieve vocabulary sparsification.

Precisely, we introduce multiplicative proba-
bilistic weights z ∈ RV for words in the vocab-
ulary (here V is the size of the vocabulary). The
forward pass with z looks as follows:

1. sample vector zi from the current approxima-
tion of the posterior for each input sequence
xi from the mini-batch;

2. multiply each one-hot encoded token xit from
the sequence xi by zi (here both xit and zi are
V -dimensional);

3. continue the forward pass as usual.

We work with z in the same way as with other
weights W : we use a log-uniform prior and ap-
proximate the posterior with a fully-factorized
normal distribution with trainable mean and vari-
ance. However, since z is a one-dimensional vec-
tor, we can sample it individually for each object
in a mini-batch to reduce the variance of the gradi-
ents. After training, we prune elements of z with a
low signal-to-noise ratio and subsequently, we do
not use the corresponding words from the vocab-
ulary and drop columns of weights from the em-
bedding or input-to-hidden weight matrices.

4 Experiments

We perform experiments with LSTM architecture
on two types of problems: text classification and
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language modeling. Three models are compared
here: baseline model without any regularization,
SparseVD model and SparseVD model with mul-
tiplicative weights for vocabulary sparsification
(SparseVD-Voc).

To measure the sparsity level of our models
we calculate the compression rate of individual
weights as follows: |w|/|w 6= 0|. The sparsifica-
tion of weights may lead not only to the compres-
sion but also to the acceleration of RNNs through
group sparsity. Hence, we report the number of re-
maining neurons in all layers: input (vocabulary),
embedding and recurrent. To compute this number
for vocabulary layer in SparseVD-Voc we use in-
troduced variables zv. For all other layers in Spar-
seVD and SparseVD-Voc, we drop a neuron if all
weights connected to this neuron are eliminated.

We optimize our networks using
Adam (Kingma and Ba, 2015). Baseline networks
overfit for all our tasks, therefore, we present
results for them with early stopping. For all
weights that we sparsify, we initialize log σ with
-3. We eliminate weights with signal-to-noise
ratio less then τ = 0.05. More details about
experiment setup are presented in Appendix A.

4.1 Text Classification

We evaluated our approach on two stan-
dard datasets for text classification: IMDb
dataset (Maas et al., 2011) for binary classifica-
tion and AGNews dataset (Zhang et al., 2015)
for four-class classification. We set aside 15%
and 5% of training data for validation purposes
respectively. For both datasets, we use the
vocabulary of 20,000 most frequent words.

We use networks with one embedding layer
of 300 units, one LSTM layer of 128 / 512
hidden units for IMDb / AGNews, and finally,
a fully connected layer applied to the last out-
put of the LSTM. Embedding layer is initial-
ized with word2vec (Mikolov et al., 2013) /
GloVe (Pennington et al., 2014) and SparseVD
and SparseVD-Voc models are trained for 800 /
150 epochs on IMDb / AGNews.

The results are shown in Table 1. SparseVD
leads to a very high compression rate without a
significant quality drop. SparseVD-Voc boosts the
compression rate even further while still preserv-
ing the accuracy. Such high compression rates are
achieved mostly because of the sparsification of
the vocabulary: to classify texts we need to read

only some important words from them. The re-
maining words in our models are mostly inter-
pretable for the task (see Appendix B for the list
of remaining words for IMBb). Figure 1 shows
the only kept embedding component for remain-
ing words on IMDb. This component reflects the
sentiment score of the words.
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Figure 1: IMDB: remained embedding component vs
sentiment score ((#pos. - #neg.) / #all texts with the
word).

4.2 Language Modeling
We evaluate our models on the task of character-
level and word-level language modeling on the
Penn Treebank corpus (Marcus et al., 1993) ac-
cording to the train/valid/test partition of Mikolov
et al. (2011). The dataset has a vocabulary of 50
characters or 10,000 words.

To solve character / word-level tasks we use net-
works with one LSTM layer of 1000 / 256 hidden
units and fully-connected layer with softmax acti-
vation to predict next character or word. We train
SparseVD and SparseVD-Voc models for 250 /
150 epochs on character-level / word-level tasks.

The results are shown in Table 2. To obtain
these results we employ LRT on the last fully-
connected layer. In our experiments with lan-
guage modeling LRT on the last layer acceler-
ate the training without harming the final result.
Here we do not get such extreme compression
rates as in the previous experiment but still, we are
able to compress the models several times while
achieving better quality w.r.t. the baseline because
of the regularization effect of SparseVD. Vocab-
ulary is not sparsified in the character-level task
because there are only 50 characters and all of
them matter. In the word-level task more than a
half of the words are dropped. However, since
in language modeling almost all words are impor-
tant, the sparsification of the vocabulary makes the
task more difficult to the network and leads to the
drop in quality and the overall compression (net-
work needs more difficult dynamic in the recurrent
layer).
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Task Method Accuracy % Compression Vocabulary Neurons x̃ - h
Original 84.1 1x 20000 300− 128

IMDb SparseVD 85.1 1135x 4611 16− 17
SparseVD-Voc 83.6 12985x 292 1− 8

Original 90.6 1x 20000 300− 512
AGNews SparseVD 88.8 322x 5727 179− 56

SparseVD-Voc 89.2 469x 2444 127− 32

Table 1: Results on text classification tasks. Compression is equal to |w|/|w 6= 0|. In last two columns number of
remaining neurons in the input, embedding and recurrent layers are reported.

Task Method Valid Test Compression Vocabulary Neurons h
Original 1.498 1.454 1x 50 1000

Char PTB SparseVD 1.472 1.429 4.2x 50 431
Bits-per-char SparseVD-Voc 1.4584 1.4165 3.53x 48 510

Original 135.6 129.5 1x 10000 256
Word PTB SparseVD 115.0 109.0 14.0x 9985 153
Perplexity SparseVD-Voc 126.3 120.6 11.1x 4353 207

Table 2: Results on language modeling tasks. Compression is equal to |w|/|w 6= 0|. In last two columns number
of remaining neurons in input and recurrent layers are reported.
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