
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1325–1337
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

1325

Synthetic Data Made to Order: The Case of Parsing

Dingquan Wang and Jason Eisner
Department of Computer Science, Johns Hopkins University

{wdd,jason}@cs.jhu.edu

Abstract

To approximately parse an unfamiliar lan-
guage, it helps to have a treebank of a sim-
ilar language. But what if the closest avail-
able treebank still has the wrong word order?
We show how to (stochastically) permute the
constituents of an existing dependency tree-
bank so that its surface part-of-speech statis-
tics approximately match those of the target
language. The parameters of the permuta-
tion model can be evaluated for quality by dy-
namic programming and tuned by gradient de-
scent (up to a local optimum). This optimiza-
tion procedure yields trees for a new artificial
language that resembles the target language.
We show that delexicalized parsers for the tar-
get language can be successfully trained using
such “made to order” artificial languages.

1 Introduction

Dependency parsing is a core task in natural lan-
guage processing (NLP). Given a sentence, a
dependency parser produces a dependency tree,
which specifies the typed head-modifier relations
between pairs of words. While supervised de-
pendency parsing has been successful (McDonald
and Pereira, 2006; Nivre, 2008; Kiperwasser and
Goldberg, 2016), unsupervised parsing can hardly
produce useful parses (Mareček, 2016). So it is
extremely helpful to have some treebank of super-
vised parses for training purposes.

1.1 Past work: Cross-lingual transfer
Unfortunately, manually constructing a treebank
for a new target language is expensive (Böhmová
et al., 2003). As an alternative, cross-lingual
transfer parsing (McDonald et al., 2011) is some-
times possible, thanks to the recent development
of multi-lingual treebanks (McDonald et al., 2013;
Nivre et al., 2015; Nivre et al., 2017). The idea
is to parse the sentences of the target language
with a supervised parser trained on the treebanks
of one or more source languages. Although the
parser cannot be expected to know the words of
the target language, it can make do with parts of

speech (POS) (McDonald et al., 2011; Täckström
et al., 2013; Zhang and Barzilay, 2015) or cross-
lingual word embeddings (Duong et al., 2015; Guo
et al., 2016; Ammar et al., 2016). A more serious
challenge is that the parser may not know how to
handle the word order of the target language, un-
less the source treebank comes from a closely re-
lated language (e.g., using German to parse Lux-
embourgish). Training the parser on trees from
multiple source languages may mitigate this issue
(McDonald et al., 2011) because the parser is more
likely to have seen target part-of-speech sequences
somewhere in the training data. Some authors
(Rosa and Žabokrtský, 2015a,b; Wang and Eis-
ner, 2016) have shown additional improvements
by preferring source languages that are “close” to
the target language, where the closeness is mea-
sured by distance between POS language models
trained on the source and target corpora.

1.2 This paper: Tailored synthetic data
We will focus on delexicalized dependency pars-
ing, which maps an input POS tag sequence to
a dependency tree. We evaluate single-source
transfer—train a parser on a single source lan-
guage, and evaluate it on the target language. This
is the setup of Zeman and Resnik (2008) and
Søgaard (2011a).

Our novel ingredient is that rather than seek a
close source language that already exists, we cre-
ate one. How? Given a dependency treebank of
a possibly distant source language, we stochasti-
cally permute the children of each node, accord-
ing to some distribution that makes the permuted
language close to the target language.

And how do we find this distribution? We adopt
the tree-permutation model of Wang and Eisner
(2016). We design a dynamic programming algo-
rithm which, for any given distribution p in Wang
and Eisner’s family, can compute the expected
counts of all POS bigrams in the permuted source
treebank. This allows us to evaluate p by com-
puting the divergence between the bigram POS
language model formed by these expected counts,

1326

and the one formed by the observed counts of POS
bigrams in the unparsed target language. In order
to find a p that locally minimizes this divergence,
we adjust the model parameters by stochastic gra-
dient descent (SGD).

1.3 Key limitations in this paper
Better measures of surface closeness between two
languages might be devised. However, even
counting the expected POS N -grams is moder-
ately expensive, taking time exponential in N if
done exactly. So we compute only these local
statistics, and only for N = 2. We certainly need
N > 1 because the 1-gram distribution is not af-
fected by permutation at all. N = 2 captures
useful bigram statistics: for example, to mimic a
verb-final language with prenominal modifiers, we
would seek constituent permutations that result in
matching its relatively high rate of VERB–PUNCT
and ADJ–NOUN bigrams. While N > 2 might
have improved the results, it was too slow for our
large-scale experimental design. §7 discusses how
richer measures could be used in the future.

We caution that throughout this paper, we as-
sume that our corpora are annotated with gold
POS tags, even in the target language (which lacks
any gold training trees). This is an idealized set-
ting that has often been adopted in work on unsu-
pervised and cross-lingual transfer.§7 discusses a
possible avenue for doing without gold tags.

2 Modeling Surface Realization

We begin by motivating the idea of tree permuta-
tion. Let us suppose that the dependency tree for a
sentence starts as a labeled graph—a tree in which
siblings are not yet ordered with respect to their
parent or one another. Each language has some
systematic way to realize its unordered trees as
surface strings:1 it imposes a particular order on
the tree’s word tokens. More precisely, a language
specifies a distribution p(string | unordered tree)
over a tree’s possible realizations.

As an engineering matter, we now make the
strong assumption that the unordered dependency
trees are similar across languages. That is, we sup-
pose that different languages use similar underly-
ing syntactic/semantic graphs, but differ in how
they realize this graph structure on the surface.

1Modeling this process was the topic of the recent Surface
Realization Shared Task (Mille et al., 2018). Most relevant
is work on tree linearization (Filippova and Strube, 2009;
Futrell and Gibson, 2015; Puzikov and Gurevych, 2018).

Thus, given a gold POS corpus u of the un-
known target language, we may hope to explain its
distribution of surface POS bigrams as the result of
applying some target-language surface realization
model to the distribution of cross-linguistically
“typical” unordered trees. To obtain samples of
the latter distribution, we use the treebanks of one
or more other languages. The present paper eval-
uates our method when only a single source tree-
bank is used. In the future, we could try tuning a
mixture of all available source treebanks.

2.1 Realization is systematic

We presume that the target language applies the
same stochastic realization model to all trees. All
that we can optimize is the parameter vector of
this model. Thus, we deny ourselves the free-
dom to realize each individual tree in an ad hoc
way. To see why this is important, suppose the tar-
get language is French, whose corpus u contains
many NOUN–ADJ bigrams. We could achieve
such a bigram from the unordered source tree

DET NOUN VERB PROPN ADJ

the cake made Sue sleepy

det nsubj dobj
xcomp

by ordering

it to yield
DET NOUN ADJ VERB PROPN

the cake sleepy made Sue

det dobjxcomp
nsubj

.
However, that realization is not in fact appropri-
ate for French, so that ordered tree would not be
a useful training tree for French. Our approach
should disprefer this tempting but incorrect real-
ization, because any model with a high probabil-
ity of this realization would, if applied system-
atically over the whole corpus, also yield sen-
tences like He sleepy made Sue, with un-
wanted PRON–ADJ bigrams that would not match
the surface statistics of French. We hope our ap-
proach will instead choose the realization model
that is correct for French, in which the NOUN–ADJ
bigrams arise instead from source trees where the
ADJ is a dependent of the NOUN, yielding (e.g.)

DET NOUN ADJ VERB PROPN

the cake tasty pleased Sue

dobjdet amod
nsubj

. This has
the same POS sequence as the example above (as
it happens), but now assigns the correct tree to it.

2.2 A parametric realization model

As our family of realization distributions, we
adopt the log-linear model used for this purpose by
Wang and Eisner (2016). The model assumes that
the root node a of the unordered dependency tree
selects an ordering π(a) of the na nodes consisting

1327

of a and its na − 1 dependent children. The pro-
cedure is repeated recursively at the child nodes.
This method can produce only projective trees.

Each node a draws its ordering π(a) indepen-
dently according to

pθ(π | a) =
1

Z(a)
exp

∑
1≤i<j≤na

θ · f(π, i, j) (1)

which is a distribution over the na! possible or-
derings. Z(a) is a normalizing constant. f is a
feature vector extracted from the ordered pair of
nodes πi, πj , and θ is the model’s parameter vec-
tor of feature weights. See Appendix A for the fea-
ture templates, which are a subset of those used by
Wang and Eisner (2016). These features are able
to examine the tree’s node labels (POS tags) and
edge labels (dependency relations). Thus, when a
is a verb, the model can assign a positive weight to
“subject precedes verb” or “subject precedes ob-
ject,” thus preferring orderings with these features.

Following Wang and Eisner (2016, §3.1), we
choose new orderings for the noun and verb nodes
only,2 preserving the source treebank’s order at all
other nodes a.

2.3 Generating training data

Given a source treebank B and some parameters
θ, we can use equation (1) to randomly sample re-
alizations of the trees inB. The effect is to reorder
dependent phrases within those trees. The result-
ing permuted treebank B′ can be used to train a
parser for the target language.

2.4 Choosing parameters θ

So how do we choose θ that works for the tar-
get language? Suppose u is a corpus of target-
language POS sequences, using the same set of
POS tags as B. We evaluate parameters θ accord-
ing to whether POS tag sequences in B′ will be
distributed like POS tag sequences in u.

To do this, first we estimate a bigram language
model q̂ from the actual distribution q of POS se-
quences observed in u. Second, let pθ denote
the distribution of POS sequences that we expect
to see in B′, that is, POS sequences obtained by

2Specifically, the 93% of nodes tagged with NOUN,
PROPN, PRON or VERB in Universal Dependencies format.
In retrospect, this restriction was unnecessary in our setting,
but it skipped only 4.4% of nodes on average (from 2% to
11% depending on language). The remaining nodes were
nouns, verbs, or childless.

stochastically realizing observed trees in B ac-
cording to θ. We estimate another bigram model
p̂θ from this distribution pθ.

We then try to set θ, using SGD, to minimize a
divergence D(p̂θ, q̂) that we will define below.

2.4.1 Estimation of bigram models
Estimating q̂ is straightforward: q̂(t | s) =
cq(st)/cq(s), where cq(st) is the count of POS bi-
gram st in the average3 sentence of u and cq(s) =∑

t′ cq(st
′). We estimate p̂θ in the same way,

where cp(st) denotes the expected count of st in a
random POS sequence y ∼ pθ. This is equivalent
to choosing q̂, p̂θ to minimize the KL-divergences
KL(q || q̂),KL(pθ || p̂θ). It ensures that each
model’s expected bigram counts match those in
the POS sequences.

However, these maximum-likelihood estimates
might overfit on our finite data, u and B. We
therefore smooth both models by first adding λ =
0.1 to all bigram counts cq(st) and cp(st).4

2.4.2 Divergence of bigram models
We need a metric to evaluate θ. If p and q are
bigram language models over POS sequences y
(sentences), their Kullback-Leibler divergence is

KL(p || q) def
= Ey∼p[log p(y)− log q(y)] (2)

=
∑
s,t

cp(st) (3)

· (log p(t | s)− log q(t | s))

where y ranges over POS sequences and st ranges
over POS bigrams. These include bigrams where
s = BOS (“beginning of sequence”) or t = EOS

(“end of sequence”), which are boundary tags that
we take to surround y.

All quantities in equation (3) can be determined
directly from the (expected) bigram counts given
by cp and cq. No other model estimation is needed.

A concern about equation (3) is that a single bi-
gram st that is badly underrepresented in q may
contribute an arbitrarily large term log p(t|s)

q(t|s) . To
limit this contribution to at most log 1

α , for some
small α ∈ (0, 1), we define KLα(p || q) by a vari-
ant of equation (3) in which q(t | s) has been re-
placed by q̃(t | s) def

= αp(t | s) + (1− α)q(t | s).5

3A more familiar definition of cq would use the total count
in u. Our definition, which yields the same bigram probabil-
ities, is analogous to our definition of cp. This cp is needed
for KL(p || q) in (3), and cq symmetrically for KL(q || p).

4Ideally one should tune λ to minimize the language
model perplexity on held-out data (e.g., by cross-validation).

5This is inspired by the α-skew divergence of Lee (1999,

1328

Our final divergence metric D(p̂θ, q̂) defines D
as a linear combination of exclusive and inclusive
KLα divergences, which respectively emphasize
pθ’s precision and recall at matching q’s bigrams:

D(p, q) = (1−β)·KLα1(p || q)
Ey∼p[|y|]

+β·KLα2(q || p)
Ey∼q[|y|]

(4)
where β, α1, α2 are tuned by cross-validation to
maximize the downstream parsing performance.
The division by average sentence length converts
KL from nats per sentence to nats per word,6 so
that the KL values have comparable scale even if
B has much longer or shorter sentences than u.

3 Algorithms

3.1 Efficiently computing expected counts
We now present a polynomial-time algorithm for
computing the expected bigram counts cp under pθ
(or equivalently p̂θ), for use above. This averages
expected counts from each unordered tree x ∈ B.
Algorithm 1 in the supplement gives pseudocode.

The insight is that rather than sampling a single
realization of x (as B′ does), we can use dynamic
programming to sum efficiently over all of its ex-
ponentially many realizations. This gives an exact
answer. It algorithmically resembles tree-to-string
machine translation, which likewise considers the
possible reorderings of a source tree and incorpo-
rates a language model by similarly tracking their
surface N -grams (Chiang, 2007, §5.3.2).

For each node a of the tree x, let the POS string
ya be the realization of the subtree rooted at a. Let
ca(st) be the expected count of bigram st in ya,
whose distribution is governed by equation (1).
We allow s = BOS or t = EOS as defined in §2.4.2.

The ca function can be represented as a sparse
map from POS bigrams to reals. We compute ca
at each node a of x in a bottom-up order. The final
step computes croot, giving the expected bigram
counts in x’s realization y (that is, cp in §2.4).

We find ca as follows. Let n = na and recall
from §2.2 that π(a) is an ordering of a1, . . . , an,
where a1, . . . , an−1 are the child nodes of a, and
an is a dummy node representing a’s head token.

2001). Indeed, we may regard KLα(p || q) as the α-skew di-
vergence between the unigram distributions p(· | s) and q(· |
s), averaged over all s in proportion to cp(s). In principle, we
could have used the α-skew divergence between the distribu-
tions p(·) and q(·) over POS sequences y, but computing that
would have required a sampling-based approximation (§7).

6Recall that the units of negated log-probability are called
bits for log base 2, but nats for log base e.

Also, let a0 and an+1 be dummy nodes that always
appear at the start and end of any ordering.

For all 0 ≤ i ≤ n and 1 ≤ j ≤ n + 1, let
pa(i, j) denote the expected count of the aiaj node
bigram—the probability that π(a) places node ai
immediately before node aj . These node bigram
probabilities can be obtained by enumerating all
possible orderings π, a matter we return to below.

It is now easy to compute ca:

ca(st) = cwithin
a (st) + cbetween

a (st) (5)

cwithin
a (st) =

{∑n
i=1 cai(st) if s 6= BOS, t 6= EOS

0 otherwise

cacross
a (st) =

n∑
i=0

n+1∑
j=1

pa(i, j)cai(s EOS)caj (BOS t)

That is, ca inherits all non-boundary bigrams st
that fall within its child constituents (via cwithin

a). It
also counts bigrams st that cross the boundary be-
tween consecutive nodes (via cacross

a), where nodes
ai and aj are consecutive with probability pa(i, j).

When computing ca via (5), we will have al-
ready computed ca1 , . . . , can−1 bottom-up. As for
the dummy nodes, an is realized by the length-1
string hwhere h is the head token of node a, while
a0 and an+1 are each realized by the empty string.
Thus, can simply assigns count 1 to the bigrams
BOS h and h EOS, and ca0 and can+1 each assign
expected count 1 to BOS EOS. (Notice that thus,
cacross
a (st) counts ya’s boundary bigrams—the bi-

grams stwhere s = BOS or t = EOS—when i = 0
or j = n+ 1 respectively.)

3.2 Efficient enumeration over permutations
The main challenge above is computing the node
bigram probabilities pa(i, j). These are marginals
of p(π | a) as defined by (1), which unfortunately
is intractable to marginalize: there is no better way
than enumerating all n! permutations.

That said, there is a particularly efficient way
to enumerate the permutations. The Steinhaus-
Johnson-Trotter (SJT) algorithm (Sedgewick,
1977) does so in O(1) time per permutation, ob-
taining each permutation by applying a single
swap to the previous one. Only the features that
are affected by this swap need to be recomputed.
For our features (Appendix A), this cuts the run-
time per permutation from O(n2) to O(n).

Furthermore, the single swap of adjacent
nodes only changes 3 bigrams (possibly including
boundary bigrams). As a result, it is possible to

1329

obtain the marginal probabilities with O(1) addi-
tional work per permutation. When a node bigram
is destroyed, we increment its marginal probability
by the total probability of permutations encoun-
tered since the node bigram was last created. This
can be found as a difference of partial sums. The
final partial sum is the normalizing constant Z(a),
which can be applied at the end. Pseudocode is
given in supplementary material as Algorithm 2.

When we train the parameters θ (§2.4), we must
back-propagate through the whole computation of
equation (4), which depends on tag bigram counts
ca(st), which depend via (5) on expected node
bigram counts pa(i, j), which depend via Algo-
rithm 2 on the permutation probabilities p(π | a),
which depend via (1) on the feature weights θ.

4 Heuristics

4.1 Pruning high-degree trees

As a further speedup, we only train on trees with
number of words < 40 and maxa na ≤ 5, so
na! ≤ 120.7 We then produce the synthetic tree-
bank B′ (§2.3) by drawing a single realization of
each tree in B for which maxa na ≤ 7. This re-
quires sampling from up to 7! = 5040 candidates
per node, again using SJT.8

That is, in this paper we run exact algorithms
(§3), but only on a subset of B. The subset is
not necessarily representative. An improvement
would use importance sampling, with a proposal
distribution that samples the slower trees less often
during SGD but upweights them to compensate.
§7 suggests a future strategy that would run on

all trees in B via approximate, sampling-based al-
gorithms. The exact methods would remain useful
for calibrating the approximation quality.

4.2 Minibatch estimation of cp
To minimize (4), we use the Adam variant of SGD
(Kingma and Ba, 2014), with learning rate 0.01
chosen by cross-validation (§5.1).

SGD requires a stochastic estimate of the gra-
dient of the training objective. Ordinarily this is
done by replacing an expectation over the entire
training set with an expectation over a minibatch.

7We found that this threshold worked much better than
≤ 4 and about as well as the much slower ≤ 6.

8This pruning heuristic retains 36.1% of the trees (aver-
aging over the 20 development treebanks (§5.1)) for training,
and 66.6% for actual realization. The latter restriction fol-
lows Wang and Eisner (2016, §4.2): they too discarded trees
with nodes having na ≥ 8.

Equation (2) with p = p̂θ is indeed an expecta-
tion over sentences of B. It can be stochastically
estimated as (3) where cp gives the expected bi-
gram counts averaged over only the sentences in a
minibatch of B. These are found using §3’s algo-
rithms with the current θ. Unfortunately, the term
log p(t | s) depends on bigram counts that should
be derived from the entire corpus B in the same
way. Our solution is to simply reuse the minibatch
estimate of cp for the latter counts. We use a large
minibatch of 500 sentences from B so that this
drop-in estimate does not introduce too much bias
into the stochastic gradient: after all, we only need
to estimate bigram statistics on 17 POS types.9

By contrast, the cq values that are used for
the expectation in the second term of (4) and in
log q(t | s) do not change during optimization, so
we simply compute them once from all of u.

4.3 Informed initialization
Unfortunately the objective (4) is not convex, so
the optimizer is sensitive to initialization (see §5.3
below for empirical discussion). Initializing θ =
0 (so that p(π | a) is uniform) gave poor results in
pilot experiments. Instead, we initially choose θ
to be the realization parameters of the source lan-
guage, as estimated from the source treebank B.
This is at least a linguistically realistic θ, although
it may not be close to the target language.10

For this initial estimation, we follow Wang and
Eisner (2016) and perform supervised training
on B of the log-linear realization model (1), by
maximizing the conditional log-likelihood of B,
namely

∑
(x,t)∈B log pθ(t | x), where (x, t) are

an unordered tree and its observed ordering in B.
This initial objective is convex.11

5 Experiments

We performed a large-scale experiment requiring
hundreds of thousands of CPU-hours. To our
knowledge, this is the largest study of parsing
transfer yet attempted.

9We also used the minibatch to estimate the average sen-
tence length Ey∼p[|y|] in (4), although here we could have
simply used all of B since this value does not change.

10As an improvement, one could also try initial realization
parameters for B that are estimated from treebanks of other
languages. Concretely, the optimizer could start by selecting
a “galactic” treebank from Wang and Eisner (2016) that is
already close to the target language, according to (4), and try
to make it even closer. We leave this to future work.

11Unfortunately, we did not regularize it, which probably
resulted in initializing some parameters too close to ±∞ for
the optimizer to change them meaningfully.

1330

5.1 Data and setup

As our main dataset, we use Universal Dependen-
cies version 1.2 (Nivre et al., 2015)—a set of 37
dependency treebanks for 33 languages, with a
unified POS-tag set and relation label set.

Our evaluation metric was unnormalized attach-
ment score (UAS) when parsing a target treebank
with a parser trained on a (possibly permuted)
source treebank. For both evaluation and training,
we used only the training portion of each treebank.

Our parser was Yara (Rasooli and Tetreault,
2015), a fast and accurate transition-based depen-
dency parser that can be rapidly retrained. We
modified Yara to ignore the input words and use
only the input gold POS tags (see §1.3). To train
the Yara parser on a (possibly permuted) source
treebank, we first train on 80% of the trees and use
the remaining 20% to tune Yara’s hyperparame-
ters. We then retrain Yara on 100% of the source
trees and evaluate it on the target treebank.

Similar to Wang and Eisner (2017), we use
20 treebanks (18 distinct languages) as develop-
ment data, and hold out the remaining 17 tree-
banks for the final evaluation. We chose the hy-
perparameters (α1, α2, β) of (4) to maximize the
target-language UAS, averaged over all 376 trans-
fer experiments where the source and target tree-
banks were development treebanks of different
languages.12 (See Appendix C for details.)

The next few sections perform some ex-
ploratory analysis on these 376 experiments.
Then, for the final test in §5.4, we will evaluate
UAS on all 337 transfer experiments where the
source is a development treebank and the target is
a test treebank of a different language.13

5.2 Exploratory analysis

We have assumed that a smaller divergence be-
tween source and target treebanks results in bet-
ter transfer parsing accuracy. Figure 1 shows that
these quantities are indeed correlated, both for the
original source treebanks and for their “made to
order” permuted versions.

12We have 19*20=380 pairs in total, minus the four ex-
cluded pairs (grc, grc proiel), (grc proiel, grc), (la proiel,
la itt) and (la itt, la proiel). Unlike Wang and Eisner (2017),
we exclude duplicated languages in development and testing.

13Specifically, there are 3 duplicated sets: {grc,
grc proiel}, {la, la proiel, la itt}, and {fi, fi ftb}. When-
ever one treebank is used as the target language, we exclude
the other treebanks in the same set.

15According to the family (and sub-family) information at
http://universaldependencies.org.

0.0 0.1 0.2 0.3 0.4 0.5
Divergence

10

20

30

40

50

60

70

80

U
AS

ar
bg
cs
da
de
en
es
et
fi
fr

got
grc
grc_proiel
hi
it
la_itt
la_proiel
nl
no
pt

0.0 0.1 0.2 0.3 0.4 0.5
Divergence

20

30

40

50

60

70

80

U
AS

ar
bg
cs
da
de
en
es
et
fi
fr

got
grc
grc_proiel
hi
it
la_itt
la_proiel
nl
no
pt

Figure 1: UAS is higher when divergence is lower.
Each point represents a pair of source and target lan-
guages, whose shape and color identify the treebank of
the target language (see legend). The marker is solid if
the source and target languages belong to the same lan-
guage family.15 The left graph uses the original source
treebank (Kendall’s τ = −0.41), while the right graph
uses its permuted version (τ = −0.39).

Thus, we hope that the optimizer will find a sys-
tematic permutation that reduces the divergence.
Does it? Yes: Figures 5 and 6 in the supplemen-
tary material show that the optimizer almost al-
ways manages to reduce the objective on training
data, as expected.

One concern is that our divergence metric might
misguide us into producing dysfunctional lan-
guages whose trees cannot be easily recovered
from their surface strings, i.e., they have no good
parser. In such a language, the word order might
be extremely free (e.g., θ = 0), or common con-
structions might be syntactically ambiguous. For-
tunately, Appendix D shows that our synthetic lan-
guages appear natural with respect to their their
parsability.

The above findings are promising. So does per-
muting the source language in fact result in better
transfer parsing of the target language? We exper-
iment on the 376 development pairs.

The solid lines in Figure 2 show our improve-
ments on the dev data, with a simpler scatterplot
given by in Figure 7 in the supplementary mate-
rial. The upshot is that the synthetic source tree-
banks yield a transfer UAS of 52.92 on average.
This is not yet a result on held-out test data: recall
that 52.92 was the best transfer UAS achieved by
any hyperparameter setting. That said, it is 1.00
points better than transferring from the original
source treebanks, a significant difference (paired
permutation test by language pair, p < 0.01).

Figure 2 shows that this average improvement
is mainly due to the many cases where the source
and target languages come from different families.

http://universaldependencies.org

1331

Permutation tends to improve source languages
that were doing badly to start with. However, it
tends to hurt a source language that is already in
the target language family.

A hypothetical experiment shows that permut-
ing the source does have good potential to help (or
at least not hurt) in both cases. The dashed lines
in Figure 2—and the scatterplot in Figure 8—
show the potential of the method, by showing
the improvement we would get from permuting
each source treebank using an “oracle” realization
policy—the supervised realization parameters θ
that are estimated from the actual target treebank.
The usefulness of this oracle-permuted source
varies depending on the source language, but it
is usually much better than the automatically-
permuted version of the same source.

This shows that large improvements would be
possible if we could only find the best permutation
policy allowed by our model family. The ques-
tion for future work is whether such gains can be
achieved by a more sensitive permutation model
than (1), a better divergence objective than (4), or
a better search algorithm than §4.2. Identifying the
best available source treebank, or the best mixture
of all source treebanks, would also help greatly.

5.3 Sensitivity to initializer
Figure 2 makes clear that performance of the syn-
thetic source treebanks is strongly correlated with
that of their original versions. Most points in Fig-
ure 7 lie near the diagonal (Kendall’s τ = 0.85).
Even with oracle permutation in Figure 8, the cor-
relation remains strong (τ = 0.59), suggesting
that the choice of source treebank is important
even beyond its effect on search initialization.

We suspected that when “made to order” source
treebanks (more than the oracle versions) have
performance close to their original versions, this
is in part because the optimizer can get stuck near
the initializer (§4.3). To examine this, we experi-
mented with random restarts, as follows. In addi-
tion to informed initialization (§4.3), we optimized
from 5 other starting points θ ∼ N (0, I). From
these 6 runs, we selected the final parameters that
achieved the best divergence (4). As shown by
Figure 9 in the supplement, greater gains appear
to be possible with more aggressive search meth-
ods of this sort, which we leave to future work.
We could also try non-random restarts based on
the realization parameters of other languages, as
suggested in footnote 10.

5.4 Final evaluation on the test languages
For our final evaluation (§5.1), we use the same
hyperparameters (Appendix C) and report on
single-source transfer to the 17 held-out treebanks.

The development results hold up in Figure 3.
Using the synthetic languages yields 50.36 UAS
on average—1.75 points over the baseline, which
is significant (paired permutation test, p < 0.01).

In the supplementary material (Appendix E),
we include some auxiliary experiments on multi-
source transfer.

6 Related Work

6.1 Unsupervised parsing
Unsupervised parsing has remained challenging
for decades (Mareček, 2016). Classical gram-
mar induction approaches (Lari and Young, 1990;
Carroll and Charniak, 1992; Klein and Manning,
2004; Headden III et al., 2009; Naseem et al.,
2010) estimate a generative grammar to explain
the sentences, for example by the Expectation-
Maximization (EM) algorithm, and then use it to
parse. Some such approaches try to improve the
grammar model. For example, Klein and Man-
ning (2004)’s dependency model with valence was
the first to beat a trivial baseline; later improve-
ments considered higher-order effects and punctu-
ation (Headden III et al., 2009; Spitkovsky et al.,
2012). Other approaches try to avoid search error,
using strategies like convexified objectives (Wang
et al., 2008; Gimpel and Smith, 2012), informed
initialization (Klein and Manning, 2004; Mareček
and Straka, 2013), search bias (Smith and Eis-
ner, 2005, 2006; Naseem et al., 2010; Gillenwa-
ter et al., 2010), branch-and-bound search (Gorm-
ley and Eisner, 2013), and switching objectives
(Spitkovsky et al., 2013).

The alternative of cross-lingual transfer has re-
cently flourished thanks to the development of
consistent cross-lingual datasets of POS-tagged
(Petrov et al., 2012) and dependency-parsed (Mc-
Donald et al., 2013) sentences. McDonald et al.
(2011) showed a significant improvement over
grammar induction by simply using the delexical-
ized parser trained on other language(s). Subse-
quent improvements have come from re-weighting
source languages (Søgaard, 2011b; Rosa and
Žabokrtský, 2015a,b; Wang and Eisner, 2016),
adapting the model to the target language us-
ing WALS (Dryer and Haspelmath, 2013) fea-
tures (Naseem et al., 2012; Täckström et al., 2013;

1332

All (376) in-family (46) cross-family (330)

Original 51.92 63.90 50.24

Synthetic 52.92 62.85 51.53
Oracle 59.45 66.14 58.51

Figure 2: Unlabeled attachment scores (UAS) from 376 pairs of development treebanks. Each column represents a
target treebank, and each polyline within that column shows transfer from variants of a different source treebank.
The three points on the polyline (from left to right) represent the target UAS for parsers trained on three sources:
the original source treebank, the “made to order” permutation that attempts to match surface statistics of the
target treebank, and an oracle permutation that uses a realization model trained on the target language. We use
solid markers and purple lines if the transfer is within-family (source and target treebank from the same language
family), and hollow and olive for cross-family transfer. The black polyline in each column is the mean of the
others. The table in the lower left gives summary results; the number in each column header gives the number
of points summarized. For each column, we boldface the better result between the “Synthetic” and “Original”, or
both if they are not significantly different (paired permutation test, p < 0.01). We also show the oracle permutation
result in row “Oracle”.

10 20 30 40 50 60 70 80 90
Original Treebank: 48.61

10

20

30

40

50

60

70

80

90

Sy
nt

he
tic

 T
re

eb
an

k:
 5

0.
36

cu
el
eu
fa
fi_ftb
ga

he
hr
hu
id
ja_ktc
la

pl
ro
sl
sv
ta

Figure 3: UAS on 337 language pairs from the training
languages to the test languages.

Zhang and Barzilay, 2015; Ammar et al., 2016),
and improving the lexical representations via mul-
tilingual word embeddings (Duong et al., 2015;
Guo et al., 2016; Ammar et al., 2016) and syn-
thetic data generation (§6.2).

6.2 Synthetic data generation

Our novel proposal ties into the recent interest in
data augmentation in supervised machine learn-
ing. In unsupervised parsing, the most widely

adopted synthetic data method has been annota-
tion projection, which generates synthetic anal-
yses of target-language sentences by “project-
ing” the analysis from a source-language trans-
lation. Of course, this requires bilingual cor-
pora as an additional resource. Annotation pro-
jection was proposed by Yarowsky et al. (2001),
gained promising results on sequence labelling
tasks, and was later developed for unsupervised
parsing (Hwa et al., 2005; Ganchev et al., 2009;
Smith and Eisner, 2009; Tiedemann, 2014; Ma
and Xia, 2014; Tiedemann et al., 2014). Recent
work in this vein has mainly focused on improv-
ing the synthetic data, including reweighting the
training trees (Agić et al., 2016) or pruning those
that cannot be aligned well (Rasooli and Collins,
2015, 2017; Lacroix et al., 2016).

On the other hand, Wang and Eisner (2016) pro-
posed to permute source language treebanks us-
ing word order realization models trained on other
source languages. They generated on the order of
50,000 synthetic languages by “mixing and match-
ing” a few dozen source languages. Their idea was
that with a large set of synthetic languages, they
could use them as supervised examples to train
an unsupervised structure discovery system that
could analyze any new language. Systems built
with this dataset were competitive in single-source
parser transfer (Wang and Eisner, 2016), typology

1333

prediction (Wang and Eisner, 2017), and parsing
unknown languages (Wang and Eisner, 2018).

Our work in this paper differs in that our syn-
thetic treebanks are “made to order.” Rather than
combine aspects of different treebanks and hope to
get at least one combination that is close to the tar-
get language, we “combine” the source treebank
with a POS corpus of the target language, which
guides our customized permutation of the source.

Beyond unsupervised parsing, synthetic data
has been used for several other tasks. In NLP, it
has been used for complex tasks such as question-
answering (QA) (Serban et al., 2016) and machine
reading comprehension (Weston et al., 2016; Her-
mann et al., 2015; Rajpurkar et al., 2016), where
highly expressive neural models are used and not
enough real data is available to train them. In the
playground of supervised parsing, Gulordava and
Merlo (2016) conduct a controlled study on the
parsibility of languages by generating treebanks
with short dependency length and low variability
of word order.

7 Conclusion & Future Work

We have shown how cross-lingual transfer pars-
ing can be improved by permuting the source tree-
bank to better resemble the target language on the
surface (in its distribution of gold POS bigrams).
The code is available at https://github.
com/wddabc/ordersynthetic. Our work
is grounded in the notion that by trying to ex-
plain the POS bigram counts in a target corpus,
we can discover a stochastic realization policy for
the target language, which correctly “translates”
the source trees into appropriate target trees.

We formulated an objective for evaluating such
a policy, based on KL-divergence between bigram
models. We showed that the objective could be
computed efficiently by dynamic programming,
thanks to the limitation to bigram statistics.

Experimenting on the Universal Dependencies
treebanks v1.2, we showed that the synthetic tree-
banks were—on average—modestly but signifi-
cantly better than the corresponding real treebanks
for single-source transfer (and in Appendix E, on
multi-source transfer).

On the downside, Figure 7 shows that with our
current method, permuting the source language to
be more like the target language is helpful (on av-
erage) only when the source language is from a
different language family. This contrast would be

even more striking if we had a better optimizer:
Figure 9 shows that SGD’s initialization bias lim-
its permutation’s benefit for cross-family training,
as well as its harm for within-family training.

Several opportunities for future work have al-
ready been mentioned throughout the paper. We
are also interested in experimenting with richer
families of permutation distributions, as well as
“conservative” distributions that tend to prefer the
original source order. We could use entropy reg-
ularization (Grandvalet and Bengio, 2005) to en-
courage more “deterministic” patterns of realiza-
tion in the synthetic languages.

We would also like to consider more sensi-
tive divergence measures that go beyond bigrams,
for example using recurrent neural network lan-
guage models (RNNLMs) for q̂ and p̂θ. This
means abandoning our exact dynamic program-
ming methods; we would also like to abandon ex-
act exhaustive enumeration in order to drop §4.1’s
bounds on n. Fortunately, there exist powerful
MCMC methods (Eisner and Tromble, 2006) that
can sample from interesting distributions over the
space of n! permutations, even for large n. Thus,
we could approximately sample from pθ by draw-
ing permuted versions of each tree in B.

Given this change, a very interesting direction
would be to graduate from POS language models
to word language models, using cross-lingual un-
supervised word embeddings (Ruder et al., 2017).
This would eliminate the need for the gold POS
tags that we unrealistically assumed in this paper
(which are typically unavailable for a low-resource
target language). Furthermore, it would enable us
to harness richer lexical information beyond the 17
UD POS tags. After all, even a (gold) POS corpus
might not be sufficient to determine the word or-
der of the target language: “NOUN VERB NOUN”
could be either subject-verb-object or object-verb-
subject. However, “water drink boy” is pre-
sumably object-verb-subject. Thus, using cross-
lingual embeddings, we would try to realize the
unordered source trees so that their word strings,
with few edits, can achieve high probability under
a neural language model of the target.

Acknowledgements
This work was supported by National Science Foundation
Grants 1423276 & 1718846. We are grateful to the state of
Maryland for the Maryland Advanced Research Computing
Center, a crucial resource. We thank Shijie Wu and Adithya
Renduchintala for early discussion, Argo lab members for
further discussion, and the 3 reviewers for quality comments.

https://github.com/wddabc/ordersynthetic
https://github.com/wddabc/ordersynthetic

1334

References
Željko Agić, Anders Johannsen, Barbara Plank, Héctor

Martı́nez Alonso, Natalie Schluter, and Anders
Søgaard. 2016. Multilingual projection for parsing
truly low-resource languages. Transactions of the
Association for Computational Linguistics, 4:301–
312.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
of Computational Linguistics, 4:431–444.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora
Hladká. 2003. The Prague dependency treebank. In
Treebanks, pages 103–127. Springer.

Glenn Carroll and Eugene Charniak. 1992. Two exper-
iments on learning probabilistic dependency gram-
mars from corpora. In Statistically-Based Natural
Language Processing Techniques: Papers from the
Workshop, pages 1–13, Menlo Park: AAAI Press.
AAAI. Technical Report WS-92-01.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201–228.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. The World Atlas of Language Structures On-
line. Max Planck Institute for Evolutionary Anthro-
pology, Leipzig. http://wals.info/.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015. Cross-lingual transfer for unsupervised
dependency parsing without parallel data. In Pro-
ceedings of the Nineteenth Conference on Computa-
tional Natural Language Learning, pages 113–122.

Jason Eisner and Roy W. Tromble. 2006. Local search
with very large-scale neighborhoods for optimal per-
mutations in machine translation. In Proceedings
of the HLT-NAACL Workshop on Computationally
Hard Problems and Joint Inference in Speech and
Language Processing, pages 57–75.

Katja Filippova and Michael Strube. 2009. Tree lin-
earization in English: Improving language model
based approaches. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 225–228.

Richard Futrell and Edward Gibson. 2015. Experi-
ments with generative models for dependency tree
linearization. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1978–1983.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction via
bitext projection constraints. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
369–377.

Jennifer Gillenwater, Kuzman Ganchev, Joo Graa, Fer-
nando Pereira, and Ben Taskar. 2010. Sparsity in
dependency grammar induction. In Proceedings of
the ACL 2010 Conference Short Papers, pages 194–
199.

Kevin Gimpel and Noah A. Smith. 2012. Concav-
ity and initialization for unsupervised dependency
parsing. In Proceedings of the 2012 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 577–581.

Matthew Gormley and Jason Eisner. 2013. Nonconvex
global optimization for latent-variable models. In
Proceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
444–454.

Yves Grandvalet and Yoshua Bengio. 2005. Semi-
supervised learning by entropy minimization. In
L. K. Saul, Y. Weiss, and L. Bottou, editors, Ad-
vances in Neural Information Processing Systems
17, pages 529–536. MIT Press.

Kristina Gulordava and Paola Merlo. 2016. Multi-
lingual dependency parsing evaluation: A large-
scale analysis of word order properties using artifi-
cial data. Transactions of the Association for Com-
putational Linguistics, 4:343–356.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A representation learn-
ing framework for multi-source transfer parsing. In
AAAI, pages 2734–2740.

William P. Headden III, Mark Johnson, and David
McClosky. 2009. Improving unsupervised depen-
dency parsing with richer contexts and smoothing.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 101–109.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1684–
1692.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering, 11(3):311–325.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. Transac-
tions of the Association of Computational Linguis-
tics, 4:313–327.

http://wals.info/

1335

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of
dependency and constituency. In Proceedings of the
42nd Annual Meeting of the Association for Compu-
tational Linguistics, pages 478–485.

Ophélie Lacroix, Lauriane Aufrant, Guillaume Wis-
niewski, and François Yvon. 2016. Frustratingly
easy cross-lingual transfer for transition-based de-
pendency parsing. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1058–1063.

Karim Lari and Steve J. Young. 1990. The estima-
tion of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and
Language, 4(1):35–56.

Lillian Lee. 1999. Measures of distributional simi-
larity. In Proceedings of the 37th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 25–32.

Lillian Lee. 2001. On the effectiveness of the skew
divergence for statistical language analysis. In Pro-
ceedings of AISTATS.

Xuezhe Ma and Fei Xia. 2014. Unsupervised depen-
dency parsing with transferring distribution via par-
allel guidance and entropy regularization. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1337–1348.

David Mareček and Milan Straka. 2013. Stop-
probability estimates computed on a large corpus
improve unsupervised dependency parsing. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 281–290.

David Mareček. 2016. Twelve years of unsupervised
dependency parsing. In Proceedings of the 16th
ITAT Conference on Information Technologies—
Applications and Theory, pages 56–62.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Uni-
versal dependency annotation for multilingual pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 92–97.

Ryan McDonald and Fernando Pereira. 2006. Discrim-
inative Learning and Spanning Tree Algorithms for
Dependency Parsing. Ph.D. thesis, University of
Pennsylvania.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 62–72.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The first
multilingual surface realisation shared task (SR’18):
Overview and evaluation results. In Proceedings of
the 1st Workshop on Multilingual Surface Realiza-
tion (MSR), 56th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 1–12.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 629–637.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In Proceedings of
the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1234–1244.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Cristina
Bosco, Gosse Bouma, Sam Bowman, Marie Can-
dito, Gülşen Cebiroğlu Eryiğit, Giuseppe G. A.
Celano, Fabricio Chalub, Jinho Choi, Çağrı
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Tomaž Erjavec, Richárd Farkas, Jen-
nifer Foster, Cláudia Freitas, Katarı́na Gajdošová,
Daniel Galbraith, Marcos Garcia, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökırmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds
Grūzı̄tis, Bruno Guillaume, Nizar Habash, Jan
Hajič, Linh Hà Mỹ, Dag Haug, Barbora Hladká,
Petter Hohle, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşıkara, Hi-
roshi Kanayama, Jenna Kanerva, Natalia Kot-
syba, Simon Krek, Veronika Laippala, Phng
Lê H`ông, Alessandro Lenci, Nikola Ljubešić, Olga
Lyashevskaya, Teresa Lynn, Aibek Makazhanov,
Christopher Manning, Cătălina Mărănduc, David
Mareček, Héctor Martı́nez Alonso, André Mar-
tins, Jan Mašek, Yuji Matsumoto, Ryan McDon-
ald, Anna Missilä, Verginica Mititelu, Yusuke
Miyao, Simonetta Montemagni, Amir More, Shun-
suke Mori, Bohdan Moskalevskyi, Kadri Muis-
chnek, Nina Mustafina, Kaili Müürisep, Lng
Nguy˜ên Thi., Huy`ên Nguy˜ên Thi. Minh, Vitaly
Nikolaev, Hanna Nurmi, Stina Ojala, Petya Osen-
ova, Lilja Øvrelid, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Guy Perrier, Slav Petrov,
Jussi Piitulainen, Barbara Plank, Martin Popel,
Lauma Pretkalniņa, Prokopis Prokopidis, Tiina Puo-
lakainen, Sampo Pyysalo, Alexandre Rademaker,
Loganathan Ramasamy, Livy Real, Laura Rituma,

1336

Rudolf Rosa, Shadi Saleh, Manuela Sanguinetti,
Baiba Saulı̄te, Sebastian Schuster, Djamé Seddah,
Wolfgang Seeker, Mojgan Seraji, Lena Shakurova,
Mo Shen, Dmitry Sichinava, Natalia Silveira, Maria
Simi, Radu Simionescu, Katalin Simkó, Mária
Šimková, Kiril Simov, Aaron Smith, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Dima Taji, Takaaki
Tanaka, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Larraitz Uria, Gertjan van Noord, Viktor
Varga, Veronika Vincze, Jonathan North Washing-
ton, Zdeněk Žabokrtský, Amir Zeldes, Daniel Ze-
man, and Hanzhi Zhu. 2017. Universal dependen-
cies 2.0. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity.

Joakim Nivre et al. 2015. Universal dependencies
1.2. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics, Charles
University in Prague. Data available at http://
universaldependencies.org.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC-2012). European
Language Resources Association (ELRA).

Yevgeniy Puzikov and Iryna Gurevych. 2018. BinLin:
A simple method of dependency tree linearization.
In Proceedings of the First Workshop on Multilin-
gual Surface Realisation, pages 13–28.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2383–2392.

Mohammad Sadegh Rasooli and Michael Collins.
2015. Density-driven cross-lingual transfer of de-
pendency parsers. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 328–338.

Mohammad Sadegh Rasooli and Michael Collins.
2017. Cross-lingual syntactic transfer with limited
resources. Transactions of the Association for Com-
putational Linguistics, 5:279–293.

Mohammad Sadegh Rasooli and Joel R. Tetreault.
2015. Yara parser: A fast and accurate depen-
dency parser. Computing Research Repository,
arXiv:1503.06733 (version 2).

Rudolf Rosa and Zdeněk Žabokrtský. 2015a. KLcpos3
— a language similarity measure for delexicalized
parser transfer. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 243–249.

Rudolf Rosa and Zdeněk Žabokrtský. 2015b. MST-
Parser model interpolation for multi-source delexi-
calized transfer. In Proceedings of the 14th Inter-
national Conference on Parsing Technologies, pages
71–75.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
2017. A survey of cross-lingual word embed-
ding models. Computing Research Repository,
arXiv:1706.04902.

Robert Sedgewick. 1977. Permutation generation
methods. ACM Computing Surveys, 9(2):137–164.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generating
factoid questions with recurrent neural networks:
The 30M factoid question-answer corpus. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 588–598.

David A. Smith and Jason Eisner. 2009. Parser adap-
tation and projection with quasi-synchronous gram-
mar features. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 822–831.

Noah A. Smith and Jason Eisner. 2005. Guiding unsu-
pervised grammar induction using contrastive esti-
mation. In International Joint Conference on Artifi-
cial Intelligence (IJCAI) Workshop on Grammatical
Inference Applications, pages 73–82.

Noah A. Smith and Jason Eisner. 2006. Annealing
structural bias in multilingual weighted grammar in-
duction. In Proceedings of the International Confer-
ence on Computational Linguistics and the Associa-
tion for Computational Linguistics (COLING-ACL),
pages 569–576.

Anders Søgaard. 2011a. Data point selection for cross-
language adaptation of dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 682–686. Association for
Computational Linguistics.

Anders Søgaard. 2011b. Data point selection for cross-
language adaptation of dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 682–686.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel
Jurafsky. 2012. Three dependency-and-boundary
models for grammar induction. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 688–698. Asso-
ciation for Computational Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2013. Breaking out of local optima with
count transforms and model recombination: A study

http://universaldependencies.org
http://universaldependencies.org

1337

in grammar induction. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2013).

Oscar Täckström, Ryan McDonald, and Joakim Nivre.
2013. Target language adaptation of discriminative
transfer parsers. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1061–1071.

Jörg Tiedemann. 2014. Rediscovering annotation
projection for cross-lingual parser induction. In
Proceedings of the 25th International Conference
on Computational Linguistics (COLING): Technical
Papers, pages 1854–1864. Dublin City University
and Association for Computational Linguistics.

Jörg Tiedemann, Željko Agić, and Joakim Nivre. 2014.
Treebank translation for cross-lingual parser induc-
tion. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
pages 130–140.

Dingquan Wang and Jason Eisner. 2016. The Galac-
tic Dependencies treebanks: Getting more data by
synthesizing new languages. Transactions of the
Association of Computational Linguistics, 4:491–
505. Data available at https://github.com/
gdtreebank/gdtreebank.

Dingquan Wang and Jason Eisner. 2017. Fine-grained
prediction of syntactic typology: Discovering la-
tent structure with supervised learning. Transac-
tions of the Association for Computational Linguis-
tics (TACL), 5.

Dingquan Wang and Jason Eisner. 2018. Surface statis-
tics of an unknown language indicate how to parse it.
Transactions of the Association for Computational
Linguistics (TACL). To appear.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin.
2008. Semi-supervised convex training for depen-
dency parsing. In Proceedings of ACL-HLT, pages
532–540.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2016. Towards AI-complete ques-
tion answering: A set of prerequisite toy tasks.
In Proceedings of the International Conference on
Learning Representations.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora.
In Proceedings of the First International Conference
on Human Language Technology Research.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In Proceedings of the IJCNLP-08 Workshop
on NLP for Less Privileged Languages.

Yuan Zhang and Regina Barzilay. 2015. Hierarchical
low-rank tensors for multilingual transfer parsing.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1857–1867.

https://github.com/gdtreebank/gdtreebank
https://github.com/gdtreebank/gdtreebank

