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Abstract
We propose a new dataset for evaluating ques-
tion answering models with respect to their ca-
pacity to reason about beliefs. Our tasks are
inspired by theory-of-mind experiments that
examine whether children are able to reason
about the beliefs of others, in particular when
those beliefs differ from reality. We evaluate
a number of recent neural models with mem-
ory augmentation. We find that all fail on our
tasks, which require keeping track of inconsis-
tent states of the world; moreover, the models’
accuracy decreases notably when random sen-
tences are introduced to the tasks at test.1

1 Reasoning About Beliefs

Possessing a capacity similar to human reasoning
has been argued to be necessary for the success
of artificial intelligence systems (e.g., Levesque
et al., 2011). One well-studied domain that re-
quires reasoning is question answering, where
simply memorizing and looking up information is
often not enough to correctly answer a question.
For example, given the very simple scenario in Ta-
ble 1, searching for the word “Mary” and returning
a nearby word is not a correct strategy; instead, a
model needs to recognize that Mary is currently at
the second location (office and not the bathroom).

Recent research has focused on developing
neural models that succeed in such scenarios
(Sukhbaatar et al., 2015; Henaff et al., 2017). As a
benchmark to evaluate these models, Weston et al.
(2016) released a dataset – Facebook bAbi – that
provides a set of toy tasks, each examining a spe-
cific type of reasoning. For example, the scenario
in Table 1 evaluates the capacity to reason us-
ing a single supporting fact. However, the bAbi
tasks are already too simple for the current mod-
els. Only a few years after their release, existing

1 Code to generate dataset and replicate results is available
at github.com/kayburns/tom-qa-dataset.

models fail at only one or two (out of 20) tasks
(Rae et al., 2016; Santoro et al., 2017). Moreover,
all except two of the reasoning tasks in this dataset
only require transitive inference (Lee et al., 2016).

Mary went to the bathroom.
John moved to the hallway.
Mary travelled to the office.
Where is Mary? A: office

Table 1: A task from the bAbi dataset (Weston et al., 2016).

People reason not just about their own obser-
vations and beliefs but also about others’ mental
states (such as beliefs and intentions). The capac-
ity to recognize that others can have mental states
different than one’s own – theory of mind – marks
an important milestone in the development of chil-
dren and has been extensively studied by psychol-
ogists (for a review, see Flavell, 2004). Artifi-
cial intelligence (AI) systems will also require a
similar reasoning capacity about mental states as
they are expected to be able to interact with peo-
ple (e.g., Chandrasekaran et al., 2017; Grant et al.,
2017; Rabinowitz et al., 2018).

However, the bAbi dataset does not include
tasks that evaluate a model’s ability to reason
about beliefs. Grant et al. (2017) created a bAbi-
style dataset inspired by an influential experiment
on the theory of mind called the Sally-Anne task
(e.g. Baron-Cohen et al., 1985). Their goal was
to examine whether the end-to-end memory net-
work (Sukhbaatar et al., 2015) can answer ques-
tions such as “where does Sally think the milk is?”
in situations that Sally’s belief about the location
of milk does not match the reality. For example,
Sally thinks that the milk is in the fridge but the
milk is actually on the table.

The dataset of Grant et al. (2017) provides
a first step in designing benchmarks to evaluate
the mental-state reasoning capacity of question-
answering models, but it is still limited in the
types of reasoning it probes. For example, it

https://github.com/kayburns/tom-qa-dataset
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only considered first-order beliefs (e.g., Sally’s be-
lief about the location of milk). People also rea-
son about second-order (and higher-order) beliefs
(e.g., Anne’s belief about Sally’s belief about the
location of the milk). More importantly, similarly
to the bAbi dataset, success in each task is defined
as correctly answering one question. This does not
guarantee that a model has an understanding of the
state of the world; in fact, even in developmental
theory-of-mind experiments, children are asked a
few questions (e.g., “where is milk really?”) to
ensure that their correct answer reflects their un-
derstanding and is not simply due to chance.

In this paper, we address these shortcomings by
designing a new dataset that enables us to eval-
uate a model’s capacity to reason about different
types of beliefs as well as whether it maintains a
correct understanding of the world. To this end,
we evaluate a number of different models that per-
form well on the bAbi tasks: the end-to-end mem-
ory network (Sukhbaatar et al., 2015), the multiple
observer model (Grant et al., 2017), the recurrent
entity network (Henaff et al., 2017), and Relation-
Network (Santoro et al., 2017). We find that none
of these models succeed at our tasks, suggesting
that they are not able to keep track of inconsistent
states of the world, in particular when someone’s
belief does not match the history or reality of a sit-
uation.

2 Theory of Mind Experiments

Behavioral research shows that children gradually
develop a theory of mind (for a review, see Gopnik
and Astington, 1988). At the age of two, most chil-
dren have an understanding of others’ desires and
perceptions – if someone wants something, they
will try to get it and if something is in their sight,
they can see it. Children begin to understand oth-
ers’ beliefs around the age of three, but this under-
standing is still limited. For example, they might
not be able to reason that someone’s actions are a
result of their beliefs. By the age of five, most chil-
dren have a unified theory of mind and are able to
represent and reason about others’ desires, percep-
tions, and beliefs. Developmental psychologists
have designed various experimental paradigms to
examine to what extent children are able to reason
about others’ mental states. We use these exper-
iments as guidelines for designing tasks to evalu-
ate the reasoning capacity of question-answering
models. We first explain these experiments.

2.1 The Sally-Anne Experiment
The Sally-Anne false-belief experiment, proposed
by Baron-Cohen et al. (1985), examines children’s
ability to reason about others’ false beliefs, i.e.,
when someone’s belief does not match the real-
ity. In this experiment, the participants observe
two agents, Sally and Anne, with their containers,
a basket and a box. After putting a marble in her
basket, Sally leaves the room (and is not able to
observe the events anymore). After Sally’s depar-
ture, Anne moves the marble to her box. Then,
Sally returns to the room (see Figure 1). The par-
ticipants are asked the following questions:

• “Where will Sally look for her marble?”
(belief question)

• “Where is the marble really?”
(reality question)

• “Where was the marble in the beginning?”
(memory question)

The first question tests the participants’ ability
to reason about Sally’s belief about the location of
her marble. Interestingly, most children before the
age of 3 answer this question incorrectly and say
that Sally will look at the box (where the marble
really is) instead of the basket (where Sally thinks
the marble is). These children are not able to rea-
son about Sally’s belief which is different from the
reality of the world. The reality and memory ques-
tions are used to confirm that children’s correct an-
swer to the belief question is not due to chance;
but because they have a correct understanding of
the state of world and others’ beliefs.

Figure 1: The Sally-Anne experiment setup from Baron-
Cohen et al. (1985).

2.2 The Icecream Van Experiment
The Sally-Anne experiment examines the ability
to reason about another person’s belief or a first-
order belief. People are also able to reason about
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beliefs about beliefs, for example, Anne thinks
that Sally believes that the marble is in basket.
Perner and Wimmer (1985) performed a set of
experiments to examine children’s reasoning ca-
pacity about such higher-order beliefs. In their
set-up Mary and John together see an ice cream
van in the park, and the icecream man tells them
that he will be in the park until later in the af-
ternoon. Mary leaves the park and goes home.
A bit after she leaves, the icecream man decides
to leave the park and tells John that he is going
to the church. On his way to the church he runs
into Mary and informs her that he will be selling
icecreams close to the church all afternoon. The
participants are then asked the following second-
order question: “Where does John think Mary
goes to get icecream?” Note that John does not
know that Mary has been told about the new lo-
cation of the icecream van; he has a second-order
false belief about Mary’s belief. The participants
are also asked a few control questions (e.g., “does
Mary know that the van is in the church?”) to en-
sure that they do not correctly answer the second-
order question by chance. Perner and Wimmer
(1985) found that 6- and 7-year old children are
able to answer the second-order questions, sug-
gesting that reasoning about higher-order beliefs
(as compared to a first-order belief) is a harder
cognitive task.

3 The Theory of Mind Task Dataset

Inspired by the theory-of-mind experiments ex-
plained in Section 2 and building on the work of
Grant et al. (2017), we created a dataset based on
three tasks designed to capture increasingly com-
plex theory-of-mind reasoning: true-, false-, and
second-order false-belief tasks. Examples of each
task type are given in Figure 2. In the true-belief
task, Sally observes the world and as a result she
has a first-order true belief about the location of
the milk – her belief matches reality. In the false-
belief task, Sally’s first-order belief differs from
reality (i.e., she has a false belief ) because she was
absent when the state of the world changed. In the
second-order false-belief task, Sally observes the
new location of the milk; thus, she has a true be-
lief about the milk’s location. However, Anne’s
belief about Sally’s mental state does not match
reality because Anne does not know that Sally has
observed the change in the environment. As a re-
sult, Anne has a false belief about Sally’s beliefs.

These tasks are more challenging than the bAbI
scenarios, because a model needs to learn whether
each agent has a true or false belief about a given
world state to succeed, where the world state now
includes the mental states of each agent.

Note that we assume all containers are transpar-
ent in the underlying world; whenever an agent en-
ters a location, they become aware of the objects
true location. We made this decision to keep the
tasks as structurally similar as possible. This pre-
vents models from simply learning to produce a
specific answer for a task type when a sentence
like “Sally looks inside the pantry” is present in
the story. The container-transparency property is
consistent throughout all task-question pairs.

Question types. To examine the reasoning ca-
pacity of each model about beliefs and second-
order beliefs, we employ four question types in-
spired by theory-of-mind experiments discussed
in Section 2; see Table 2 for examples of these
question types. These questions enable us to test
whether a model can reason about first-order and
second-order beliefs, and at the same time, knows
the initial and current correct location of an object;
thus, we can distinguish between when a model
answers a question by chance and when it actually
understands the entire state of the world.

Table 3 gives the answers for the 12 combina-
tions of task type and question. Given a true-belief
or false-belief task, the answers to the first-order
and second-order questions are the same (e.g.,
“pantry” in the true-belief condition and “fridge”
in the false-belief condition for the tasks in Fig-
ure 2). However, they are different in the second-
order false belief task because Anne has a false
belief about Sally’s belief.

Dataset variants. We use these tasks to gener-
ate two datasets: ToM and ToM-easy. The primary
difference between these two datasets is that, in
ToM-easy, each story has only one task, while ToM
can have multiple tasks within a single story. Each
dataset contains a training set with 10 000 exam-
ples with each of the 12 combinations of task and
question types.

In ToM, the tasks are randomly grouped into
sets of 5 to form stories, which is the same num-
ber used in the bAbI dataset. In the test set for
ToM, each story contains 4 tasks, but there is only
one question present at the end. Because questions
that come closer to the beginning of a story have
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True Belief False Belief Second-order False Belief
Anne entered the kitchen. Anne entered the kitchen. Anne entered the kitchen.
Sally entered the kitchen. Sally entered the kitchen. Sally entered the kitchen.
The milk is in the fridge. The milk is in the fridge. The milk is in the fridge.
Anne moved the milk to the pantry. Sally exited the kitchen. Sally exited the kitchen.

Anne moved the milk to the pantry. Anne moved the milk to the pantry.
Anne exited the kitchen.
Sally entered the kitchen.

Figure 2: An example story from each of the three task types.

Memory Where was the milk at the beginning?

Reality Where is the milk really?

First-order Where will Sally look for the milk?

Second-order Where does Anne think that Sally searches for the milk?

Table 2: Examples of the four question types.

TB FB SOFB
Memory first first first
Reality second second second
First-order second first second
Second-order second first first

Table 3: The correct answer to each question for true-
belief (TB), false-belief (FB), and second-order false-
belief (SOFB) tasks. Here, “first” and “second” are the ini-
tial and actual locations of the object of interest, respectively
(e.g., fridge and pantry in Figure 2).

fewer distracting sentences (i.e., potential answer
words) that may confound a model, they are eas-
ier to answer. We found that this testing procedure
gave us a more precise understanding of the per-
formance of the model by separating the difficulty
of a question due to its position in a story from the
inherent difficulty of the question itself.

Generating the data. Each reasoning task in
Weston et al. (2016) can be formalized with a
grammar. The training and test data are then the
derivations of this grammar. We refer to each
derivation as a story (e.g., Figure 2). We follow
Grant et al. (2017) in writing grammars for our
new tasks. In particular, all the task grammars con-
sist of a set of entities (people and objects in the
stories) and predicates that take entities as subject
or object. The grammars also specify the prop-
erties of entities – which predicates take them as
subjects or objects. A predicate can include ac-
tions that are ways an agent interact with the world
(e.g., place, move, enter, exit) and beliefs that are
mental state terms (e.g., believe, think). As an ex-
ample, Sally with the property is agent can per-
form the action displace on apple with the prop-
erty is object. Similar to the previous work, we
use a restricted set of action and belief predicates.

4 The Models

We briefly describe the models that we evaluate
in this paper. We chose these models based on
the novelty in their architecture or their near state-
of-the-art results in the bAbi tasks. More specif-
ically, given 10k examples and joint-training on
the bAbi tasks, the best end-to-end memory net-
work (Sukhbaatar et al., 2015) and relation net-
work (Santoro et al., 2017) fail at 6 and 2 tasks,
respectively. Given the same training dataset and
per-task training, the recurrent entity network suc-
ceed at all tasks (but the authors do not report
the results of joint-training). Recall that the bAbi
tasks are structured as a set of sentences followed
by a question about them (e.g., a story from Fig-
ure 2 followed by a question from Table 2).
The End-to-End Memory Network. Sukhbaatar
et al. (2015) proposed a neural memory-
augmented model, the end-to-end memory net-
work (MemN2N), that extends the memory net-
work architecture (Weston et al., 2014). Similarly
to its predecessor, MemN2N has a memory com-
ponent in which sentences are embedded and an
attention function that weights the embedded sen-
tences based on their similarity to a given question.
The MemN2N model introduces multiple layers of
memory (hops) by stacking memory components
such that the question embedding at layer k+1 is
the sum of the output and question embedding of
layer k.
The Multiple Observer Model. To perform
well on the false-belief and second-order false-
belief conditions, a model needs to identify that
agents have experienced different events, and, as
a result, have differing knowledge about the state
of the world. Although having multiple layers of
memory in the MemN2N model enables it to com-
bine attention to different memory slots (i.e., em-
bedded sentences) at each layer, the model does
not have access to each agent’s unique perspec-
tive. For example, the model is not explicitly told
that Sally does not observe the change of the lo-
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cation of the milk in the false-belief condition. To
address this, Grant et al. (2017) propose the Multi-
ple Observer model that integrates MemN2N with
individual memory modules for each agent in the
story. An agent’s memory only receives the sen-
tences for which the agent is present and observes
the world. Their model has an additional attention
function that weighs the memory modules based
on their relevance to the question. The model is
expected to learn to attend to Sally’s memory mod-
ule if the question is about her belief about a state
of the world.
The Recurrent Entity Network. Henaff et al.
(2017) propose a memory-augmented architec-
ture, EntNet, with two interesting properties; first,
their model is a recurrent neural network and thus
can capture the sequential nature of the events in a
story. Second, instead of keeping a whole sentence
embedding in a memory slot, their model can learn
the important entities of a story (e.g., a person)
and their properties (e.g., location) through a set
of gated recurrent units and two weight matrices.
The Relation Network. Santoro et al. (2017) pro-
pose a neural model for relational reasoning. Their
model consider the possibility of a relation among
each two possible pairs of objects. To model the
bAbi tasks, they consider each pair of sentences
together with the question as inputs to their rela-
tion network.

5 Experimental Results

Experiment set-up We train all models jointly
over all task types without noise, but evaluate them
independently on different task and question pairs.
We choose the best-performing models by select-
ing hyperparameters on the validation set. Sim-
ilarly to Sukhbaatar et al. (2015), we consider a
model successful only when its accuracy exceeds
95% across the entire task suite.

MemN2N and Multiple Observer Models. We
first examine how each model performs across
a range of parameter and initialization values.
MemN2N models are very sensitive to the network
initialization and for each set of parameters, the
best result out of 10 runs is reported (Sukhbaatar
et al., 2015). We first visualize the accuracy of all
runs as a box plot to identify how sensitive each
model is to random initialization (of parameters
and internal states) and thus difficult to train. We
also report the results for the best run in each ex-
periment. We use a memory size of 50, the same

as experiments of Sukhbaatar et al. (2015), to en-
sure that the memory contains all sentences of a
given story.

EntNet. We report results averaged over 3 ini-
tializations because we observed little randomness
due to initialization. We selected the learning rate
on a held out validation set separately for ToM-
easy and ToM; all otehr the same hyperparame-
ters as Henaff et al. (2017): 20 memory slots and
an embedding size of 100 We trained until the
training error hit zero, which occurred around 50
epochs for both datasets. .

RelNet. We report results using a single seed be-
cause we saw little randomness due to initializa-
tion; this is in accordance with the authors’ find-
ings (Santoro et al., 2017). We selected model hy-
perparameters on a held-out validation set sepa-
rately for each of the ToM and ToM-easy datasets.

5.1 Overall Performance on ToM-easy
We expect the models perform well on this dataset,
given that there is only one task in the memory
during both training and test and as a result unre-
lated events do not interfere with a model’s rea-
soning in this condition.

Despite the large variance in accuracy across
runs, the MemN2N models often succeed at the
memory, reality, and second-order questions (Fig-
ure 3a). Note that the median accuracy (the dark
blue line in box) is close to 1 for these questions.
However, the model often fails (median accuracy
around 0.5) given the first-order question (“where
will Sally look for the milk”) and the false-belief
and second-order false-belief tasks. This pattern
is different from the empirical findings on people;
the second-order question is harder than the first
order one for people. We observe that the perfor-
mance of the Multiple Observer model is similar
to the MemNet for most question-task pairs (ex-
pect one) but there is less variation in the accuracy
values. Interestingly, the median accuracy is close
to one for the first-order question and the second-
order false-belief task but the Multiple Observer
model still performs poorly for this question on
the false-belief task.

Why is the first-order question harder for the
MemN2N model? To investigate this, we look
more closely at our task-question pairs. As shown
in Table 3, the answers to the first-order ques-
tion are different for the false-belief and second-
order false-belief tasks but are the same for the
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Figure 3: Memory Network and Multiple Observer Model Performance Across Task and Question Types.
Pink indicates that the answer to the question is the first container that contained the object in that task. Blue indicates that the
answer is the last container that contained the object before the question was asked. Grey indicates that the answer was the first
container that contained the object in the entire story which may or may not be the same as the pink.

(a) Memory Network with memory size 50 evaluated on the ToM-easy dataset.

(b) Multiple Observer Model with memory size 50 evaluated on the ToM-easy dataset.

(c) Memory Network with memory size 50 evaluated on the ToM dataset.

(d) Multiple Observer Model with memory size 50 evaluated on the ToM dataset.

second-order one. We suspect that it is harder
for the MemN2N model to learn two distinct an-
swers for the same question given the the simi-

larities of the two false-belief tasks. To test this
hypothesis, we altered the data such that the an-
swers to first-order question are (incorrectly) the
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same for both false-belief and second-order false-
belief tasks (and also the second-order question).
We observe that the median accuracy is close to
1 for all conditions suggesting that the model can
learn the distinction between two of the tasks but
not all three.

We observe that EntNet and RelNet models are
not too sensitive to the initialization value, and
thus just report the result on best-performing mod-
els. Both EntNet and RelNet best models succeed
at the ToM-easy tasks; their mean error is 0.

5.2 Overall Performance on ToM

This dataset is more similar to the bAbi dataset
in that, during both training and test, the memory
contains a story with multiple tasks; as a result,
it is harder for the model to identify the entities
relevant to a given question.

As shown in Figure 3c, the MemN2N performs
worse on all the questions with the exception of
the reality question, where performance is slightly
worse but has lower variance. (cf. the ToM-easy
dataset). The first- and second-order questions are,
overall, harder for the model. The performance
of the Multiple Observer model is better for most
of the questions (see Figure 3d), especially the
second-order, but it is slightly worse for the mem-
ory question. This suggests that adding agent-
specific memory modules is not enough to succeed
on all the ToM tasks, and that the increased com-
plexity of inference with multiple memory mod-
ules harms performance on another task.

We also look at the best-performing MemN2N
and Multiple Observer models over all question-
task pairs. These models are selected based on
their performance on the validation dataset. We
observe that none of these models succeed on the
ToM tasks, but, interestingly, the Multiple Ob-
server model performs better overall as compared
to the original MemN2N model (see Table 4).

ToM and bAbi. How are ToM and bAbi tasks
similar? The combination of our true-belief task
and the reality question is very similar to bAbi
task 1 (single supporting fact). To correctly an-
swer the reality question (“where is the milk re-
ally?”, a model need to use a single fact from
the story (“Anne moved the milk to the pantry.”).
The MemN2N model succeeds at both bAbi task 1
and the reality question given the true-belief task.
However, the correct answer to the memory ques-
tion (“where was the milk at the beginning?”) for

the true-belief task also requires a single fact (“the
milk is in the fridge.”). Interestingly, the error of
MemN2N on the memory question is much higher
than the reality question. The model (unlike peo-
ple) cannot learn two representations (initial and
current location) for an object. This result demon-
strates the importance of representing alternative
states of the world, whether it be past states of re-
ality (i.e., where the “milk” used to be) or men-
tal states about the world (i.e., where an agent be-
lieves the “milk” to be).

EntNet and RelNet. We also report results of
two relevant memory-augmented neural network
models on our tasks, EntNet (Henaff et al., 2017)
and RelNet (Santoro et al., 2017), in Table 4.
Again, because we did not observe sensitivity to
initialization for these models, only average per-
formance of their best-performing model is re-
ported. We see that even though these models suc-
ceed on the ToM-easy dataset, they fail on the ToM
tasks, suggesting that these models cannot simul-
taneously deal with inconsistent (i.e., past, present,
and mental) states of the world.

We further investigate which questions are the
hardest for each best model; see Table 5. We
observe that each of the MemN2N, Multiple Ob-
server and RelNet models perform poorly on some
combination of the first- and second-order ques-
tions, but are successful at answering the reality
question. We hypothesize that this phenomenon
occurs because the reality question is the most
similar to the bAbi tasks. In addition, all models
fail the memory question for each task type. While
this is to be expected for EntNet due to its recur-
rent nature and therefore bias towards recency, it
is surprising that the other models, which exhibit
only a small positional bias, cannot correctly rep-
resent a past state of the world in order to answer
the memory question correctly.

5.3 Experimenting with Noise

We examine to what extent each model’s architec-
ture is sensitive to the position of sentences in each
story. We do so by adding a novel sentence at ran-
dom locations in each story at test time. For any
setting of the noise, p, there is a p% probability of
a noise sentence occurring before each sentence
in the story. Noise sentences cannot follow other
noise sentences in the story. In this paper, we re-
port results with p = .1. We observe that the ac-
curacy of all best models decreases notably in the
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Model ToM-easy ToM-easy (noised) ToM ToM (noised)

MemN2N (Sukhbaatar et al., 2015) 100.00% 90.28% 82.38% 77.00%
Multiple Observer (Grant et al., 2017) 100.00% 95.81% 91.11% 87.43%
EntNet (Henaff et al., 2017) 100.00% 94.61% 93.67% 88.63%
RelNet (Santoro et al., 2017) 100.00% 87.82% 94.31% 76.84%

Table 4: A comparison of model performance. All models succeed on the ToM-easy dataset without noise. Multiple Observer
model performs best on ToM-easy with noise, RelNet performs best on ToM, and EntNet performs best on ToM with noise.

Model True-belief False-belief Second-order False-belief

MemN2N (Sukhbaatar et al., 2015) M (94.4); FOB (78.2); SOB (42.9) M (94.3); FOB (17.3) M (92.8); FOB (56.4)
Multiple Observer (Grant et al., 2017) M (93.2) M (90.5); FOB (56.4); SOB (92.5) M (93.0); FOB (90.3); SOB (90.3)
EntNet (Henaff et al., 2017) M (74.0) M (76.1) M (74.25)
RelNet (Santoro et al., 2017) M (39.7%); FOB (71.37%) M (78.5%) M (34.9%); FOB (81.8%)

Table 5: Model accuracy on failed questions given the ToM task (without noise); M, R, FOB, and SOB are the memory, reality,
first- and second-order questions, respectively. The number in the parentheses is the accuracy for that question on that task.

presence of noise (see Table 4). This result is par-
ticularly interesting as it shows that none of the
models are able to use the semantics of the sen-
tences in a story in their reasoning – they are all
sensitive to the presence of distractor sentences.

Interestingly, the RelNet model is the best per-
former amongst the models we considered on the
ToM dataset, yet it is also the most sensitive to
noise. Moreover, the Multiple Observer model –
with explicit memories for each agent – is the most
robust to noise; it has the minimum decrease in
accuracy between each dataset and its noised ver-
sion.

5.4 Experimenting with Memory

In the experiments of Sukhbaatar et al. (2015) the
memory size is fixed to 50, which is necessary to
capture the entire story in memory (e.g. the answer
to the memory question in ToM may rely on infor-
mation at the beginning of a story). We observed
that smaller memory sizes artificially improved the
performance of the MemN2N and Multiple Ob-
server model on ToM tasks. For example, using a
memory size of 10, our best MemN2N model per-
formance boosts on the hardest task of ToM (FB
task with first order belief question) from 5.1%
to 97.5% and on the easiest task from 98.3% to
100.0% (SOFB task with reality question). This
result is not surprising because given a small mem-
ory size, ToM and ToM-easy are very similar tasks;
the memory size of 10 allows for at most two full
tasks in memory.

6 Related Work

Recent research has emphasized the importance
of modeling and understanding people’s mental
states for AI systems. Eysenbach et al. (2016)
created a dataset of scene-description pairs where

each scene is a set of visual frames and some
frames include people with mistaken beliefs.2 The
authors build a regression model for identifying a
mistaken belief and the person who has such a be-
lief in a given frame. Our work differs with theirs
in that we are interested in understanding whether
a model can reason about people’s true and false
beliefs to correctly answer questions as opposed
to identifying mistaken beliefs.

Grant et al. (2017) studied whether the end-to-
end memory network of Sukhbaatar et al. (2015)
can pass a false-belief test – correctly answer
where Sally would search for an object in false-
and true-belief situations. They created a dataset
inspired by the bAbi dataset to examine whether
the model can reason about interaction of beliefs
and actions in these situations – how actions cause
beliefs and vice versa. They show that MemN2N
fails at the false-belief test, and their extension of
that model with separate memories for each agent
and an observer outperforms MemN2N.

Rabinowitz et al. (2018) formulate the capacity
to reason about others’ beliefs as a meta-learning
problem. They propose a neural network, ToM-
net, that learns to predict the behavior of different
agents given their past and current trajectory. Sim-
ilarly to Grant et al. (2017), in addition to individ-
ual agents, they model an “observer” that has ac-
cess to states and actions of all agents (though this
information can be noisy and partial). Interest-
ingly, their model successfully predicts an agent’s
behavior in a false-belief situation – the agent’s be-
havior reflects its false-belief as opposed to the re-
ality of the world.

Finally, Chandrasekaran et al. (2017) take a dif-

2For example, a scene where a person gets sick eating
mushrooms is paired with the sentence “the couple mistak-
enly thinks it’s ok to eat the mushrooms”.
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ferent approach by studying whether people can
understand the “beliefs” of a visual-question an-
swering system. More specifically, they exam-
ine whether the participants can predict when the
model would fail in answering a question as well
as if they can predict the model’s answer. They
find that even with a few examples, people get bet-
ter at answering these questions.

7 Discussion

We propose a dataset for evaluating question-
answering models. Our dataset – inspired by semi-
nal theory-of-mind experiments in children – mea-
sures to what extent recently introduced neural
models can reason about beliefs and states of the
world that are potentially mututally inconsistent.
We evaluate three of the recent neural question an-
swering models (and an extension of one) on our
tasks. We find that none of the models are able
to succeed fully on a suite of tasks that requires
keeping track of inconsistent beliefs or states of
the world. These inconsistencies arise from differ-
ences between the past and the present, as well as
the mental states of agents who may have false be-
liefs about the world or about the mental states of
other agents.

The purpose of the dataset introduced in this
work is not to test advanced language fluency; in-
stead, consistency in the linguistic structure of the
tasks allows us to isolate the performance of the
models’ reasoning capabilities. Even though the
language is simple, the models struggle to achieve
good performance. Furthermore, we note that the
proposed dataset should be treated as a diagnos-
tic tool and that good performance on similar toy
tasks is not sufficient for reasoning capabilities.

References
Simon Baron-Cohen, Alan M Leslie, and Uta Frith.

1985. Does the autistic child have a theory of mind?
Cognition, 21(1):37–46.

Arjun Chandrasekaran, Deshraj Yadav, Prithvijit Chat-
topadhyay, Viraj Prabhu, and Devi Parikh. 2017. It
takes two to tango: Towards theory of AI’s mind.
arXiv preprint arXiv:1704.00717.

Benjamin Eysenbach, Carl Vondrick, and Antonio Tor-
ralba. 2016. Who is mistaken? arXiv preprint
arXiv:1612.01175.

John H Flavell. 2004. Theory-of-mind development:
Retrospect and prospect. Merrill-Palmer Quarterly,
50(3):274–290.

Alison Gopnik and Janet W Astington. 1988. Chil-
dren’s understanding of representational change and
its relation to the understanding of false belief and
the appearance-reality distinction. Child develop.,
59:26–37.

Erin Grant, Aida Nematzadeh, and Thomas L. Grif-
fiths. 2017. How can memory-augmented neural
networks pass a false-belief task. In Proceedings of
the 39th Annual Conference of the Cognitive Science
Society.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking the world
state with recurrent entity networks. In Interna-
tional Conference on Learning Representations.

Moontae Lee, Xiaodong He, Wen tau Yih, Jianfeng
Gao, Li Deng, and Paul Smolensky. 2016. Rea-
soning in vector space: An exploratory study of
question answering. In International Conference on
Learning Representations.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Josef Perner and Heinz Wimmer. 1985. “John thinks
that Mary thinks that ...” Attribution of second-order
beliefs by 5-to 10-year-old children. Journal of ex-
perimental child psychology, 39(3):437–471.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan
Zhang, S. M. Ali Eslami, and Matthew Botvinick.
2018. Machine theory of mind. In Proceedings
of the 35th International Conference on Machine
Learning.

Jack W. Rae, Jonathan J. Hunt, Tim Harley, Ivo
Danihelka, Andrew W. Senior, Greg Wayne, Alex
Graves, and Timothy P. Lillicrap. 2016. Scal-
ing memory-augmented neural networks with sparse
reads and writes. In Proceedings of 30th Conference
on Neural Information Processing Systems.

Adam Santoro, David Raposo, David G. T. Bar-
rett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy P. Lillicrap. 2017. A sim-
ple neural network module for relational reasoning.
In International Conference on Learning Represen-
tations.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Proceed-
ings of 29th Conference on Neural Information Pro-
cessing Systems, pages 2440–2448.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2016. Towards AI-complete ques-
tion answering: A set of prerequisite toy tasks. In
International Conference on Learning Representa-
tions.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2014. Memory Networks. ArXiv e-prints.


