
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2742–2753
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

2742

Syntax Encoding with Application in Authorship Attribution

Richong Zhang
Beihang University, Beijing, China
zhangrc@act.buaa.edu.cn

Zhiyuan Hu
Beijing University of Chemical Technology

zhiyuan.hu.bj@gmail.com

Hongyu Guo
National Research Council Canada
hongyu.guo@nrc-cnrc.gc.ca

Yongyi Mao
University of Ottawa, Ottawa, Ontario

ymao@uottawa.ca

Abstract

We propose a novel strategy to encode the
syntax parse tree of sentence into a learnable
distributed representation. The proposed syn-
tax encoding scheme is provably information-
lossless. In specific, an embedding vector is
constructed for each word in the sentence, en-
coding the path in the syntax tree correspond-
ing to the word. The one-to-one correspon-
dence between these “syntax-embedding” vec-
tors and the words (hence their embedding
vectors) in the sentence makes it easy to inte-
grate such a representation with all word-level
NLP models. We empirically show the bene-
fits of the syntax embeddings on the Author-
ship Attribution domain, where our approach
improves upon the prior art and achieves new
performance records on five benchmarking
data sets.

1 Introduction

Syntactic parse information plays an essential role
in interpreting natural languages because natural
language sentences are typically structured in a
linguistic grammar. As such, in many NLP ap-
plications it is desirable to extract syntactic fea-
tures from text or sentences, for which there exist
a rich body of literature (Baayen et al., 1996; Hirst,
2007; Massung et al., 2013; Wang et al., 2015;
Socher et al., 2011; Zhu et al., 2015b; Tai et al.,
2015; Zhu et al., 2015a)

To date, existing approaches to exploit syntac-
tic information can be categorized into two cate-
gories. The first category may be regarded as “syn-
tactic feature engineering”. In such approaches,
certain properties or statistics are extracted from
the syntax parse tree of a sentence as the syntacti-
cal feature. For example, the extracted feature may
include the depths of the tree, frequency of certain
structural patterns in the tree and so on (Massung
et al., 2013; Wang et al., 2015). The advantage
of such a method is that the extracted feature can

be used for any kind of classifier, if the feature
is deemed relevant to the classification task. The
limitation of such an approach is however that rich
structural information contained in the syntax tree
is lost in the feature extraction process. Addition-
ally, with such a strategy, the model designer is of-
ten required to design syntactic feature extractors
specific for his tasks.

The second category may be regarded as
“syntax-assisted sentence coding”. This category
of approaches build upon neural network mod-
els. Examples of such approaches include Tree-
LSTM (Tai et al., 2015; Zhu et al., 2015b) and Re-
cursive Neural Networks (Socher et al., 2011), in
which the networks are structured according to the
syntax tree of the input sentence. The network,
after being trained, is capable of encoding a se-
quence of word embeddings, in a bottom-up man-
ner, to a vector representing the entire sentence. It
is worth noting that with these approaches, the en-
coded feature vector, although containing syntac-
tical information, mainly serves as a semantic rep-
resentation of the input sentence, and the syntactic
information exploited therein primarily serves to
assist the semantic representation. Additionally,
such an approach is not flexible enough to be inte-
grated with another popular class of NLP models,
CNN.

One motivation of this work is to develop a
generic representation of the parse structure of
sentences. Ideally, we would like the representa-
tion to maximally preserve the syntactical infor-
mation and can be integrated easily with any neu-
ral network NLP models. This latter requirement
is particularly desirable, in light of the competi-
tive performance of CNN and their advantages in
training efficiency.

Another motivation of this work is the applica-
tion of Authorship Attribution (AA) (Hirst, 2007;
Stamatatos, 2009; Ouamour and Sayoud, 2012;
Stamatatos, 2011; De Vel et al., 2001; Rocha et al.,

2743

2017b; Binongo, 2003; Sohn et al., 2015; Shrestha
et al., 2017b). In this application, one is to ex-
tract information from a document so as to infer
the document’s author, from a given list of can-
didates. There have been a variety of use cases
of AA in practice, which include, amongst many
others, plagiarism detection (Stamatatos and Kop-
pel, 2011), forensics (Rocha et al., 2017a), suicidal
note verification (Chaski, 2005), and intelligent
question answering (Stamatatos, 2006). In this
application, previous works have mostly focused
on building a classifier based on content-level fea-
tures. The hypothesis underlying our approach to
AA in this paper is that syntactic information is
a useful additional feature that can characterize an
author. This is not only because that syntactical in-
formation complements the document content in
language understanding, it is also due to the fact
that different authors may construct sentences with
varying distributions of syntactical structures. In a
sense, the “syntactical pattern” of an author may
characterize in part the “writing style” of the au-
thor, which is independent of the content he writes
and the semantics of the document.

To that end, we propose a novel strategy to
encode the syntax parse tree of sentence into a
learnable distributed representation. Briefly, in
this representation, an embedding vector is con-
structed for each word in the sentence, encoding
the path in the syntax tree corresponding to the
word. The one-to-one correspondence between
these “syntax-embedding” vectors and the words
(hence their embedding vectors) in the sentence
makes it easy to integrate such a representation
with all word-level NLP models.

The proposed syntax encoding scheme has a
remarkable property, namely that it is provably
information-lossless, as long as the syntax embed-
ding space has adequate dimension. This property
also distinguishes the proposed scheme from other
distributed representations of syntax.

We apply the proposed syntax encoding ap-
proach to the state-of-the-art CNN-based AA
model and evaluate its performance over five
benchmarking datasets. Experimental study ver-
ifies the effectiveness of the proposed syntax en-
coding scheme. In fact, over all five datasets,
syntax-augmented CNN model demonstrates new
state-of-the-art performance.

2 Related Work

The aim of the related work here is twofold: syn-
tax encoding and authorship attribution.

2.1 Syntax Encoding

Including syntactic parse information to benefit
NLP models have been actively investigated in
decades. Syntactic feature engineering refers to
efforts to statically extract domain specific fea-
tures from syntax parse tree of the given text (Mas-
sung et al., 2013; Wang et al., 2015). Recent
attempts also include leveraging syntactic parse
tree structure to recursively generate sentence rep-
resentations bottom-up (Socher et al., 2011; Zhu
et al., 2015b; Tai et al., 2015; Zhu et al., 2015a).

Both the above two categories of methods have
severe limitations. The former parse represen-
tation typically fails to encode the parse tree
structure, and the latter is constrained by the
tree structures favored by the parser. Further-
more, the recent distributed word embedding tech-
niques, such as Glove (Pennington et al., 2014)
and W2V (Mikolov et al., 2013), have been shown
to encode limited syntax knowledge of the given
corpus (Andreas and Klein, 2014). This short-
coming has also promoted recent research on cre-
ating syntax-aware word embedding, which en-
hances the distributed embedding vectors with po-
sition information of the word within its surround-
ing context (Cheng and Kartsaklis, 2015), which
again encodes limited syntax information.

Our syntax embedding method overcomes the
above mentioned limitations, as previously dis-
cussed in Section 1.

2.2 Authorship Attribution

Various AA models make use of SVM classifiers
on some carefully engineered lexical or syntactic
feature. These works include (Pillay and Solorio,
2010; Varela et al., 2011; Segarra et al., 2013;
Seker et al., 2013; Seroussi et al., 2010; Castillo
et al., 2015). In many of these models and among
many others (e.g., (Koppel et al., 2009; Peng et al.,
2003; Apté et al., 1994)), character n-grams are
chosen as an important feature.

Recently, researchers have relied on CNN to ex-
tract features automatically. In (Ferracane et al.,
2017), for instance, a CNN is used on 2-gram em-
beddings to learn the discourse information for the
AA task. In (Shrestha et al., 2017b), a CNN is
employed on n-gram embeddings to learn richer

2744

S

VP

NP

NNS

claims

JJ

absolute

DT

no

VBP

are

NP

EX

there

Figure 1: Syntax Tree Example

Words Syntax Path
there S→NP→EX

are S→VP→VBP
no S→VP→NP→DT

absolute S→VP→NP→JJ
claims S→VP→NP→NNS

Table 1: Syntax Path Example

features. A study by (Tang, 2013) considers using
SVM as an activation layer for the CNN, replacing
the soft-max layer. Nevertheless, a small perfor-
mance advantage is demonstrated by the method
at a high computation cost.

Our proposed model, apart from syntax encod-
ing, is the most close to the CNN architecture of
(Shrestha et al., 2017b) where n-grams are used
to extract global content information representing
content features. The detailed model architecture
will be given in a later section.

3 Syntax Encoding

The syntactical structure of a given sentence can
be uniquely represented by a tree, which we refer
to as the syntax tree. An example of such a syntax
tree is given in Figure 1. As seen in the example, a
syntax tree has labeled nodes. Specifically, the la-
bel of each node is a “syntax token”, such as S, NP,
VP, etc., representing the grammatical property of
the word sequences covered by tree branches un-
derneath the node. For example, the root of the
tree is always labeled by S (“sentence”), and the
branches underneath the tree cover the entire sen-
tence. On the other hand, the labels for terminals
or leafs of the tree, such as EX, VBP, JJ etc., cor-
respond to “part-of-speech” tags of each word in
this sentence. We will denote by T the set of all
syntax tokens.

Given this syntactic tree structure for a sentence
s, each word w in sentence s has a unique path in
the tree leaving the root and arriving at a terminal.
Such a “syntax path” for the word w can then be
represented by a sequence of node labels along the
path. Some examples of syntax paths are given in
Table 1. The following lemma is easy to verify.

Lemma 1 Let a sentence s be written as a se-
quence of words (w1, w2, . . . , wn). For each word
position i = 1, 2, . . . , n, let r(wi) denote the syn-
tax path of word wi. Let R := {(i, r(wi)) : i =
1, 2, . . . , n} be an (unordered) set containing pre-
cisely all syntax paths for the words in s. Then the
syntax tree of s can be uniquely recovered byR.

In the lemma, we note that R is an unordered
set. That is, regardless of the ordering of the paths
in R, one can always recover the syntax tree from
R.

Let r(w) be the syntax path of a word w in the
sentence s of interest. Specifically, r(w) can be
written as the sequence (t1, t2, . . . , tL), where L
is the number of nodes in the path r, and each ti is
a syntax token.

Let the Euclidean space RK be the embedding
space which we will use to encode syntax. We
now describe a method that encodes the path r(w)
into a vector r(w) ∈ RK .

Let Lmax be maximum depth of the syntax trees
in the corpus. For each i = 1, 2, . . . , Lmax, let pi
be a vector in RK serving as the embedding for in-
teger i. Here integer i is meant to indicate the lo-
cation of a token in a syntax path. For each t ∈ T ,
let t also be a vector in RK , serving as the embed-
ding for syntax token t. Let vector r(w) ∈ RK ,
the embedding of path r(w), be defined by

r(w) :=
∑

tj∈r(w)

tj ◦ pj (1)

where ◦ is the element-wise product operation.
For example in Table 1, the syntax path for word
“there” will have embedding NP ◦ p1 + EX ◦ p2;
the syntax path for word “no” will have embed-
ding VP◦p1 +NP◦p2 +DT◦p3. Note that when
embedding a syntax path, the beginning token S
is removed from the path since it exists in every
path.

Lemma 2 There exists a random assignment of
the vectors {t : t ∈ T } and {pi : i = 1, 2, . . . , L}
such that the syntax path r(w) can be recovered
from its embedding r(w) almost surely for suffi-
ciently large K.

2745

This lemma (proof given in Appendix) sug-
gests that as long as we choose a sufficiently
large embedding dimension K, the above intro-
duced encoding for syntax paths is essentially
lossless. Thus, for a given n-word sentence
s = (w1, w2, . . . , wn), if we collect the embed-
ding vectors r(w1), r(w2), . . . , r(wn) of all syn-
tax paths and list them as the columns of a K × n
matrix, then by Lemmas 1 and 2, the syntax tree
of s can be recovered from the matrix. Such a ma-
trix is then an information lossless encoding of the
syntax tree.

We note however that in practice, when the to-
kens embeddings and the position (integer) em-
beddings are learned, there is no longer a guar-
anty that a syntax path can be recovered from its
embedding. This is particularly the case for su-
pervised tasks. During the training for such tasks,
the information irrelevant to the training objective
is necessarily “squeezed out”, and the represen-
tations of those syntax paths that provide no dis-
tinguishing features are “pulled closer”. This will
cause these paths non-distinguishable (and hence
non-recoverable) from their embeddings. This is
also the reason that in practice there is no need to
have very large embedding dimension K.

Nonetheless, since different supervised tasks
may have distinct training objectives, a “lossy”
syntax encoding suitable for one task may prove
ineffective for other tasks. Thus it is still essential
to adopt an information-lossless encoding frame-
work, as we propose in this paper, that is univer-
sally applicable.

Next, we will discuss the application of our syn-
tax encoding approach to AA models.

4 Authorship Attribution Model

4.1 Problem Definition
The objective of Authorship Attribution is to de-
velop a classifier that predicts the authors of un-
seen documents based on a given set of documents
and their corresponding authors. Despite the pre-
vious successes in solving the AA problem dis-
cussed in a previous section, we argue that the
syntactic parse information in an author’s writing
can characterize in part the “writing style” of the
author. Specifically, even when writing the same
content, two authors may prefer using different
syntax structure in constructing their sentences.
Consider the following two sentences.

A1: Take a left at the end of the street, you will

see the house.

A2: You will see the house, if you go down to the
end of the street and take a left.

The two sentences have the same meaning and yet
two different authors may favor different ones over
the other. This provides opportunity for leveraging
such syntactical information as an additional fea-
ture, beyond the lexical and semantic features, to
distinguish the two authors.

Detecting the syntactical differences among au-
thors suits well the application scope of the pro-
posed syntax encoding scheme. As such, in this
work, we will use the AA problem as an test bed
to examine the effectiveness of our scheme.

Figure 2: Single Layer CNN Architecture

4.2 Syntax-augmented CNN Model

The overall architecture of our model is shown
in Figure 2. Our model takes advantage of
the expressive power of convolutional neural net-
works(CNNs) to learn the embeddings for both
of the content-level features and the syntax-level
features. The model consists of 5 types of lay-
ers: Syntax-level feature embedding, Content-level
feature embedding, Convolution, Max-pooling and
Softmax.

4.2.1 Overall Structure
The model takes both the context-level features
and the syntax-level features as the input.

As the character n-gram features have been
used successfully in both of the text classification

2746

tasks (Kim, 2014; Chen et al., 2017) and the AA
tasks (Shrestha et al., 2017b; Sapkota et al., 2015;
Shrestha et al., 2017a; Sari et al., 2017; Ruder
et al., 2016), in this study, we use the character
n-grams to represent the content-level features.

We align in tandem the embedding vectors of
consecutive n-grams of a document to form a
content-level embedding matrix, and the consecu-
tive syntax-path embeddings of each word to form
the syntax-level embedding matrix. These embed-
ding matrices are individually passed to 2 paral-
lel CNNs having different filter lengths. The con-
volutional layer outputs feature maps via convolu-
tional filtering. The max-pool layer is then applied
across different feature maps to form the content-
level and syntax-level representation of a docu-
ment respectively. These two representations are
then concatenated to form the final feature vector
characterizing the author of the document. Finally,
this feature vector is passed to a learnable softmax
layer. The number of outputs of the softmax layer
is the number of authors, which the ith output is
the probability that the document written by au-
thor i.

4.2.2 Convolution and Max-pool
In the convolutional layer, we capture local con-
textual information using kernels, which combine
the vectors within it’s window as it slides over the
embedding matrix. A linear transformation pro-
cesses the output of the kernel.

We present a clean description for this opera-
tion. Let E ∈ Rk×d be the embedding matrix con-
taining embeddings e1:k, where ei ∈ Rd is the i-th
embedding in E, l is the number of filters and w
is the filter length or window size. Let F ∈ Rw×d

be the filter matrix and a bias vector b. We define
the vector gi ∈ Rw×d as the concatenation of w
embeddings in the i-th window, where

gi = ei−w+1:i 1 ≤ i ≤ k + w − 1 (2)

The result of filter F across embedding matrix
E outputs a feature map fj ∈ Rd for the j-th ker-
nel where the i-th value of fj is computed as

fji = F ⊗ gi + b (3)

where ⊗ denotes the convolution operator. Let
f ∈ Rl×d denote the concatenation of the l fea-
ture maps for compactness. Further to this, we
apply a ReLU activation function before passing

the output to the max-pool layer. Given l filters
of different dimensions, we obtain l feature maps.
Each feature map encodes different types of ab-
stract contextual information globally for the ma-
trix E. To obtain the most relevant features from
each dimension of the feature maps, we max-over
feature map dimensions expressed as:

mi = max(f(·, i)), 1 ≤ i ≤ d (4)

where mi represents the maximum value for di-
mension i across the l feature maps. The feature
vector m from the max-pool operation is the con-
catenation of all mi. For our 2 CNN’s we obtain
a content-level vector representation and a syntax-
level representation for an author’s text. We de-
note m̄ ∈ Rt as the concatenation of these 2 vec-
tors representing an author’s style. We obtain the
confidence of an author’s attribution to a text by
feeding this final vector to a softmax layer. In
the next section, we give a brief description of the
softmax layer.

4.2.3 Softmax Layer
Given a text input x and CNN parameters θ, this
layer outputs a score for all n authors. The output
of the softmax layer is a vector with dimension
equal to the number of author labels. To compute
the confidence of author’s attribution, the author’s
style representation m̄ is transformed by a trans-
formation matrix W ∈ Rn×t.

o = Wm̄ (5)

where the i-th component of o corresponds to the
confidence score of author i. A softmax operation
is called on o to compute the conditional proba-
bility for each dimension. This is calculated by:

p(i|x, θ) =
eoi∑n
j=1 e

oj
(6)

To train our model, the log-likelihood of the
probability should be maximized. To predict the
attribution of authors, the label with the highest
probability is selected. For the optimization of our
model, we use SGD algorithm to solve the opti-
mization problem.

We denote our syntax augmented CNN model
as Syntax-CNN.

5 Experimental Studies

We first empirically show the predictive perfor-
mance of the Syntax-CNN strategy, which es-
tablishes new state-of-the-art accuracy for several

2747

Description CCAT10 CCAT50 IMDB62 blogs10 blogs50
Avg # of words per doc 580 584 345 108.6 117.1
Avg # of chars per doc 3,089 3,010 1742 502.3 541.5
Docs per author 100 100 1000 2353.4 1470.1
Max # of chars 8,716 8,716 11617 30712 30712
Min # of chars 483 345 82 3 3

Table 2: Statistics of Datasets

benchmarking data sets. We then provide ablation
studies, aiming at better understanding the contri-
butions of the syntax embeddings to the Syntax-
CNN method.

5.1 Experimental Setup

5.1.1 Datasets
We test the Syntax-CNN approach on several
benchmarking datasets. Summary statistics of the
datasets are in Table 2.
CCAT10: 100 newswire stories, written by 10 au-
thors, in English taken from Reuters Corpus Vol-
ume 1 (RCV1) (Stamatatos, 2008).
CCAT50: Same as CCAT10 but with 100 news
article written by 50 authors.
IMDB62: 62,000 movie reviews and 17,550 mes-
sage posts from 62 prolific authors obtained from
Internet Movie Database(IMDb) (Seroussi et al.,
2010).
Blogs10: The original data set contains 681,288
blog posts by 19,320 bloggers for blogger.com.
Posts written by the top ten bloggers are selected
for the Blogs10 data set (Schler et al., 2006).
Blogs50: Same as Blogs50 but with the posts writ-
ten by the top 50 bloggers.

5.1.2 Compared Prior Art
We compare our method with various baseline ap-
proaches, which represent the current art in the
AA problem. They include SCAP (Frantzeskou
et al., 2007), SVM with 2,500 most frequent
3-grams (Plakias and Stamatatos, 2008), SVM
with bag of local histogram (Escalante et al.,
2011), Imposters (Koppel et al., 2011), LDAH-
S (Seroussi et al., 2011),SVM with affix and punc-
tuation 3-grams (Sapkota et al., 2015), CNN-
char (Ruder et al., 2016), Continuous n-gram
representation (Sari et al., 2017), and N-gram
CNN (Shrestha et al., 2017a). Except the last
two methods, all the results reported in this paper
were obtained from their respective papers. In all
our experiments, we partitioned the datasets into

train/dev/test in the same way as are used in the
literature in order for fair comparison.

5.1.3 Hyperparameters and Training
Our experimental setup follows that of the
current state-of-the-art AA method (Shrestha
et al., 2017b). In specific, the networks are
trained using mini-batches with size of either 16
(for IMDB62,Blogs10 and Blogs50) or 32 (for
CCAT10 and CCAT50). We use 3-gram with em-
bedding size of 300 for character, and embedding
size of 60 for syntax vector; these embeddings are
randomly initialized. We apply Adagrad (Duchi
et al., 2011) with initial learning rate of 1e-4. For
the CNN, we use filter sizes of 3, 4, and 5 with
50 feature maps for syntax embedding; 500 di-
mensional character embedding for CCAT, IMDB,
and Blogs50, and 200 for Blog10. We train for at
most 300 epochs, with a dropout rate of 0.25. We
deploy early stop strategy for the training using a
validation data set, which contain 10% of the ran-
domly selected samples from the training set. We
stop the training when the validation loss goes up.

In our experiments, we use the Stanford
CoreNLP parser. For documents contain more
than one sentences, each sentence is parsed sepa-
rately. The syntax encoding for each word is done
according to its syntax path in syntax tree contain-
ing the word. The syntax embeddings of all words
in the document form the input matrix to the CNN
responsible for extracting syntactical features.

5.2 Predictive Performance
Table 3 presents the accuracy obtained by var-
ious testing methods on the five benchmarking
datasets, where the best result of each data set is
highlighted in bold.

5.2.1 Accuracy Obtained by Syntax-CNN
Results in Table 3 indicate that the Syntax-CNN
outperformed all the testing methods on the five
benchmarking datasets, beating the current best
records on these testing AA tasks. Our further

2748

Model CCAT10 CCAT50 IMDB62 Blogs10 Blogs50
SCAP(2007) # # 94.8 48.6 41.6
SVM with most frequent 3-grams(2008) 80.8 67 81.4 # #
SVM with bag of local histogram(2011) 86.4 # # # #
Imposters(2011) # # 76.9 35.4 22.6
LDAH-S(2011) # # 72.0 52.5 18.3
SVM with affix+punctuation 3-grams(2015) 78.8 69.3 # # #
CNN-char(2016) # # 91.7 61.2 49.4
Continuous n-gram representations(2017) 74.8 72.6 95.12 61.34 52.82
N-gram CNN(2017) 86.8 76.5 95.21 63.74 53.09
Syntax 22.8 10.08 83.48 48.64 42.91
Syntax-CNN 88.20 81.00 96.16 64.10 56.73

Table 3: Accuracy obtained by the testing methods; best result for each data set is in bold.

Quality metrics CCAT10 CCAT50 IMDB62 Blogs10 Blogs50
normal 18.58% 18.79% 55.81% 82.15% 82.13%
hard 5.96% 6.3% 19.05% 8.61% 8.9%
very hard 75.46% 74.91% 25.14% 9.24% 8.97%

Table 4: Syntax correctness as measured by the Heminway Editor tool

analysis also shows that, the predictive improve-
ment on some datasets is large. For example,
against the CCAT50 and Blogs50 datasets, the rel-
ative error reductions over the current state-of-the-
art result are 5.5% and 3.64% , respectively.

5.2.2 Contribution of Syntax Encoding
We also include the accuracy obtained by using the
syntax embeddings alone on the second last row in
Table 3. These results indicate that using only the
syntax style embeddings achieved very low accu-
racy on some of the datasets, for example, with
only 10.08% on the CCAT50 dataset. As shown
in Table 4, the CCAT50 is, indeed, one of hard-
est datasets, as judged by the Hemingway Editor
tool 1, which aims to measure the syntax correc-
tion of a given piece of text. Nevertheless, such
syntax style embeddings can bring significant ac-
curacy gain to the CNN strategies. As shown in
Table 3, for the CCAT50 dataset, a relative error
reduction of 5.5% (which represents the largest
error reduction of the five testing datasets) was
achieved by Syntax-CNN over the best performed
CNN model, i.e., the N-gram CNN. Similar be-
havior can also been observed for the CCAT10
dataset as shown in Tables 4 and 3. These results
suggest that the Syntax-CNN may favor sentences
with syntax difficulties.

1http://www.hemingwayapp.com

We also provide, in Table 5, further information
about the percentage of classifications corrected
or mislabeled when enabling the syntax style em-
beddings in the Syntax-CNN method on both the
CCAT10 and CCAT50 datasets. Table 5 clearly
indicates that with the syntax style embeddings
deployed, the Syntax-CNN was able to, respec-
tively for the CCAT10 and CCAT50 datasets, cor-
rect 43.48% and 37.7% of the testing examples
which were mislabeled when the syntax embed-
dings was disabled in the Syntax-CNN.

data set CCAT10 CCAT50
wrong-to-correct 43.48% 37.7%
correct-to-wrong 4.87% 6.1%

Table 5: Percentage of classifications cor-
rected (wrong-to-correct) or mislabeled (correct-
to-wrong) when using the syntax style embed-
dings.

5.2.3 Syntactic Style Examples
The contributions of the syntax information is fur-
ther justified by examining documents whose clas-
sifications are corrected when enabling the syntax
embedding of the Syntax-CNN. For example, the
following two excerpts, extracted from documents
written by two different authors, share great se-
mantic similarity. But they show a difference in

2749

terms of syntax information contained. In particu-
lar, the former is constructed by deep parse trees,
but the later has a succinct parse tree structure.

author1:

China’s long-delayed bid to enter the
World Trade Organization will fall un-
der the spotlight when the world’s rich-
est nations meet to discuss its applica-
tion this week. United States says Bei-
jing must comply with a ”road map” to
open its markets and eliminate trade and
non-trade barriers before it can win U.S.
support for its entry.

author2:

China must make real changes to its
economy if it wants to join the World
Trade Organization and should replace
anti-U.S. rhetoric with international co-
operation.

Using the two documents containing these two
excerpts, we perform a separate small experiment.
When we remove syntax encoding and its cor-
responding feature from Syntax-CNN, the model
fails to classify the authors of the two documents.
But when syntax encoding is included, the model
can distinguish the two authors. Additionally, on
the syntax encoding side, when we only keep the
syntax path encoding for these two excerpts in
their respective documents and remove all other
sentences from the two documents, Syntax-CNN
is still able to classify the two authors correctly.

This suggests that syntactic information is in-
deed useful for authorship attribution, and Syntax-
CNN is able to extract such information effec-
tively.

5.3 Model Behaviors
This section aims to further evaluate the behaviors
of the Syntax-CNN model.

5.3.1 Sensitivity to Syntax Embedding
Dimension

To understand the impact of the embedding size
of the syntax tree in the Syntax-CNN method,
we conduct further experiments on the Blogs50
dataset. We vary the dimension of the syntax tree
embedding, from 5 up to 150. The experimental
results are reported in Table 6.

Table 6 shows that Syntax-CNN is robust to the
dimension size of syntax style embedding. The

dimension Syntax-CNN
5 54.96
30 55.86
60 56.82
100 56.42
150 53.34

Table 6: Accuracy obtained by Syntax-CNN on the
Blogs50 while varying the syntax style embedding
dimension.

data set with without
Blogs50 56.73 55.05
Blogs10 64.10 62.70

Table 7: Accuracy obtained by Syntax-CNN with
and without position vector.

lowest accuracy was obtained by Syntax-CNN
with an embedding dimension of 150. Although
we have noted earlier that using a higher syntax
embedding dimension allows the syntactical infor-
mation to be better preserved. A downside of such
a choice is however the risk of overfitting, which
is expectedly the cause of the degradation of the
performance at dimension 150. Note that even in
this case, the performance of Syntax-CNN is still
higher than the current state-of-the-art accuracy of
53.09% achieved by the N-gram CNN.

5.3.2 Impact of Position Vector
We further evaluate the impact of the position em-
bedding vectors (i.e., the pj vectors in Section 3)
in syntax encoding. We conduct experiments on
both the Blogs10 and Blogs50 datasets with and
without the position embedding. In particular, by
“without position”, we mean that the element-wise
multiplication with the pj is removed from equa-
tion (1) in Section 3. The results are reported in
Table 7.

Table 7 indicates that the position vectors play
an important role in capturing syntactical informa-
tion. In fact, it is possible to prove that without
multiplying with the position vectors, in general
the syntax tree is no longer recoverable from the
encoding r(w) of syntax path r(w). Additionally,
the results in Table 7 suggest that depth informa-
tion in the syntax tree is an important feature for
distinguishing the writing styles of the authors.

6 Conclusion
We propose a novel strategy to encode a syn-
tax tree into a learnable distributed representation.

2750

This representation can be easily integrated into
any NLP neural network model and entails no loss
of information. Using this representation as an ad-
ditional input, we extend the CNN architecture in-
troduced in (Shrestha et al., 2017b) for the author-
ship attribution problem. Experimental evaluation
of the extended model on the standard author attri-
bution datasets demonstrates the effectiveness of
the proposed syntax encoding approach. Record-
breaking performances are obtained.

Acknowledgments

This work is supported partly by China
973 program (2015CB358700), by the Na-
tional Natural Science Foundation of China
(61772059,61421003), and by the Beijing Ad-
vanced Innovation Center for Big Data and Brain
Computing and State Key Laboratory of Software
Development Environment.

Appendix: Proof of Lemma 2

We first establish some elementary results.

Lemma 3 Suppose that random variables
X,Y, Z, U are independent standard normal
random variables. Then

1. E(XY ZU) = 0 and VAR(XY ZU) = 1.

2. E(X2Y Z) = 0 and VAR(X2Y Z) = 3.

3. E(X2Y 2) = 1 and VAR(X2Y 2) = 8.

These results follow from the independence
among (X,Y, Z, U) and the fact that the square of
a standard normal random variable is a Chi-Square
random variable.

We now construct a random assignment scheme
and a recovery scheme.
Random Assignment: Generate each vector in {t :
t ∈ T } and in {pi : i = 1, 2, . . . , Lmax} by as-
signing independent values drawn from a standard
normal distribution.
Recovery Scheme: Let a path embedding r(w)
be given. For each token-integer pair (u, i) ∈
T × {1, 2, . . . , Lmax}, compute vector a ∈ RK

and scalar b by

a := r(w) ◦ u ◦ pi, b :=
1

K

K∑
k=1

a[k]

where a[k] is the kth element of a. Choose an
arbitrary positive value ε < 1/2. If |b − 1| < ε,
claim the ith token on path r(w) is u.

Now we prove that using this scheme, when the
embedding dimension K is sufficiently large, one
can recover the path r(w) with probability arbi-
trarily close to 1.

First

a =
∑

tj∈r(w)

tj ◦ pj ◦ u ◦ pi

Note that this summation contains summing
of L K-vectors, which we will re-denote by
c1, c2, . . . , cL. Also we denote

Cl :=
1

K

K∑
k=1

cl[k].

Then we have

a =

L∑
l=1

cl (7)

and

b =

L∑
l=1

Cl (8)

Each of cl terms in Equation (7) corresponds to
one of the four cases below.
Case 1: i = j and u = tj . This corresponds to
case 3 of Lemma 3, and we have E(cl[k]) = 1 and
VAR(c[k]) = 8. It follows that E(Cl) = 1 and
VAR(Cl) = 8/K.
Case 2: i = j and u 6= tj . This corresponds to
case 2 of Lemma 3, and we have E(cl[k]) = 0 and
VAR(c[k]) = 3. It follows that E(Cl) = 0 and
VAR(Cl) = 3/K.
Case 3: i 6= j and u = tj . This also corresponds
to case 2 of Lemma 3, and we also have E(Cl) = 0
and VAR(Cl) = 3/K.
Case 4: i 6= j and u 6= tj . This corresponds to
case 1 of Lemma 3, and we have E(cl[k]) = 0 and
VAR(c[k]) = 1. It follows that E(Cl) = 0 and
VAR(Cl) = 1/K.

For each of these cases, the distribution of Cl

can be made concentrated at its mean when K is
made large enough (by invoking either the Weak
Law of Large Number or the Central Limit Theo-
rem). Therefore, if there exists a token in the path
r(w) that makes Case 1 satisfied, the distribution
of b is concentrated at 1, and our recovery scheme
will detect, with probability close to 1, the token
and its position in the path. On the other hand, if
there is no such token, the distribution of b is con-
centrated at 0, and with probability close to 0 our
scheme will make a false detection. 2

2751

References
Jacob Andreas and Dan Klein. 2014. How much do

word embeddings encode about syntax? In ACL,
pages 822–827.

Chidanand Apté, Fred Damerau, and Sholom M Weiss.
1994. Towards language independent automated
learning of text categorization models. In Proceed-
ings of the 17th annual international ACM SIGIR
conference on Research and development in infor-
mation retrieval, pages 23–30. Springer-Verlag New
York, Inc.

H Baayen, H van Halteren, and F Tweedie. 1996. Out-
side the cave of shadows: using syntactic annotation
to enhance authorship attribution. Literary and Lin-
guistic Computing, 11(3):121–132.

José Nilo G Binongo. 2003. Who wrote the 15th book
of oz? an application of multivariate analysis to au-
thorship attribution. Chance, 16(2):9–17.

Esteban Castillo, Darnes Vilarino, Ofelia Cervantes,
and David Pinto. 2015. Author attribution using
a graph based representation. In 2015 Interna-
tional Conference on Electronics, Communications
and Computers (CONIELECOMP), pages 135–142.

Carole E. Chaski. 2005. Who’s at the keyboard?
authorship attribution in digital evidence investiga-
tions. IJDE, 4(1).

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang.
2017. Improving sentiment analysis via sentence
type classification using bilstm-crf and cnn. Expert
Systems with Applications, 72:221–230.

Jianpeng Cheng and Dimitri Kartsaklis. 2015. Syntax-
aware multi-sense word embeddings for deep com-
positional models of meaning. In EMNLP, pages
1531–1542.

Olivier De Vel, Alison Anderson, Malcolm Corney, and
George Mohay. 2001. Mining email content for au-
thor identification forensics. ACM Sigmod Record,
30(4):55–64.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159.

Hugo Jair Escalante, Thamar Solorio, and Manuel
Montes-y Gómez. 2011. Local histograms of char-
acter n-grams for authorship attribution. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1, pages 288–298. Association
for Computational Linguistics.

Elisa Ferracane, Su Wang, and Raymond Mooney.
2017. Leveraging discourse information effectively
for authorship attribution. In Proceedings of the
Eighth International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol-
ume 1, pages 584–593.

Georgia Frantzeskou, Efstathios Stamatatos, Stefanos
Gritzalis, Carole E Chaski, and Blake Stephen
Howald. 2007. Identifying authorship by byte-
level n-grams: The source code author profile (scap)
method. International Journal of Digital Evidence,
6(1):1–18.

Graeme Hirst. 2007. Bigrams of syntactic labels for
authorship discrimination of short texts. In Literary
and Linguistic Computing.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Moshe Koppel, Jonathan Schler, and Shlomo Arga-
mon. 2009. Computational methods in authorship
attribution. Journal of the Association for Informa-
tion Science and Technology, 60(1):9–26.

Moshe Koppel, Jonathan Schler, and Shlomo Arga-
mon. 2011. Authorship attribution in the wild. Lan-
guage Resources and Evaluation, 45(1):83–94.

Sean Massung, Chengxiang Zhai, and Julia Hocken-
maier. 2013. Structural parse tree features for text
representation. In 2013 IEEE Seventh International
Conference on Semantic Computing, Irvine, CA,
USA, September 16-18, 2013, pages 9–16.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS, pages 3111–3119.

Siham Ouamour and Halim Sayoud. 2012. Author-
ship attribution of ancient texts written by ten arabic
travelers using a smo-svm classifier. In Communi-
cations and Information Technology (ICCIT), 2012
International Conference on, pages 44–47. IEEE.

Fuchim Peng, Dale Schuurmans, Vlado Keselj, and
Shaojun Wang. 2003. Automated authorship attri-
bution with character level language models. In 10th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL 2003),
pages 267–274.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543.

Sangita R Pillay and Thamar Solorio. 2010. Author-
ship attribution of web forum posts. In eCrime Re-
searchers Summit (ECrime), 2010, pages 1–7. IEEE.

Spyridon Plakias and Efstathios Stamatatos. 2008.
Tensor space models for authorship identification.
Artificial Intelligence: Theories, Models and Appli-
cations, pages 239–249.

A. Rocha, W. J. Scheirer, C. W. Forstall, T. Caval-
cante, A. Theophilo, B. Shen, A. R. B. Carvalho,
and E. Stamatatos. 2017a. Authorship attribution for
social media forensics. IEEE Transactions on Infor-
mation Forensics and Security, 12(1):5–33.

http://www.utica.edu/academic/institutes/ecii/publications/articles/B49F9C4A-0362-765C-6A235CB8ABDFACFF.pdf
http://www.utica.edu/academic/institutes/ecii/publications/articles/B49F9C4A-0362-765C-6A235CB8ABDFACFF.pdf
http://www.utica.edu/academic/institutes/ecii/publications/articles/B49F9C4A-0362-765C-6A235CB8ABDFACFF.pdf

2752

Anderson Rocha, Walter J Scheirer, Christopher W
Forstall, Thiago Cavalcante, Antonio Theophilo,
Bingyu Shen, Ariadne RB Carvalho, and Efstathios
Stamatatos. 2017b. Authorship attribution for social
media forensics. IEEE Transactions on Information
Forensics and Security, 12(1):5–33.

Sebastian Ruder, Parsa Ghaffari, and John G Breslin.
2016. Character-level and multi-channel convolu-
tional neural networks for large-scale authorship at-
tribution. arXiv preprint arXiv:1609.06686.

Upendra Sapkota, Steven Bethard, Manuel Montes-y-
Gmez, and Thamar Solorio. 2015. Not all character
n -grams are created equal: A study in authorship at-
tribution. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 93–102.

Yunita Sari, Andreas Vlachos, and Mark Stevenson.
2017. Continuous n-gram representations for au-
thorship attribution. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, volume 2, pages 267–273.

Jonathan Schler, Moshe Koppel, Shlomo Argamon,
and James W Pennebaker. 2006. Effects of age
and gender on blogging. In AAAI spring sympo-
sium: Computational approaches to analyzing we-
blogs, volume 6, pages 199–205.

Santiago Segarra, Mark Eisen, and Alejandro Ribeiro.
2013. Authorship attribution using function words
adjacency networks. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing, pages 5563–5567.

Sadi Evren Seker, Khaled Al-Naami, and Latifur Khan.
2013. Author attribution on streaming data. In In-
formation Reuse and Integration (IRI), 2013 IEEE
14th International Conference on, pages 497–503.
IEEE.

Yanir Seroussi, Ingrid Zukerman, and Fabian Bohnert.
2010. Collaborative inference of sentiments from
texts. In UMAP, pages 195–206. Springer.

Yanir Seroussi, Ingrid Zukerman, and Fabian Bohnert.
2011. Authorship attribution with latent dirichlet
allocation. In Proceedings of the Fifteenth Confer-
ence on Computational Natural Language Learning,
CoNLL 2011, Portland, Oregon, USA, June 23-24,
2011, pages 181–189.

Prasha Shrestha, Sebastian Sierra, Fabio Gonzalez,
Manuel Montes, Paolo Rosso, and Thamar Solorio.
2017a. Convolutional neural networks for author-
ship attribution of short texts. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, volume 2, pages 669–674.

Prasha Shrestha, Sebastian Sierra, Fabio A González,
Paolo Rosso, Manuel Montes-y Gómez, and Thamar
Solorio. 2017b. Convolutional neural networks for
authorship attribution of short texts. EACL 2017,
page 669.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng,
and Christopher D. Manning. 2011. Parsing natu-
ral scenes and natural language with recursive neural
networks. In ICML, pages 129–136.

Kyung-Ah Sohn, Tae-Sun Chung, et al. 2015. A graph
model based author attribution technique for single-
class e-mail classification. In Computer and Infor-
mation Science (ICIS), 2015 IEEE/ACIS 14th Inter-
national Conference on, pages 191–196. IEEE.

Efstathios Stamatatos. 2006. Authorship attribution
based on feature set subspacing ensembles. 15:823–
838.

Efstathios Stamatatos. 2008. Author identification:
Using text sampling to handle the class imbalance
problem. Information Processing & Management,
44(2):790–799.

Efstathios Stamatatos. 2009. A survey of modern au-
thorship attribution methods. Journal of the As-
sociation for Information Science and Technology,
60(3):538–556.

Efstathios Stamatatos. 2011. Plagiarism detection
using stopword n-grams. Journal of the Asso-
ciation for Information Science and Technology,
62(12):2512–2527.

Efstathios Stamatatos and Moshe Koppel. 2011. Pla-
giarism and authorship analysis: introduction to the
special issue. Language Resources and Evaluation,
45(1):1–4.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In ACL, pages 1556–1566.

Yichuan Tang. 2013. Deep learning using lin-
ear support vector machines. arXiv preprint
arXiv:1306.0239.

Paulo Varela, Edson Justino, and Luiz S Oliveira. 2011.
Selecting syntactic attributes for authorship attribu-
tion. In Neural Networks (IJCNN), The 2011 Inter-
national Joint Conference on, pages 167–172. IEEE.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David A.
McAllester. 2015. Machine comprehension with
syntax, frames, and semantics. In ACL, pages 700–
706.

Chenxi Zhu, Xipeng Qiu, Xinchi Chen, and Xuanjing
Huang. 2015a. A re-ranking model for dependency
parser with recursive convolutional neural network.
In ACL, pages 1159–1168.

http://www.jstor.org/stable/41486024
http://www.jstor.org/stable/41486024
http://www.jstor.org/stable/41486024

2753

Xiao-Dan Zhu, Parinaz Sobhani, and Hongyu Guo.
2015b. Long short-term memory over recursive
structures. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pages 1604–
1612.

