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Abstract

Recently, string kernels have obtained state-
of-the-art results in various text classification
tasks such as Arabic dialect identification or
native language identification. In this paper,
we apply two simple yet effective transductive
learning approaches to further improve the re-
sults of string kernels. The first approach is
based on interpreting the pairwise string ker-
nel similarities between samples in the train-
ing set and samples in the test set as features.
Our second approach is a simple self-training
method based on two learning iterations. In
the first iteration, a classifier is trained on the
training set and tested on the test set, as usual.
In the second iteration, a number of test sam-
ples (to which the classifier associated higher
confidence scores) are added to the training set
for another round of training. However, the
ground-truth labels of the added test samples
are not necessary. Instead, we use the labels
predicted by the classifier in the first training
iteration. By adapting string kernels to the
test set, we report significantly better accuracy
rates in English polarity classification and Ara-
bic dialect identification.

1 Introduction

In recent years, methods based on string ker-
nels have demonstrated remarkable performance
in various text classification tasks ranging from
authorship identification (Popescu and Grozea,
2012) and sentiment analysis (Giménez-Pérez
et al., 2017; Popescu et al., 2017) to native
language identification (Popescu and Ionescu,
2013; Ionescu et al., 2014, 2016; Ionescu and
Popescu, 2017), dialect identification (Ionescu and
Popescu, 2016b; Ionescu and Butnaru, 2017; But-
naru and Ionescu, 2018) and automatic essay scor-
ing (Cozma et al., 2018). As long as a labeled
training set is available, string kernels can reach
state-of-the-art results in various languages in-

cluding English (Ionescu et al., 2014; Giménez-
Pérez et al., 2017; Cozma et al., 2018), Ara-
bic (Ionescu, 2015; Ionescu et al., 2016; Ionescu
and Butnaru, 2017; Butnaru and Ionescu, 2018),
Chinese (Popescu et al., 2017) and Norwegian
(Ionescu et al., 2016). Different from all these re-
cent approaches, we use unlabeled data from the
test set to significantly increase the performance
of string kernels. More precisely, we propose two
transductive learning approaches combined into a
unified framework. We show that the proposed
framework improves the results of string kernels in
two different tasks (cross-domain sentiment clas-
sification and Arabic dialect identification) and
two different languages (English and Arabic). To
the best of our knowledge, transductive learning
frameworks based on string kernels have not been
studied in previous works.

2 Transductive String Kernels
String kernels. Kernel functions (Shawe-Taylor
and Cristianini, 2004) capture the intuitive notion
of similarity between objects in a specific domain.
For example, in text mining, string kernels can
be used to measure the pairwise similarity be-
tween text samples, simply based on character n-
grams. Various string kernel functions have been
proposed to date (Lodhi et al., 2002; Shawe-Taylor
and Cristianini, 2004; Ionescu et al., 2014). Per-
haps one of the most recently introduced string
kernels is the histogram intersection string kernel
(Ionescu et al., 2014). For two strings over an al-
phabet Σ, x, y ∈ Σ∗, the intersection string kernel
is formally defined as follows:

k∩(x, y) =
∑
v∈Σp

min{numv(x), numv(y)}, (1)

where numv(x) is the number of occurrences of n-
gram v as a substring in x, and p is the length of
v. The spectrum string kernel or the presence bits
string kernel can be defined in a similar fashion
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Figure 1: The standard kernel learning pipeline based
on the linear kernel. Kernel normalization is not illus-
trated for simplicity. Best viewed in color.

(Ionescu et al., 2014). The standard kernel learn-
ing pipeline is presented in Figure 1. String ker-
nels help to efficiently (Popescu et al., 2017) com-
pute the dual representation directly, thus skipping
the first step in the pipeline illustrated in Figure 1.
Transductive string kernels. We propose a
simple and straightforward approach to produce
a transductive similarity measure suitable for
strings, as illustrated in Figure 2. We take the fol-
lowing steps to derive transductive string kernels.
For a given kernel (similarity) function k, we first
build the full kernel matrix K, by including the
pairwise similarities of samples from both the train
and the test sets (step S1 in Figure 2) . For a train-
ing set X = {x1, x2, ..., xm} of m samples and
a test set Y = {y1, y2, ..., yn} of n samples, such
that X ∩Y = ∅, each component in the full kernel
matrix is defined as follows (step S2 in Figure 2):

Kij = k(zi, zj), (2)

where zi and zj are samples from the set Z =
X ∪ Y = {x1, x2, ..., xm, y1, y2, ..., yn}, for all
1 ≤ i, j ≤ m + n. We then normalize the kernel
matrix by dividing each component by the square

Figure 2: The transductive kernel learning pipeline
based on the linear kernel. Kernel normalization and
RBF kernel transformation are not illustrated for sim-
plicity. Best viewed in color.
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root of the product of the two corresponding diag-
onal components:

K̂ij =
Kij√
Kii ·Kjj

. (3)

We transform the normalized kernel matrix into
a radial basis function (RBF) kernel matrix as fol-
lows:

K̃ij = exp

(
−1− K̂ij

2σ2

)
. (4)

As the kernel matrix is already normalized, we can
choose σ2 = 0.5 for simplicity. Therefore, Equa-
tion (4) becomes:

K̃ij = exp
(
−1 + K̂ij

)
. (5)

Each row in the RBF kernel matrix K̃ is now in-
terpreted as a feature vector, going from step S2 to
step S3 in Figure 2. In other words, each sample zi
is represented by a feature vector that contains the
similarity between the respective sample zi and all
the samples in Z (step S3 in Figure 2). Since Z
includes the test samples as well, the feature vec-
tor is inherently adapted to the test set. Indeed,
it is easy to see that the features will be different
if we choose to apply the string kernel approach
on a set of test samples Y ′, such that Y ′ 6= Y .
It is important to note that through the features,
the subsequent classifier will have some informa-
tion about the test samples at training time. More
specifically, the feature vector conveys informa-
tion about how similar is every test sample to ev-
ery training sample. We next consider the linear
kernel, which is given by the scalar product be-
tween the new feature vectors. To obtain the final
linear kernel matrix, we simply need to compute
the product between the RBF kernel matrix and its
transpose (step S4 in Figure 2):

K̈ = K̃ · K̃ ′. (6)

In this way, the samples from the test set, which
are included in Z, are used to obtain new (trans-
ductive) string kernels that are adapted to the test
set at hand.

Transductive kernel classifier. After obtaining
the transductive string kernels, we use a simple
transductive learning approach that falls in the cat-
egory of self-training methods (McClosky et al.,
2006; Chen et al., 2011). The transductive ap-
proach is divided into two learning iterations. In
the first iteration, a kernel classifier is trained on
the training data and applied on the test data, just
as usual. Next, the test samples are sorted by the

classifier’s confidence score to maximize the prob-
ability of correctly predicted labels in the top of
the sorted list. In the second iteration, a fixed
number of samples (1000 in the experiments) from
the top of the list are added to the training set for
another round of training. Even though a small
percent (less than 8% in all experiments) of the
predicted labels corresponding to the newly in-
cluded samples are wrong, the classifier has the
chance to learn some useful patterns (from the cor-
rectly predicted labels) only visible in the test data.
The transductive kernel classifier (TKC) is based
on the intuition that the added test samples bring
more useful information than noise, since the ma-
jority of added test samples have correct labels. Fi-
nally, we would like to stress out that the ground-
truth test labels are never used in our transductive
algorithm.

The proposed transductive learning approaches
are used together in a unified framework. As any
other transductive learning method, the main dis-
advantage of the proposed framework is that the
unlabeled test samples from the target domain
need to be used in the training stage. Neverthe-
less, we present empirical results indicating that
our approach can obtain significantly better ac-
curacy rates in cross-domain polarity classifica-
tion and Arabic dialect identification compared to
state-of-the-art methods based on string kernels
(Giménez-Pérez et al., 2017; Ionescu and Butnaru,
2017). We also report better results than other do-
main adaptation methods (Pan et al., 2010; Bolle-
gala et al., 2013; Franco-Salvador et al., 2015; Sun
et al., 2016; Huang et al., 2017).

3 Polarity Classification
Data set. For the cross-domain polarity classi-
fication experiments, we use the second version
of Multi-Domain Sentiment Dataset (Blitzer et al.,
2007). The data set contains Amazon product re-
views of four different domains: Books (B), DVDs
(D), Electronics (E) and Kitchen appliances (K).
Reviews contain star ratings (from 1 to 5) which
are converted into binary labels as follows: re-
views rated with more than 3 stars are labeled as
positive, and those with less than 3 stars as nega-
tive. In each domain, there are 1000 positive and
1000 negative reviews.
Baselines. We compare our approach with sev-
eral methods (Pan et al., 2010; Bollegala et al.,
2013; Franco-Salvador et al., 2015; Sun et al.,
2016; Giménez-Pérez et al., 2017; Huang et al.,
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Method DEK→B BEK→D BDK→E BDE→K
SST 76.3 78.3 83.9 85.2
KE-Meta 77.9 80.4 78.9 82.5
K0/1 (sota) 82.0 81.9 83.6 85.1
K∩ (sota) 80.7 80.7 83.0 85.2

K̈0/1 82.9 83.2* 84.8* 86.0*
K̈∩ 82.5 82.9* 84.5* 86.1*
K̈0/1 + TKC 84.1* 84.0* 85.4* 86.9*
K̈∩ + TKC 83.8* 83.5* 85.0* 87.1*

Table 1: Multi-source cross-domain polarity classifi-
cation accuracy rates (in %) of our transductive ap-
proaches versus a state-of-the-art (sota) baseline based
on string kernels (Giménez-Pérez et al., 2017), as well
as SST (Bollegala et al., 2013) and KE-Meta (Franco-
Salvador et al., 2015). The best accuracy rates are high-
lighted in bold. The marker * indicates that the per-
formance is significantly better than the best baseline
string kernel according to a paired McNemar’s test per-
formed at a significance level of 0.01.

2017) in two cross-domain settings. Using string
kernels, Giménez-Pérez et al. (2017) reported bet-
ter performance than SST (Bollegala et al., 2013)
and KE-Meta (Franco-Salvador et al., 2015) in the
multi-source domain setting. In addition, we com-
pare our approach with SFA (Pan et al., 2010),
KMM (Huang et al., 2007), CORAL (Sun et al.,
2016) and TR-TrAdaBoost (Huang et al., 2017) in
the single-source setting.
Evaluation procedure and parameters. We
follow the same evaluation methodology of
Giménez-Pérez et al. (2017), to ensure a fair com-
parison. Furthermore, we use the same kernels,
namely the presence bits string kernel (K0/1) and
the intersection string kernel (K∩), and the same
range of character n-grams (5-8). To compute the
string kernels, we used the open-source code pro-
vided by Ionescu and Popescu (2016a). For the
transductive kernel classifier, we select r = 1000
unlabeled test samples to be included in the train-
ing set for the second round of training. We choose
Kernel Ridge Regression (Shawe-Taylor and Cris-
tianini, 2004) as classifier and set its regulariza-
tion parameter to 10−5 in all our experiments. Al-
though Giménez-Pérez et al. (2017) used a differ-
ent classifier, namely Kernel Discriminant Anal-
ysis, we observed that Kernel Ridge Regression
produces similar results (±0.1%) when we em-
ploy the same string kernels. As Giménez-Pérez
et al. (2017), we evaluate our approach in two
cross-domain settings. In the multi-source setting,
we train the models on all domains, except the one
used for testing. In the single-source setting, we
train the models on one of the four domains and
we independently test the models on the remain-

ing three domains.

Results in multi-source setting. The results for
the multi-source cross-domain polarity classifica-
tion setting are presented in Table 1. Both the
transductive presence bits string kernel (K̈0/1)
and the transductive intersection kernel (K̈∩) ob-
tain better results than their original counterparts.
Moreover, according to the McNemar’s test (Diet-
terich, 1998), the results on the DVDs, the Elec-
tronics and the Kitchen target domains are signifi-
cantly better than the best baseline string kernel,
with a confidence level of 0.01. When we em-
ploy the transductive kernel classifier (TKC), we
obtain even better results. On all domains, the ac-
curacy rates yielded by the transductive classifier
are more than 1.5% better than the best baseline.
For example, on the Books domain the accuracy
of the transductive classifier based on the presence
bits kernel (84.1%) is 2.1% above the best base-
line (82.0%) represented by the intersection string
kernel. Remarkably, the improvements brought by
our transductive string kernel approach are statis-
tically significant in all domains.

Results in single-source setting. The results for
the single-source cross-domain polarity classifica-
tion setting are presented in Table 2. We consid-
ered all possible combinations of source and tar-
get domains in this experiment, and we improve
the results in each and every case. Without excep-
tion, the accuracy rates reached by the transduc-
tive string kernels are significantly better than the
best baseline string kernel (Giménez-Pérez et al.,
2017), according to the McNemar’s test performed
at a confidence level of 0.01. The highest im-
provements (above 2.7%) are obtained when the
source domain contains Books reviews and the tar-
get domain contains Kitchen reviews. As in the
multi-source setting, we obtain much better results
when the transductive classifier is employed for
the learning task. In all cases, the accuracy rates of
the transductive classifier are more than 2% better
than the best baseline string kernel. Remarkably,
in four cases (E→B, E→D, B→K and D→K)
our improvements are greater than 4%. The im-
provements brought by our transductive classifier
based on string kernels are statistically significant
in each and every case. In comparison with SFA
(Pan et al., 2010), we obtain better results in all but
one case (K→D). With respect to KMM (Huang
et al., 2007), we also obtain better results in all
but one case (B→E). Remarkably, we surpass the
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Method D→B E→B K→B B→D E→D K→D B→E D→E K→E B→K D→K E→K
SFA 79.8 78.3 75.2 81.4 77.2 78.5 73.5 76.7 85.1 79.1 80.8 86.8
KMM 78.6 - - - - 72.2 76.9 - - - - 83.6
CORAL 78.3 - - - - 73.9 76.3 - - - - 83.6
TR-TrAdaBoost 74.7 69.1 70.6 79.6 71.8 74.4 74.9 75.9 83.1 77.8 75.7 83.7
K0/1 (sota) 82.0 72.4 72.7 81.4 74.9 73.6 71.3 74.4 83.9 74.6 75.4 84.9
K∩ (sota) 82.1 72.4 72.8 81.3 75.1 72.9 71.8 74.5 84.4 74.9 75.1 84.9

K̈0/1 83.3* 74.5* 74.3* 83.0* 76.9* 74.9* 74.0* 76.0* 85.4* 77.6* 77.3* 86.0*
K̈∩ 83.2* 74.2* 74.0* 82.8* 76.4* 75.1* 74.2* 75.9* 85.2* 77.6* 77.3* 85.9*
K̈0/1 + TKC 84.9* 78.5* 76.6* 84.0* 79.6* 76.4* 76.6* 77.1* 86.4* 79.6* 80.9* 87.0*
K̈∩ + TKC 84.5* 78.5* 75.8* 84.2* 79.1* 76.5* 76.7* 76.8* 86.4* 79.4* 80.5* 87.0*

Table 2: Single-source cross-domain polarity classification accuracy rates (in %) of our transductive approaches
versus a state-of-the-art (sota) baseline based on string kernels (Giménez-Pérez et al., 2017), as well as SFA (Pan
et al., 2010), KMM (Huang et al., 2007), CORAL (Sun et al., 2016) and TR-TrAdaBoost (Huang et al., 2017). The
best accuracy rates are highlighted in bold. The marker * indicates that the performance is significantly better than
the best baseline string kernel according to a paired McNemar’s test performed at a significance level of 0.01.

other state-of-the-art approaches (Sun et al., 2016;
Huang et al., 2017) in all cases.

4 Arabic Dialect Identification
Data set. The Arabic Dialect Identification (ADI)
data set (Ali et al., 2016) contains audio record-
ings and Automatic Speech Recognition (ASR)
transcripts of Arabic speech collected from the
Broadcast News domain. The classification task is
to discriminate between Modern Standard Arabic
and four Arabic dialects, namely Egyptian, Gulf,
Levantine, and Maghrebi. The training set con-
tains 14000 samples, the development set contains
1524 samples, and the test contains another 1492
samples. The data set was used in the ADI Shared
Task of the 2017 VarDial Evaluation Campaign
(Zampieri et al., 2017).
Baseline. We choose as baseline the approach of
Ionescu and Butnaru (2017), which is based on
string kernels and multiple kernel learning. The
approach that we consider as baseline is the win-
ner of the 2017 ADI Shared Task (Zampieri et al.,
2017). In addition, we also compare with the
second-best approach (Meta-classifier) (Malmasi
and Zampieri, 2017).
Evaluation procedure and parameters. Ionescu
and Butnaru (2017) combined four kernels into a
sum, and used Kernel Ridge Regression for train-
ing. Three of the kernels are based on character n-
grams extracted from ASR transcripts. These are
the presence bits string kernel (K0/1), the intersec-
tion string kernel (K∩), and a kernel based on Lo-
cal Rank Distance (KLRD) (Ionescu, 2013). The
fourth kernel is an RBF kernel (Kivec) based on
the i-vectors provided with the ADI data set (Ali
et al., 2016). In our experiments, we employ the
exact same kernels as Ionescu and Butnaru (2017)
to ensure an unbiased comparison with their ap-

Method Development Test
Meta-classifier - 71.65
K0/1+K∩+KLRD+Kivec (sota) 64.17 76.27

K̈0/1+K̈∩+K̈LRD+K̈ivec 65.42* 77.08

K̈0/1+K̈∩+K̈LRD+K̈ivec + TKC 66.73* 78.35*

Table 3: Arabic dialect identification accuracy rates (in
%) of our adapted string kernels versus the 2017 ADI
Shared Task winner (sota) (Ionescu and Butnaru, 2017)
and the first runner up (Malmasi and Zampieri, 2017).
The best accuracy rates are highlighted in bold. The
marker * indicates that the performance is significantly
better than (Ionescu and Butnaru, 2017) according to
a paired McNemar’s test performed at a significance
level of 0.01.

proach. As in the polarity classification experi-
ments, we select r = 1000 unlabeled test samples
to be included in the training set for the second
round of training the transductive classifier, and
we use Kernel Ridge Regression with a regular-
ization of 10−5 in all our ADI experiments.
Results. The results for the cross-domain Arabic
dialect identification experiments on both the de-
velopment and the test sets are presented in Ta-
ble 3. The domain-adapted sum of kernels ob-
tains improvements above 0.8% over the state-
of-the-art sum of kernels (Ionescu and Butnaru,
2017). The improvement on the development set
(from 64.17% to 65.42%) is statistically signifi-
cant. Nevertheless, we obtain higher and signif-
icant improvements when we employ the trans-
ductive classifier. Our best accuracy is 66.73%
(2.56% above the baseline) on the development set
and 78.35% (2.08% above the baseline) on the test
set. The results show that our domain adaptation
framework based on string kernels attains the best
performance on the ADI Shared Task data set, and
the improvements over the state-of-the-art are sta-
tistically significant, according to the McNemar’s
test.
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