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Abstract

Machine reading comprehension helps ma-
chines learn to utilize most of the human
knowledge written in the form of text. Existing
approaches made a significant progress com-
parable to human-level performance, but they
are still limited in understanding, up to a few
paragraphs, failing to properly comprehend
lengthy document. In this paper, we propose a
novel deep neural network architecture to han-
dle a long-range dependency in RC tasks. In
detail, our method has two novel aspects: (1)
an advanced memory-augmented architecture
and (2) an expanded gated recurrent unit with
dense connections that mitigate potential in-
formation distortion occurring in the memory.
Our proposed architecture is widely applicable
to other models. We have performed exten-
sive experiments with well-known benchmark
datasets such as TriviaQA, QUASAR-T, and
SQuAD. The experimental results demonstrate
that the proposed method outperforms existing
methods, especially for lengthy documents.

1 Introduction

Most of the human knowledge has been stored in
the form of text. Reading comprehension (RC) to
understand this knowledge is a major challenge
that can vastly increase the range of knowledge
available to the machines. Many neural network-
based methods have been proposed, pushing per-
formance close to a human level. Nonetheless,
there still exists room to improve the performance
especially in comprehending lengthy documents
that involve complicated reasoning processes. We
identify the main bottleneck as the lack of the
long-term memory and its improper controlling
mechanism.

Previously, several memory-augmenting meth-
ods have been proposed to solve the long-term de-
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pendency problem. For example, in relatively sim-
ple tasks such as bAbI tasks (Weston et al., 2015),
Graves et al. (2014, 2016); Henaff et al. (2017)
proposed methods that handle the external mem-
ory to address long-term dependency. Inspired by
these approaches, we develop a customized mem-
ory controller along with an external memory aug-
mentation (Graves et al., 2016) for complicated
RC tasks. However, we found that the memory
controller is susceptible to information distortion
as neural networks become deeper, this distortion
can hinder the performance.

To overcome this issue, we propose two novel
strategies that improve the memory-handling ca-
pability while mitigating the information distor-
tion. We extend the memory controller with a
residual connection to alleviate the information
distortion occurring in it. We also expand the
gated recurrent unit (GRU) (Cho et al., 2014)
with a dense connection that conveys enriched
features to the next layer containing the origi-
nal as well as the transformed information. We
conducted extensive experiments through several
benchmark datasets such as TriviaQA, QUASAR-
T, and SQuAD. The results show that the proposed
model outperforms all the published results. We
also integrated the proposed memory controller
and the expanded GRU cell block with other ex-
isting methods to ensure that our proposed compo-
nents are widely applicable. The results show that
our components consistently bring performance
improvement across various state-of-the-art archi-
tectures.

The main contributions of this work include the
following: (1) We propose an extended memory
controller module for RC tasks. (2) We propose a
densely connected encoder block with self atten-
tion to provide rich representation of given data,
reducing information loss due to deep layers of the
network. (3) We present the state-of-the-art results
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in lengthy-document RC tasks such as TriviaQA
and QUASAR-T as well as relatively short docu-
ment RC tasks such as SQuAD.

2 Proposed Method

This section presents two of our proposed compo-
nents in detail, as depicted in Figure 1.

2.1 Memory Controller
Our first proposed component is an advanced ex-
ternal memory controller module for solving RC
tasks. We modified the recently proposed mem-
ory controller (Graves et al., 2016) by using our
new encoder block and layer-wise residual con-
nections. These modifications enable the memory
controller to reason over a lengthy document, lead-
ing to the overall performance improvement.

This layer takes input as a sequence of vec-
tor representations corresponding to individual to-
kens, dt ∈ Rl, where l is the given vector dimen-
sion. For example, such input can be the output of
the co-attention layer in Section 3. The operation
of this layer is defined as

ot, it = Controller(dt,Mt−1).

That is, at time step t, the controller generates an
interface vector it for read and write operations
and an output vector ot based on the input vec-
tor dt and the external memory content from the
previous time step, Mt−1 ∈ Rp×q, where p is the
memory size and q is the vector dimension of each
memory.

Through this controller, we encode an input
D = {dt}nt=1 to {xt}nt=1 by using the encoder
block, i.e.,

{xt}nt=1 = EncoderBlockx(D) ∈ Rn×k,

where k is the output dimension of the encoder
block. In general, this block is implemented as a
recurrent unit, e.g., GRU (Cho et al., 2014). In our
model, we replace it with our dense encoder block
with self attention (DEBS), as will be discussed in
Section 2.2.

To generate a memory-augmented vector zt, we
concatenate xt with the vectors read from the pre-
vious time step memory, Mt−1, i.e.,

zt = [xt;m
1
t−1; · · · ;ms

t−1] ∈ Rk+sq,

where s represents the number of read heads in the
memory interface. We then feed the vector zt to

the bi-directional GRU (BiGRU) layer and obtain
the output vector hm

t as

hm
t = BiGRU(zt,h

m
t−1,h

m
t+1) ∈ R2l.

Afterwards, we generate output vector vt as the
weighted sum of the BiGRU output and read vec-
tors from the memory in the current step, i.e.,

vt = Whh
m
t +Wm[m1

t ; · · · ;ms
t ] ∈ R2l.

Finally, we add a residual connection between the
input dt and the output vt to mitigate any possible
information distortion that can occur while access-
ing the memory, resulting in a the output vector
that can handle long-term dependency, i.e.,

ot = ReLU(Wvvt + dt) ∈ Rl.

For further details on how the interface vector
works, we refer the readers to Graves et al. (2016)
as well as our supplemental material.

2.2 Dense Encoder Block with Self Attention
The second novel component we propose is a
dense encoder block with self attention (DEBS),
which further improves a GRU cell. Recently,
Huang et al. (2017a) proposed that adding a con-
nection between each layer to the other layers in
convolution networks can help to properly convey
the information across multiple layers. Inspired
by this, we add such dense connections that con-
catenate the input to a particular layer to its out-
put. We also add a self-attention module to this
block, to properly address long-term dependency
in a length document. In this manner, our en-
coder block maintains the necessary information
not only along the vertical direction (across layers)
through dense connections but also along the hor-
izontal direction (across time steps) through self
attention.

DEBS takes the input vector sequence with its
length as n and transforms each vector to an l-
dimensional vector pt through the fully connected
layer with ReLU as a nonlinear unit and generates
a contextually encoded vector rt as

rt = BiGRU(pt, rt−1, rt+1) ∈ R2l.

Then we concatenate each output vector rt to the
projected input pt to obtain gt = [rt;pt] ∈ R3l

and pass it to the self-attention layer. The self-
attention layer then calculates the similarity map
Sg ∈ Rn×n using the tri-linear function as

sgij = wa · gi +wb · gj +wf · (gi � gj),
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Figure 1: Overview of our model (A) and dense encoder block with self attention (B).

where i, j = 1, . . . , n. Finally, the self-attended
representation Q = {qt}nt=1 is obtained by per-
forming column-wise softmax on Sg to get the at-
tention matrix Ag, which is further multiplied with
G = {gt}nt=1, i.e.,

Q = AgG ∈ Rn×3l.

The final output is obtained as the concatenation
of outputs from the recurrent layer (BiGRU) and
the self-attention layer, i.e., [rt;qt] ∈ R5l.

3 Reading Comprehension Model with
Proposed Components

We apply the proposed components to our model
for RC tasks. As depicted in Figure 1, the model
consists of three major layers: the co-attention
layer, the memory controller, and the prediction
layer. Given the embeddings of a question and a
document, the co-attention layer generates query-
aware contextual representations. The memory
controller further refines these contextual repre-
sentations using an external memory. Based on
such representations, the prediction layer deter-
mines the start and the end token indices that form
the answer span. In addition, we replace all the en-
coder block with DEBS in the three major layers.

Embedding. We incorporate both word- and
character-level embedding methods to obtain the
vector representation of each word in the input

data. For word-level embedding ew, we utilize
pre-trained, 300-dimensional embedding vectors
from GloVe 6B (Pennington et al., 2014). The
character-level word embedding ec is obtained as
a 100-dimensional vector by first applying a con-
volution layer with 100 filters to a sequence of 20-
dimensional character embeddings learned dur-
ing training and by further applying global max-
pooling over the entire character-level sequence.
Then we obtain the embedding vector of a given
word token, e, by concatenating these word- and
character-level embeddings, i.e., e = [ew; ec] ∈
R400.

Finally, we obtain the two sets of embedding
vectors of question and document token sequences
as Eq = {equ}mu=1 ∈ Rm×400 and Ed ={
edt
}n
t=1
∈ Rn×400, where m and n represent the

sequence length of a question and a document, re-
spectively.

Co-attention layer. Given Eq and Ed, we feed
each of them into the encoder block and obtain
their contextual representations as

Cq = {cqu}mu=1 = EncoderBlockq(Eq) ∈ Rm×k

Cd = {cdt }nt=1 = EncoderBlockd(Ed) ∈ Rn×k.

These representations are used to calculate the
pairwise similarity matrix S ∈ Rm×n between to-
kens in the question and those in the document by
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a tri-linear function (Seo et al., 2017), i.e.,

sij = wq · cqi +wd · cdj +wc · (cqi � cdj ),

where i = 1, . . . ,m, j = (1, . . . , n), and � rep-
resents the element-wise multiplication and wq,
wd, and wc are trainable vectors. We apply
column-wise softmax to S to obtain the document-
to-question attention matrix A. Afterwards, a
question-attended document representation C̃q is
calculate as

C̃q = {c̃qt}
n
t=1 = ATCq ∈ Rn×k.

In addition to this, we obtain vector ã ∈ Rn, cor-
responding to the attention of a question to docu-
ment tokens, by applying softmax to the column-
wise max values of S. Then document-attended
question vector is obtained by

c̃d =

n∑
t=1

ãtc
d
t ∈ Rk.

The final co-attended representations {dt}nt=1 is
obtained by fully connected layer with ReLU as
a nonlinear unit, ϕ, as

dt = ϕ([cdt ; c̃
q
t ; c

d
t � c̃qt ; c

d
t � c̃dt ]) ∈ Rl.

Memory controller. This layer takes the out-
put of the co-attention layer {dt}nt=1 as input
and refine their representations using our proposed
memory controller (Section 2.1). Afterwards, the
resulting output vector {ot}nt=1 are given as input
to the prediction layer.

Prediction layer. We feed the output of the
memory controller {ot}nt=1 to the prediction layer
to predict the start and the end token indices of
the answer span. First, it goes through the encoder
block followed by the fully connected layer with
softmax over the entire sequence to compute the
probability distribution of a start index. The prob-
ability distribution of the end index is calculated
by concatenating the output of the encoder block
for the start index with the output of the memory
controller and then by feeding them as input to an-
other encoder block. These probability distribu-
tions are used as part of the negative log-likelihood
objective function.

4 Experimental Setup

Datasets and preprocessing. We perform ex-
tensive experiments with well-known benchmarks

Dataset
Total

AWC
Train / Dev / Test

SQuAD 87,599 / 10,570 / UNK 142
QUASAR-T

25,465 / 2,043 / 2,068 221
(Short)

QUASAR-T
26,318 / 2,129 / 2,102 392

(Long)

TriviaQA
528,979 / 68,621 / 65,509 631

(Web)

TriviaQA
110,648 / 14,229 / 13,661 955

(Wikipedia)

Table 1: Statistics of datasets in terms of the av-
erage word count per document (AWC). In Triv-
iaQA, AWC was calculated after truncating each
document to 1,200 words.

such as TriviaQA, QUASAR-T, and SQuAD, as
summarized in Table 1. In most of these datasets,
a question q and a document d are represented as
a sequence of words, and the answer span has to
be selected from the document words based on the
question. SQuAD consists of crowd-sourced ques-
tions and paragraphs from Wikipedia articles con-
taining the answer to these questions. QUASAR-
T is mostly based on factoid questions with their
corresponding, large-sized corpus. TriviaQA is
composed of question-answer pairs obtained from
14 trivia and quiz-league websites, along with the
documents collected later that are likely to contain
the answer from either web search or Wikipedia.
In TriviaQA dataset, we truncate each document to
1,200 words. Even with such truncation, the aver-
age word count per document (AWC) of TriviaQA
is approximately four times larger than that of
SQuAD. In terms of the AWC, documents in Triv-
iaQA, QUASAR-T, and SQuAD can be viewed as
large-, medium-, and small-length documents, re-
spectively.

In TriviaQA dataset, because a document is col-
lected separately for an already collected question-
answer pair, the document does not sometimes
have the information to properly infer the answer
to the question. In response, Clark and Gard-
ner (2017) attempted to solve this problem by ex-
posing both relevant and irrelevant paragraphs to-
gether separated based on TF-IDF scores. We fol-
low this approach in TriviaQA. In QUASAR-T,
we follow the same preprocessing steps done by
Dhingra et al. (2017).

Implementation details. We use TensorFlow1

1http://www.tensorflow.org
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Domain Model
Full Verified

AF
EM F1 EM F1

Web Our model (with DEBS) 68.21 73.26 82.57 86.05
(AWC=631) Our model (without DEBS) 66.82 71.91 81.01 84.12

BiDAF + SA + SN (Clark and Gardner, 2017) 66.37 71.32 79.97 83.70
Reading Twice for NLU (Weissenborn, 2017) 50.56 56.73 63.20 67.97 X
M-Reader (Hu et al., 2017) 46.65 52.89 56.96 61.48 X
BiDAF + DNC 42.34 48.65 51.50 57.17
MEMEN (Pan et al., 2017) 44.25 48.34 53.27 57.64 X
BiDAF (Seo et al., 2017) 40.74 47.05 49.54 55.80

Wikipedia Our model (with DEBS) 64.12 69.44 71.75 76.91
(AWC=955) Our model (without DEBS) 64.41 69.60 70.21 75.49

BiDAF + SA + SN (Clark and Gardner, 2017) 63.99 68.93 67.98 72.88
QANet (Yu et al., 2018a) 51.10 56.60 53.30 59.20
Reading Twice for NLU (Weissenborn, 2017) 48.60 55.10 53.40 59.90 X
M-Reader (Hu et al., 2017) 46.94 52.85 54.45 59.46 X
BiDAF + DNC 42.57 48.30 46.23 51.61
MEMEN (Pan et al., 2017) 43.16 46.90 49.28 55.83 X
BiDAF (Seo et al., 2017) 40.32 45.91 44.86 50.71

Table 2: Single model results on TriviaQA (Web and Wikipedia) dataset. All the results are gathered from
their corresponding publications except for our models and ‘BiDAF + DNC,’ which we implemented on
our own. ‘Full’ represents a complete dataset not guaranteed to contain relevant information to answer the
question while ‘Verified’ corresponds to its subset annotated by humans so that the relevant information
for the answer is guaranteed to exist. The last column indicates whether a model uses any additional
feature augmentation (AF).

to build the model and Sonnet2 to implement the
memory interface. NLTK (Bird and Loper, 2004)
is used for tokenizing words. In the memory con-
troller, we use four read heads and one write head,
and the memory size is set to 100 × 36, with all
initialized as 0. The hidden vector dimension l is
set to 200. We use AdaDelta (Zeiler, 2012) as an
optimizer with a learning rate of 0.5. The batch
size is set to 20 for TriviaQA (Joshi et al., 2017)
and 30 for SQuAD (Rajpurkar et al., 2016) and
QUASAR-T (Dhingra et al., 2017). We use an ex-
ponential moving average of weights with a de-
caying factor of 0.001. Our model does require
more memory than existing methods, but a single
GPU (e.g., M40 with 12GB memory) was enough
to train model within a reasonable amount of time.

5 Quantitative Results

For our quantitative comparisons, we use BiDAF
with self attention (Clark and Gardner, 2017) as
a baseline, which maintains the best results pub-
lished on both TriviaQA and SQuAD datasets. In
TriviaQA and QUASAR-T dataset, we compare
our model with BiDAF (Seo et al., 2017) as well as

2https://github.com/deepmind/sonnet

its variant called ‘BiDAF + DNC,’ which is aug-
mented with an existing external memory archi-
tecture (Graves et al., 2016) just before the answer
prediction layer in the BiDAF.

Overall, in lengthy-document cases such as
TriviaQA and QUASAR-T, our model outper-
forms all the published results, as seen in Tables
2 and 3, while in the short-document case such
as SQuAD, we mostly achieve the best results, as
seen in Table 4. In the following, we present de-
tailed analyses on each dataset.

TriviaQA. As shown in Table 2, our model,
even without DEBS, outperforms the existing
state-of-the-art method such as ‘BiDAF + SA +
SN’ by a large margin in all the cases. Our
model with DEBS, which replaces BiGRU en-
coder blocks, performs even better than that with-
out it in all the cases except for the combina-
tion of the ‘full’ and ‘Wikipedia’ case, which in-
volves documents containing no relevant informa-
tion for the answer. Among those methods shown
in Table 2, Reading Twice for NLU (Weissenborn,
2017) uses background knowledge from Concept-
Net while both M-Reader (Hu et al., 2017) and
MEMEN (Pan et al., 2017) use POS and NER in-
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Dataset Model
Dev set Test set

EM F1 EM F1
Short documents Our model (with DEBS) 65.06 69.17 69.11 71.19

(AWC=221) Our model (without DEBS) 64.87 68.88 68.13 70.32
BiDAF + DNC 51.18 54.77 54.81 58.24

BiDAF (Seo et al., 2017) 45.40 50.90 47.60 52.40
Long documents Our model (with DEBS) 62.08 65.21 63.54 66.87

(AWC=392) Our model (without DEBS) 60.05 63.23 63.44 65.19
BiDAF + DNC 48.67 52.25 52.15 54.43

BiDAF (Seo et al., 2017) 37.00 42.50 39.50 44.50
Table 3: Performance results on QUASAR-T dataset.

39320 13434 4370 2213 1370 932 704 466 91939320 13434 4370 2213 1370 932 704 466 919
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(a) TriviaQA (Web).
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Figure 2: F1 score on the development set in TriviaQA (Web) and SQuAD with respect to the minimum
anchor distance.

formation as additional features. We note that our
method achieves these outstanding results without
any additional features.

QUASAR-T. As shown in Table 3, our simple
baseline ‘BiDAF + DNC,’ which involves an exist-
ing memory architecture, improves performance
over BiDAF, indicating the efficacy of incorpo-
rating an external memory. Moreover, our model
with the proposed memory controller achieves sig-
nificantly better results compared to other mod-
els. Furthermore, another proposed component,
DEBS, gives an additional performance boost to
our model.

SQuAD. As shown in Table 4, most of the
models, if not all, use additional features such as
ELMo (Peters et al.), and the self-attention mecha-
nism to further improve the performance. We also
adopt these mechanisms one by one to show that
our model can also benefit from these. First, we
adopt ELMo to our model (without DEBS), which
uses word embedding as the weighted sum of the

hidden layers of a language model with regulariza-
tion as an additional feature to our word embed-
dings. This improves the F1 score of our model
up to 85.13 and EM to 77.44, showing the highest
performances among all the methods without us-
ing self attention. Due to the relatively short docu-
ment length in SQuAD compared to TriviaQA and
QUASAR-T, our model without DEBS performs
worse than the baseline ‘BiDAF + Self Attention
+ ELMo.’ However, after applying DEBS, our
model outperforms the baseline, achieving 86.73
F1 and 79.69 EM.

Minimum anchor distance. Rajpurkar et al.
(2016) proposed the difficulty measure called syn-
tactic divergence, which is computed as the edit
distance between syntactic parse trees of the ques-
tion and the sentence containing the answer. How-
ever, this measure has limitations that the syntac-
tic parser does not work properly on incomplete
sentences, which are common in web text. It also
becomes difficult to compute this measure if the
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Model
Test set

AF SA
EM F1

Our model (with DEBS) + ELMo 79.69 86.73 X X
BiDAF + Self Attention + ELMo (Peters et al.) 78.58 85.83 X X
Our model (without DEBS) + ELMo 77.44 85.13 X
RaSoR + TR + LM (Salant and Berant, 2017) 77.58 84.16 X
QANet (Yu et al., 2018a) 76.24 84.60 X X
SAN (Liu et al., 2017b) 76.83 84.40 X X
FusionNet (Huang et al., 2017b) 75.97 83.90 X X
RaSoR + TR (Salant and Berant, 2017) 75.79 83.26 X
Conducter-net (Liu et al., 2017a) 74.41 82.74 X X
Reinforced Mnemonic Reader (Hu et al., 2017) 73.20 81.80 X X
BiDAF + Self Attention (Clark and Gardner, 2017) 72.14 81.05 X
MEMEN (Pan et al., 2017) 70.98 80.36 X
Our model (without DEBS) 70.99 79.94
r-net (Wang et al., 2017) 71.30 79.70 X
Document Reader (Chen et al., 2017) 70.73 79.35 X
FastQAExt (Weissenborn et al., 2017) 70.85 78.86 X
Human Performance 82.30 91.22

Table 4: Single model results on SQuAD. All the other results than ours are those reported in their own
publications. The last two column indicate whether a model uses any additional feature augmentation
(AF) and self attention (SA).

answer requires multi-sentence inference.
Instead, we develop our own metric called a

minimum anchor distance, which is simple and
robust to noisy text. To compute this metric, we
first identify for all the co-occurring words (an-
chor words) between a document and a question
while ignoring stop words. Then, we compute the
number of words found between the answer and
all the possible anchor words and select the mini-
mum number from these.

In Figure 2, we show F1 scores of our model
with DEBS and the baseline with respect to
the minimum anchor distance. The scores are
obtained from the development set of Trivi-
aQA(Web) and SQuAD. The heat map at the bot-
tom of the figure indicates the number of samples
in each interval of the minimum anchor distance.
One can see that our model performs increasingly
better than the baseline as the minimum anchor
distance gets larger. The examples shown in Ta-
ble 5 indicate that documents with long dependen-
cies tend to have a large minimum anchor distance.
These examples show that our model predicts the
remotely placed answer from the anchor word rel-
atively well when anaphora resolution and nega-
tion are involved.

Ablation study with an encoder block. We
assume that the concatenation of the layer outputs

in DEBS helps the memory controller store con-
textual representations clearly. To see how DEBS
affects the memory controller depending on differ-
ent positions in the entire network, we conducted
an ablation study by replacing the encoder block
with DEBS on SQuAD. As can be seen in Table 6,
using DEBS in all the places improves the perfor-
mance most, and furthermore, the memory con-
troller with DEBS gives the largest performance
margin. This implies that DEBS can generally
work as a better alternative to a BiGRU module,
and DEBS is critical in maintaining the high per-
formance of our proposed memory controller.

Adding our proposed modules to other mod-
els. To show the wide effectiveness of our pro-
posed approaches, we choose two well-known
baseline models in SQuAD: R-net (Wang et al.,
2017) and ‘BiDAF + Self Attention’ (Clark and
Gardner, 2017). These models have similar archi-
tectures where the model first pairs a given ques-
tion and document pair using an attention and af-
terward applies a self-attention mechanism. We
use the publicly available implementation of these
models3,4. In Table 7, replacing all the recur-
rent units with DEBS and adding our memory
controller between the question-document pairing

3https://github.com/HKUST-KnowComp/R-Net
4https://github.com/allenai/document-qa
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Dataset Example
Question : What claimed the life of singer Kathleen Ferrier?
Context : (omit) · · · Kathleen Ferrier (22.III.1912 Higher Walton, Lancashire- 8.X.

TriviaQA 1953 London, England ) was an English contralto singer* who achieved an international
(Web) reputation with a repertoire extending from folksong and popular ballads to the classical

works. Her death from cancer , at the height of her fame, was a shock to the musical
world and particularly to the general public, which was kept in ignorance of · · · (omit)
Question : What did Mote think the Yuan class system really represented?
Context : The historian Frederick W.Mote wrote that the usage of the term “social

SQuAD classes” for this system was misleading and that the position of people within the four
-class system* was not an indication of their actual social power and wealth, but just
entailed “degrees of privilege” to which they were entitled institutionally and legally,
so a person’s standing within the classes was not a guarantee of their standing, · · · (omit)

*A word with an asterisk indicates an anchor word closest to the ground truth answer.

Table 5: Examples in TriviaQA (Web) and SQuAD. Italic means the ground truth answer, frame in-
dicates the prediction of our model (with DEBS) and underline shows the prediction of ‘BiDAF + Self
Attention’ model.

Adding DEBS Dev
C M P EM F1

77.22 85.01
X 77.31 85.22
X X 77.75 85.34
X X 78.70 86.12
X X X 78.93 86.26

Table 6: Ablation study of replacing an encoder
block with DEBS in the co-attention layer (C), the
memory controller (M), and the prediction layer
(P) in SQuAD. Xmeans that DEBS is used. Oth-
erwise, BiGRU is used.

layer and the self-attention layer increases the F1
score by around 0.5 compared to the baseline.

6 Related Work

Numerous neural network-based methods have
been proposed, pushing the performance nearly
up to a human level. Although slight differ-
ences exist, (Wang et al., 2017; Seo et al., 2017;
Xiong et al., 2017) mostly leverage the question-
document co-attention based on their pairwise
similarity of word-level vector representations.
These models currently work as the backbone ar-
chitecture for many other models. Furthermore,
Wang et al. (2017) suggest utilizing a self attention
mechanism between tokens within a document to
refine contextual representations.

Salant and Berant (2017); Chen et al. (2016);
Pan et al. (2017); Weissenborn (2017); Peters et al.
focus on augmenting feature representations in the

Base Adapt- Dev
model ation EM F1

R-net3 - 70.71 (0.07) 79.48 (0.08)
X 71.12 (0.12) 79.99 (0.11)

BiDAF - 71.61 (0.07) 80.78 (0.08)
+SA4 X 72.82 (0.15) 81.33 (0.09)

Table 7: Effects of our proposed components added
to R-net and ‘BiDAF + Self Attention (SA)’ on
SQuAD. The values in parentheses represent the
standard deviation from 6 runs. The first row of
each base model indicates the result of the original
methods. When adding the proposed component,
DEBS is used in the place of all the recurrent lay-
ers while the memory controller is added between
the co-attention and the self-attention layers.

word embedding layer to provide rich information.
Salant and Berant (2017); Weissenborn (2017);
Peters et al. extract and use additional features
from other neural models trained for another task
or external resources. Chen et al. (2016); Pan et al.
(2017) utilize additional syntactic or semantic fea-
tures through part-of-speech tagging or named-
entity recognition, etc.

Enriching the input representation from pre-
trained external models has been shown to be
useful in improving RC task performances. Yu
et al. (2018a) have also improved the performance
by leveraging self attention for context encoding
based on convolutional neural networks. Hu et al.
(2017) refine the contextual representation with
multiple hops, and Pan et al. (2017) use the en-
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coded query for refining the answer prediction as
a memory, which are different from our work in
terms of handling long-range dependency.

7 Conclusion

This paper proposed two novel, crucial compo-
nents for deep neural network-based RC tasks, (1)
an advanced memory controller architecture and
(2) a densely connected encoder block with self
attention. We showed the effectiveness of these
approaches in handling long-range dependencies
using three benchmark RC datasets such as Triv-
iaQA, QUASAR-T, and SQuAD. Our proposed
modules are widely applicable to other models to
improve their performance. Future work includes
developing a scalable read/write accessing mech-
anism to handle a large-scale external memory to
reason over multiple documents.
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