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Abstract

Attention mechanisms are often used in deep
neural networks for distantly supervised rela-
tion extraction (DS-RE) to distinguish valid
from noisy instances. However, traditional 1-
D vector attention models are insufficient for
the learning of different contexts in the se-
lection of valid instances to predict the re-
lationship for an entity pair. To alleviate
this issue, we propose a novel multi-level
structured (2-D matrix) self-attention mecha-
nism for DS-RE in a multi-instance learning
(MIL) framework using bidirectional recurrent
neural networks. In the proposed method,
a structured word-level self-attention mecha-
nism learns a 2-D matrix where each row vec-
tor represents a weight distribution for differ-
ent aspects of an instance regarding two enti-
ties. Targeting the MIL issue, the structured
sentence-level attention learns a 2-D matrix
where each row vector represents a weight
distribution on selection of different valid in-
stances. Experiments conducted on two pub-
licly available DS-RE datasets show that the
proposed framework with a multi-level struc-
tured self-attention mechanism significantly
outperform state-of-the-art baselines in terms
of PR curves, P@N and F1 measures.

1 Introduction

Relation extraction is a fundamental task in infor-
mation extraction (IE), which studies the issue of
predicting semantic relations between pairs of en-
tities in a sentence (Zelenko et al., 2003; Bunescu
and Mooney, 2005; Zhou et al., 2005). One crucial
problem in RE is the relative lack of large-scale,
high-quality labeled data. In recent years, one
commonly used and effective technique for deal-
ing with this challenge is the distant supervision
method via knowledge bases (KBs) (Mintz et al.,
2009; Riedel et al., 2010; Hoffmann et al., 2011),
which assumes that if one entity pair appearing in

some sentences can be observed in a KB with a
certain relationship, then these sentences will be
labeled as the context of this entity pair and this
relationship. The distant supervision strategy is an
effective and efficient method for automatically la-
beling large-scale training data. However, it also
introduces a severe mislabelling problem due to
the fact that a sentence that mentions two enti-
ties does not necessarily express their relation in
a KB (Surdeanu et al., 2012; Zeng et al., 2015).

Plenty of research work has been proposed
to deal with distantly supervised data and has
achieved significant progress, especially with
the rapid development of deep neural net-
works (DNN) for relation extraction in recent
years (Zeng et al., 2014, 2015; Lin et al., 2016,
2017a; Wang et al., 2016; Zhou et al., 2016; Ji
et al., 2017; Yang et al., 2017; Zeng et al., 2017).
DNN models under an MIL framework for DS-
RE have become state-of-the-art, replacing statis-
tical methods, such as feature-based and graphi-
cal models (Riedel et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012). In the MIL frame-
work for distantly supervised RE, each entity pair
often has multiple instances where some are noisy
and some are valid. The attention mechanism in
DNNs, such as convolutional (CNN) and recurrent
neural networks (RNN), is an effective way to se-
lect valid instances by learning a weight distribu-
tion over multiple instances. However, there are
two important representation learning problems in
DNN-based distantly supervised RE: (1) Problem
I: entity pair-targeted context representation learn-
ing from an instance; and (2) Problem II: valid in-
stance selection representation learning over mul-
tiple instances. The former can use a word-level
attention mechanism to learn a weight distribu-
tion on words and then a weighted sentence rep-
resentation regarding two entities; the latter can
employ a sentence-level attention mechanism to
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learn a weight distribution on multiple instances so
that valid sentences with higher weights can be fo-
cused and selected, and noisy instances with lower
weights are suppressed.

Both the word-level and sentence-level atten-
tion mechanisms in previous work on the RE task
are simple 1-D vectors which are learned using
the hidden states of the RNN, or via pooling from
either the RNNs’ hidden states or convolved n-
grams (Zeng et al., 2014, 2015; Zhou et al., 2016;
Wang et al., 2016; Ji et al., 2017; Yang et al.,
2017). The deficiency of the 1-D attention vec-
tor is that it only focuses on one or a small number
of aspects of the sentence, or one or a small num-
ber of instances (Lin et al., 2017b), with the result
that different semantic aspects of the sentence, or
different multiple valid sentences are ignored, and
cannot be utilised.

Inspired by the structured self-attentive sen-
tence embedding in Lin et al. (2017b), we propose
a novel multi-level structured (2-D) self-attention
mechanism (MLSSA) in a bidirectional LSTM-
based (BiLSTM) (Hochreiter and Schmidhuber,
1997) MIL framework to alleviate two problems
in the distantly supervised RE. Regarding Prob-
lem I, we propose a 2-D matrix-based word-
level attention mechanism, which contains mul-
tiple vectors, each focusing on different aspects
of the sentence for better context representation
learning. In terms of Problem II, we propose a
2-D sentence-level attention mechanism for mul-
tiple instance learning, where it contains multi-
ple vectors, each focusing on different valid in-
stances for a better sentence selection. “struc-
tured” indicates that the weight vectors in the
learned 2-D matrix try to construct a structural de-
pendency relationship by learning different weight
distributions for different contexts or instances
given the entity pair. We can see that our struc-
tured attention mechanism is different from that
in Kim et al. (2017) which incorporates richer
structural distributions and are simple extensions
of the basic attention procedure. We verify the
proposed framework on two distantly supervised
RE datasets, namely the New York Times (NYT)
dataset (Riedel et al., 2010) and the DBpedia Por-
tuguese dataset (Batista et al., 2013). Experi-
mental results show that our MLSSA framework
significantly outperforms state-of-the-art baseline
systems in terms of different evaluation metrics.

The main contributions of this paper include:

(1) we propose a novel multi-level structured (2-
D) self-attention mechanism for DS-RE which
can make full use of input sequences to learn
different contexts, without integrating extra re-
sources; (2) we propose a 2-D matrix-based word-
level attention for better context representation
learning targeting two entities; (3) we propose a 2-
D sentence-level attention mechanism over mul-
tiple instances to select different valid instances;
and (4) we verify the proposed framework on two
publicly available distantly supervised datasets.

2 Related Work

Most existing work on distant supervision data
mainly focuses on denoising the data under the
MIL strategy by learning a valid sentence rep-
resentation or features, and then selecting one
or more valid instances for relation classifica-
tion (Riedel et al., 2010; Hoffmann et al., 2011;
Surdeanu et al., 2012; Zeng et al., 2015; Lin et al.,
2016, 2017a; Zhou et al., 2016; Ji et al., 2017;
Zeng et al., 2017; Yang et al., 2017).

Riedel et al. (2010) and Surdeanu et al. (2012)
use a graphical model and MIL to select the valid
sentences and classify the relations. However,
these models are based on statistical methods and
feature engineering, i.e. extracting sentence fea-
tures using other NLP tools. Zeng et al. (2015)
proposed a piece-wise CNN (PCNN) method to
automatically learn sentence-level features and se-
lect one valid instance for the relation classifi-
cation. The one-sentence-selection strategy does
not make full use of the supervision information
among multiple instances.

Lin et al. (2016) and Ji et al. (2017) introduce
an attention mechanism to the PCNN-based MIL
framework to select informative sentences, which
outperforms all baseline systems on the NYT data
set. However, their attention mechanism is only a
sentence-level model without incorporating word-
level attention. Zhou et al. (2016) introduce a
word-level attention model to the BiLSTM-based
MIL framework and obtain significant improve-
ments on the SemEval2010 (Hendrickx et al.,
2010) data set. Wang et al. (2016) extend the sin-
gle word-level attention model to multiple word
levels in CNNs to discern patterns in heteroge-
neous contexts of the input sentence, and achieve
best performance on the SemEval2010 data set.
However, these two works were not targeting the
distantly supervised RE problem.
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Yang et al. (2017) experiment with word-level
and sentence-level attention models in the bidirec-
tional RNN on the NYT dataset on the basis of
the open source DS-RE system,1 and verify that a
two-level attention mechanism achieves best per-
formance compared to PCNN/CNN models. Both
the word-level and sentence-level attention models
are 1-D vectors.

From previous work, we can see that the at-
tention mechanism in DNNs has made signifi-
cant progress on the RE task. However, both
word-level and sentence-level attention models are
still based on 1-D vectors which have the follow-
ing insufficiencies: (1) although the 1-D atten-
tion model can learn weights for different con-
texts, it only focuses on one or very few aspects
of a single sentence (Lin et al., 2017b), or one or
very few instances; (2) in order to allow the at-
tention mechanism to learn more aspects of the
sentence, or different instances, extra knowledge
needs to be integrated, such as the work in Ji et al.
(2017) and Lin et al. (2017a). The former in-
tegrates entity descriptions generated from Free-
base and Wikipedia as supplementary background
knowledge to disambiguate the entity. The latter
introduces a multilingual framework which em-
ploys a monolingual attention mechanism to uti-
lize the information within monolingual texts, and
further uses a cross-lingual attention mechanism
to consider the information consistency and com-
plementarity among cross-lingual texts. However,
extra resources are difficult to obtain in many prac-
tical scenarios.

In order to alleviate the burden of integrating
extra knowledge, and make full use of the input
sentence (i.e. learning different aspects of context
and focusing on different valid instances), we pro-
pose a multi-level structured self-attention mecha-
nism in a BiLSTM-based MIL framework without
integrating extra resources.

3 Approach

The distantly supervised RE can be formalised as
follows: given an entity pair (e1, e2), a bag G con-
taining J instances, and the relation label r for G,
the goal of the training process is to denoise these
instances by selecting valid candidates based on r,
and the goal of the testing process is to denoise
multiple instances by selecting valid candidates to

1https://github.com/frankxu2004/
TensorFlow-NRE

predict the relation r for G.
To alleviate the aforementioned two problems,

improving the following two representation learn-
ing issues is clearly important for a DNN-based
RE classifier:

• Entity pair-targeted context representation:
The model should have the capability to learn
a better context representation from the input
sentence targeting the entity pair;

• Instance selection representation: The model
should have the capability to learn a better
weight distribution over multiple instances to
select valid instances regarding an entity pair.

Motivated by these two issues, we propose a
multi-level structured self-attention framework.

3.1 Architecture

The proposed framework consists of three parts
as shown in Figure 1. The first part includes the
input layer, embedding layer and BiLSTM layer
which transform the input sequence at different
time steps to LSTM hidden states.

The second part implements the entity pair-
targeted context representation learning, includ-
ing:

• a structured word-level self-attention layer:
this generates a set of summation weight vec-
tors (or a 2-D matrix) taking the LSTM hid-
den states as input. Each vector in the 2-D
matrix represents the weights for different as-
pects of the input sentence.

• a structured context representation layer: the
weight vectors learned by the 2-D word-level
self-attention are dotted with the BiLSTM
hidden states. Accordingly, a 2-D matrix or
a set of weighted LSTM hidden state vectors,
denoted as “ML1” in Figure 1, is obtained.
Each weighted vector represents a sentence
embedding reflecting a different aspect of the
sentence targeting the entity pair. By this
means, a dependency parsing-like structure
of the input sentence can be constructed, ob-
taining different semantic representations of
the sentence for the two entities in question.

• a flattened representation layer: this concate-
nates each vector in the 2-D matrix of the
sentence embedding to one vector. Then, the

https://github.com/frankxu2004/TensorFlow-NRE
https://github.com/frankxu2004/TensorFlow-NRE
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Figure 1: Multi-level structured self-attention framework for distantly supervised RE

flattened vector connects to a 1-layer multi-
layer perceptron (MLP) with ReLU activa-
tion function, generating an aggregated sen-
tence representation.

The first and second parts operate on the single
instance level, i.e. given a bag G and feeding each
instance into the framework, the structured word-
level self-attention mechanism will construct J in-
dividual structured sentence representations corre-
sponding to J input instances.

The third part targets the instance selection rep-
resentation learning issue, and operates on the bag
level, i.e. considering weighted context represen-
tations of all instances in the bag G and learning
probability distributions to distinguish informative
from noisy sentences. This part includes:

• a structured sentence-level attention model:
this has a similar structure to the structured
word-level attention mechanism, except that

it generates a set of summation weight vec-
tors for all input instances in the same bag
G. Each vector is a weight distribution over
all instances. Accordingly, the 2-D sentence-
level matrix is expected to learn a set of dif-
ferent weight distributions focusing on differ-
ent informative instances. As a result, infor-
mative sentences are expected to contribute
more with higher weights, and noisy sen-
tences are expected to contribute less with
smaller weights, to the relation classification.

• an averaged sentence-level attention layer:
the 2-D sentence-level attention matrix is av-
eraged and converted to a 1-D vector.

• a selection representation layer: the 1-D av-
eraged attention vector is dotted with the out-
put of the flattened representation layer. Ac-
cordingly, a 1-D vector, denoted as “ML2” in
Figure 1, is obtained which represents an av-



2220

eraged weighted selection representation of
multiple sentences.

• an output layer: this connects to a softmax
layer and produces a probability distribution
corresponding to relation classes.

3.2 Structured Word-Level Self-Attention
and its Penalisation Function

Given a bag G = (S1, S2, . . . , SJ) containing J
instances, and a sentence Sj in G consisting of N
tokens, Sj can be represented using a sequence of
word embeddings, as in (1):

Sj = (e1, e2, . . . , eN ) (1)

where ei is a d-dimension vector for the i-th word,
and Sj is the j-th instance in G.

We denote the hidden state of the BiLSTM as
in (2):

H = (h1,h2, . . . ,hN)T (2)

where ht is a concatenation of the forward hidden
state

−→
h t and the backward hidden state

←−
h t at time

step t. T is the transpose operation. If the size
of each unidirectional LSTM is u, then H has the
size 2u-by-N .

Then, the structured word-level self-attention
mechanism is defined as in (3):

AL1 = softmax(WL1
s2 tanh(WL1

s1 H)) (3)

where L1 stands for the first-level attention mech-
anism, i.e. the word-level; WL1

s1 is a weight matrix
of size dL1a × 2u, where dL1a is a hyper-parameter
for the number of neurons in the attention network;
WL1

s2 is a weight matrix with the shape rL1× dL1a ,
where rL1 (rL1 > 1) is the hyper-parameter repre-
senting the size of multiple vectors in the 2-D at-
tention matrix. The size of rL1 is defined based on
how many different aspects of the sentence need
to be focused on; AL1 is the annotation matrix of
size rL1×N . We can see that in AL1, there are rL1

attention vectors for the N -token input sentence.
Finally, we compute the rL1 weighted sums by

multiplying the annotation matrix AL1 and BiL-
STM hidden states H . The resulting structured
sentence representation ML1 is (4):

ML1 = AL1H
T (4)

where ML1 has the shape rL1× 2u. It can be seen
that the traditional 1-D sentence representation is
extended to a 2-D representation (rL1 > 1).

Subsequently, the output of the flattened repre-
sentation layer for the instance Sj in G is (5):

OL1
j = ReLU(WL1

o MFT
L1 + bL1o ) (5)

where WL1
o is the weight matrix that has the shape

v-by-rL1∗2u, where v is the amount of neurons in
the ReLU -based MLP layer; MFT

L1 is the flattened
structured sentence representation which is a con-
catenated vector of each row in ML1 and has the
dimension rL1 ∗ 2u; bL1o is the bias vector of size
v; OL1

j is the aggregated sentence representation
of the j-th instance in the bag G with size v.

Then, the output of all instances in G from the
flattened representation layer is denoted as in (6):

OL1 = (OL1
1 , OL1

2 , . . . , OL1
J )T (6)

where OL1 has the shape of v × J .
As in Lin et al. (2017b), the penalisation term

for the structured word-level attention is as in (7):

PL1 = ||(AL1A
T
L1 − I)||2F (7)

where || · ||F is the Frobenius norm of a matrix. I
is an identity matrix. Minimising this penalisation
term means that we learn an orthogonal matrix for
AL1 so that each row in AL1 only focuses on a
single aspect of semantics.

3.3 Structured Sentence-Level Self-Attention
and Averaged Selection Representation

Taking OL1 as the input to the structured 2-D
sentence-level attention model, the annotation ma-
trix AL2 is calculated as in (8):

AL2 = softmax(WL2
s2 tanh(WL2

s1 OL1)) (8)

where WL2
s1 is the weight matrix of size dL2a × v,

and dL2a is the number of neurons in the atten-
tion network; WL2

s2 is the weight matrix of shape
rL2 × dL2a , where rL2 (rL2 > 1) is the hyper-
parameter representing the size of multiple vectors
in the 2-D sentence-level attention matrix. The
rL2 multiple vectors are expected to focus on dif-
ferent informative instances for the relation classi-
fication; AL2 is the sentence-level annotation ma-
trix of size rL2×J . We can see that the traditional
1-D sentence-level attention model is expanded to
a multi-vector attention (rL2 > 1).

Then, we average the 2-D AL2 to a 1-D vector
ĀL2 which has the dimension of J .

Accordingly, we calculate the averaged
weighted sum by multiplying ĀL2 and the ag-
gregated sentence representation OL1, with the
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resulting instance selection representation ML2

being (9):

ML2 = ĀL2 · (OL1)T (9)

where ML2 has the size of v.
The probability distribution of the predicted re-

lation type, i.e. the final output for relation predic-
tion, can be calculated as in (10):

p(ŷ|G) = softmax(WL2
o tanh(ML2) + bL2o ) (10)

3.4 Loss Function and Optimisation
The total loss of the network is the summation of
the penalisation term PL1, softmax loss in Eq. (10)
and the L2 regularisation loss.

We use the ADAM optimiser (Kingma and Ba,
2014) to minimize the loss function on the mini-
batch basis which is randomly selected from the
training set.

4 Experiments

4.1 Datasets
We use two distantly supervised datasets, namely
the NYT corpus (NYT) and the DBpedia Por-
tuguese dataset (PT),2 to verify our method.

In the NYT dataset, there are 53 relationships
including a special relation NA which indicates a
None Relation between two entities. The train-
ing set contains 580,888 sentences, 292,484 entity
pairs and 19,429 relational facts (Non-NA). The
test set contains 172,448 sentences, 96,678 entity
pairs and 1,950 relational facts (Non-NA). There
are 19.24% and 22.57% entity pairs corresponding
to multiple instances in the training set and test set,
respectively.

The DBpedia Portuguese dataset is smaller,
containing just 10 relationships including a spe-
cial relation Other. After preprocessing the orig-
inal dataset, we obtain 96,847 sentences, 85,528
entity pairs and 77,321 relational facts (Non-
Other). There are 8.61% entity pairs correspond-
ing to multiple instances in the whole dataset. As
in Batista et al. (2013), we use two different set-
tings for the training and test sets: (1) a manually

2There are several reasons to use the Portuguese dataset:
(i) the data sets reported in previous work, such as the
KBP data, are not publicly available, or (ii) SemEval data
sets which are not distantly supervised data. Google has
also released a dataset (https://github.com/google-research-
datasets/relation-extraction-corpus), but it is smaller and only
has 4 relation types. For all these reasons, the Portuguese data
is a better option to verify our method.

reviewed subset that contains 602 sentences (PT-
MANUAL) as the test set; and (2) 70%–30% out
of the whole data as the training set and test set,
respectively (PT-SPLIT).

4.2 Word Embeddings and Relative Position
Features

For the NYT dataset, we use the 200-dimensional
word vectors pre-trained using the NYT corpus;3

for the PT dataset, we use a pre-trained 300-
dimensional word vector model.4 For the two-
word entities in the data set, we use underscore to
connect them as one word. The word embeddings
of unknown words are intialised using the normal
distribution with the standard deviation 0.05. Sim-
ilar to previous work, we also use position embed-
dings specified by entity pairs. It is defined as the
combination of the relative distances from the cur-
rent word to head or tail entities (Zeng et al., 2014,
2015; Lin et al., 2016).

4.3 Baselines and Our MLSSA Systems

Neural RE systems have become the state-of-
the-art, such as CNN-based (Zeng et al., 2014;
Lin et al., 2017a), Piecewise CNN-based (Zeng
et al., 2015; Lin et al., 2016; Ji et al., 2017), and
BiLSTM-based (Zhou et al., 2016) models with
or without an attention mechanism. In order to
carry out a fair comparison, we select CNN+ATT,
PCNN+ATT, BiGRU+ATT (bidirectional gated
recurrent unit) and BiGRU+2ATT models as base-
lines on the NYT data, PCNN+ATT and Bi-
GRU+2ATT as baselines on the PT data, where
ATT indicates that the model has a sentence-level
attention mechanism, and 2ATT indicates that the
model has a 1-D word-level and a 1-D sentence-
level attention.5

To show the incremental effectiveness of struc-
tured 2-D word-level and 2-D sentence-level self-
attention mechanisms, we use two different set-
tings for our MLSSA system: (1) MLSSA-1: this
has a 2-D word-level self-attention and a 1-D
sentence-level attention, i.e. AL2 in Figure 1 is a
1-D vector. This system is used to verify the con-
text representation learning targeting Problem I;

3https://catalog.ldc.upenn.edu/
ldc2008t19

4https://s3-us-west-1.amazonaws.com/
fasttext-vectors/wiki.pt.vec

5All the baseline systems are obtained from https://
github.com/thunlp/NRE and https://github.
com/thunlp/TensorFlow-NRE.

https://catalog.ldc.upenn.edu/ldc2008t19
https://catalog.ldc.upenn.edu/ldc2008t19
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.pt.vec
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.pt.vec
https://github.com/thunlp/NRE
https://github.com/thunlp/NRE
https://github.com/thunlp/TensorFlow-NRE
https://github.com/thunlp/TensorFlow-NRE
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(2) MLSSA-2: both the word-level and sentence-
level attentions are structured 2-D matrices. This
system verifies the instance selection representa-
tion learning targeting Problem II.

4.4 Experiment Setup and Evaluation
Metrics

Following previous work, we use different evalu-
ation metrics on these two datasets. For the NYT
dataset:

• Overall evaluation: all training data is used
for the model training, and all test data is
used for the evaluation in terms of Precision-
Recall (PR) curves;

• P@N evaluation: we select those entity pairs
that have more than one instance to carry out
the comparison in terms of the precision at
n (P@N) measure.6 As in Lin et al. (2016),
there are three settings: (1) One: for each
testing entity pair corresponding to multiple
instances, we randomly select one sentence
to predict the relation; (2) Two: for each test-
ing entity pair with multiple instances, we
randomly select two sentences for the rela-
tion extraction; and (3) All: for each entity
pair having multiple instances, we use all of
them to predict the relation. Note that these
three selections are only applied to the test
set, and we keep all sentences in the training
data for model building.

For the PT dataset, we use Macro F1 to evaluate
system performance.7

4.5 Hyper-parameter Settings
We use cross-validation to determine the hyper-
parameters of our system regarding two different
settings and datasets. The in-common and dif-
ferent parameters for our two systems and two
datasets are shown in Table 1.

4.6 PR Curves on NYT Dataset
The comparison results for the NYT test set are
shown in Figure 2. We have the following obser-
vations: (1) BiGRU+ATT outperforms CNN+ATT

6P@N considers only the topmost results returned by the
model.

7Regarding the metric, we keep the evaluation consistent
with the work in Batista et al. (2013) where they used F1 to
measure their RE systems on the Portuguese dataset, in order
to maintain a fair comparison with their work using the same
metric.

Parameters for MLSSA-1/2 NYT PT
Word embedding dimension d 200 300
Position embedding dimension 50 50
Batch size B 64 50
Time steps T 70 70
Learning rate λ 0.001 0.001
Hidden size in BiLSTM u 300 300
dL1
a at word-level attention 300 300
rL1 at word-level attention 9 5
MLP size v 1000 1000
Coefficient of the penalisation term 1.0 1.0
Parameters for MLSSA-2 only NYT PT
dL2
a at sentence-level attention 300 300
rL2 at sentence-level attention 9 3

Table 1: Hyper-parameter settings

and PCNN+ATT in terms of the PR curve, show-
ing that it can learn a better semantic representa-
tion from the sequential input; (2) BiGRU+2ATT
has better overall performance compared to Bi-
GRU+ATT, showing that word-level attention is
beneficial to sentence-level attention compared
to single-attention models, i.e. the sentence-
level attention model can select more informa-
tive sentences based on a more reasonable sen-
tence embedding learned by the word-level atten-
tion model; (3) MLSSA-1 outperforms all baseline
systems in terms of the PR curve, which demon-
strates that the structured 2-D word-level atten-
tion model can learn a better sentence representa-
tion by focusing on different aspects of the sen-
tence, so that the sentence-level attention has a
better chance of selecting the most informative
sentences; and (4) the PR curve of MLSSA-2 is
higher than that of MLSSA-1, demonstrating that
the 2-D sentence-level attention model can better
select the most informative sentences compared to
the 1-D sentence-level attention model targeting
those entity pairs with multiple instances.

4.7 P@N Evaluation on NYT Dataset

The results on the NYT dataset regarding P@100,
P@200, P@300 and the mean of three set-
tings for each model are shown in Table 2.
From the table, we have similar observations
to the PR Curves: (1) BiGRU+2ATT outper-
forms CNN+ATT, PCNN+ATT and BiGRU+ATT
in most cases in terms of all P@N scores; and
(2) MLSSA-1 and MLSSA-2 significantly outper-
form all baselines for all measures. We observe
that MLSSA-1 performs better than MLSSA-2 on
tasks One and Two, but worse on All. We infer
that in our 2-D sentence-level attention model, we
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Test Settings One Two All
P@N(%) 100 200 300 Mean 100 200 300 Mean 100 200 300 Mean
CNN+ATT 72.0 67.0 59.5 66.2 75.5 69.0 63.3 69.3 74.3 71.5 64.5 70.1
PCNN+ATT 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2
BiGRU+ATT 75.0 69.5 64.7 69.7 80.0 72.5 69.3 73.9 82.0 76.5 71.3 76.6
BiGRU+2ATT 81.0 74.0 67.3 74.1 81.0 75.5 70.7 75.7 81.0 76.0 72.7 76.6
MLSSA-1 88.0 77.0 70.0 78.3 88.0 79.0 73.3 80.1 87.0 81.5 76.0 81.5
MLSSA-2 87.0 76.0 70.0 77.7 89.0 78.5 72.3 79.9 90.0 81.5 77.0 82.8

Table 2: Precision values for the top-100, top-200, and top-300 relation instances that are randomly selected in
terms of one, two and all sentences.

Figure 2: Comparison results of a variety of methods
in terms of precision/recall curves.

set rL2 to 9, but there are only one and two in-
stances for selection in tasks One and Two, so the
2-D matrix cannot demonstrate its full potential.
However, in All, many entity pairs contain multi-
ple or more than 9 instances, so it can learn a better
2-D matrix to focus on different instances.

4.8 Results on PT Dataset

Based on results from the NYT dataset, we choose
PCNN+ATT and BiGRU+2ATT as representative
baselines to compare against our MLSSA-1/2 sys-
tems on the PT test sets. The results in terms of
Macro F1 are shown in Table 3.

It can be seen that on both test sets, our
MLSSA-2 model achieved the best performance
which shows that the structured 2-D word-level
and sentence-level self-attention models can be
well applied to datasets of a smaller scale and with
a smaller ratio of multiple instances.

4.9 Examples and Analysis

In order to show the effectiveness of structured
self-attention mechanisms, we show some exam-

SYS PT-MANUAL (%) PT-SPLIT (%)
PCNN+ATT 62.3 74.1
BiGRU+2ATT 63.5 75.3
MLSSA-1 66.0 77.2
MLSSA-2 69.6 78.1

Table 3: Results on the PT test sets

ples by visualising the attentions on different as-
pects of a sentence, and on different sentences
comparing with BiLSTM+2ATT model.

Figure 3 shows the comparison of word-level
attention mechanism between BiGRU+2ATT and
MLSSA-1 reflecting their capability of context
representation learning (Problem I). MLSSA-2
has a similar probability distribution to MLSSA-
1 in terms of this example.

The pink fonts indicate lower probability and
red indicates higher probability. We observe that:
(1) BiGRU+2ATT mainly focuses on one word
baltimore. We can see that it has little attention
on the entity word maryland. In this example,
the comma implies a semantic relationship loca-
tion/location/contains for the entity pair (Mary-
land, Baltimore). However, BiGRU+2ATT allo-
cates quite a small probability to it; and (2) we
can see that our model focuses on different words
via different attention vectors (9 in total). Words
with a red background have a high probability of
0.98 or so. For rows 5, 6, 8 and 9, the focus is
on the BLANK tokens. In both systems, the max-
imum time step is set to 70, which indicates that
shorter sentences are padded with BLANK tokens
and longer sentences are cut off. The last row
shows the summation of 9 annotation vectors, and
it constructs a dependency-like context of the re-
lation for the entity pair. Attentions on different
words are attributed to the penalisation PL1 which
is optimised to learn orthogonal eigenvectors.

Figure 4 shows the comparison of sentence-
level attentions between BiGRU+2ATT, MLSSA-
1 and MLSSA-2. The first, second and third
columns are probability distributions over multi-
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Figure 3: Comparison of word-level attentions.

Figure 4: Comparison of sentence-level attentions.

ple instances. The entity pair is (vinod khosla,
sun microsystems), and their relation is Busi-
ness/Person/Company. From this figure, we ob-
serve that: (1) BiGRU+2ATT allocates high prob-
abilities to Sentences 1 and 2 by learning the
context of “a founder of”, but does not recog-
nise that “co-founder” is semantically the same
as “founder”; and (2) our two models almost
evenly focus on all sentences because they ex-
press the same semantic concept of “a person is
a founder of a company” in terms of the given en-
tity pair. Therefore, the structured self-attention
mechanism is helpful to learn a better representa-
tion and select informative sentences.

5 Conclusion and Future Work

This paper has proposed a multi-level structured
self-attention mechanism for distantly supervised
RE. In this framework, the traditional 1-D word-
level and sentence-level attentions are extended to
2-D structured matrices which can learn differ-
ent aspects of a sentence, and different informa-
tive instances. Experimental results on two dis-
tant supervision data sets show that (1) the struc-
tured 2-D word-level attention can learn a bet-
ter sentence representation; (2) the structured 2-
D sentence-level attention and averaged selec-
tion can perform better selection from multiple in-
stances for relation classification; (3) the proposed
framework significantly outperforms state-of-the-

art baseline systems for a range of different mea-
sures, which verifies its effectiveness on two rep-
resentation learning issues. A subsequent manual
investigation via examples also show its effective-
ness on two representation learning issues.

In future work, we will build a domain-specific
distant supervision dataset with a higher ratio of
multiple instances and compare our system with
others. Furthermore, we will consider not using
RNNs or CNNs, but a deeper neural networks with
only attentions for distantly supervised RE, similar
to the work in Vaswani et al. (2017).
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