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Abstract

In this work, we examine methods for data
augmentation for text-based tasks such as neu-
ral machine translation (NMT). We formulate
the design of a data augmentation policy with
desirable properties as an optimization prob-
lem, and derive a generic analytic solution.
This solution not only subsumes some exist-
ing augmentation schemes, but also leads to an
extremely simple data augmentation strategy
for NMT: randomly replacing words in both

the source sentence and the target sentence

with other random words from their corre-
sponding vocabularies. We name this method
SwitchOut. Experiments on three transla-
tion datasets of different scales show that
SwitchOut yields consistent improvements of
about 0.5 BLEU, achieving better or compara-
ble performances to strong alternatives such as
word dropout (Sennrich et al., 2016a). Code to
implement this method is included in the ap-
pendix.

1 Introduction and Related Work

Data augmentation algorithms generate extra data
points from the empirically observed training set
to train subsequent machine learning algorithms.
While these extra data points may be of lower qual-
ity than those in the training set, their quantity and
diversity have proven to benefit various learning al-
gorithms (DeVries and Taylor, 2017; Amodei et al.,
2016). In image processing, simple augmentation
techniques such as flipping, cropping, or increasing
and decreasing the contrast of the image are both
widely utilized and highly effective (Huang et al.,
2016; Zagoruyko and Komodakis, 2016).

However, it is nontrivial to find simple equiva-
lences for NLP tasks like machine translation, be-
cause even slight modifications of sentences can
result in significant changes in their semantics, or
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require corresponding changes in the translations in
order to keep the data consistent. In fact, indiscrim-
inate modifications of data in NMT can introduce
noise that makes NMT systems brittle (Belinkov
and Bisk, 2018).

Due to such difficulties, the literature in data
augmentation for NMT is relatively scarce. To
our knowledge, data augmentation techniques for
NMT fall into two categories. The first category is
based on back-translation (Sennrich et al., 2016b;
Poncelas et al., 2018), which utilizes monolin-
gual data to augment a parallel training corpus.
While effective, back-translation is often vulner-
able to errors in initial models, a common prob-
lem of self-training algorithms (Chapelle et al.,
2009). The second category is based on word re-
placements. For instance, Fadaee et al. (2017) pro-
pose to replace words in the target sentences with
rare words in the target vocabulary according to
a language model, and then modify the aligned
source words accordingly. While this method gen-
erates augmented data with relatively high quality,
it requires several complicated preprocessing steps,
and is only shown to be effective for low-resource
datasets. Other generic word replacement methods
include word dropout (Sennrich et al., 2016a; Gal
and Ghahramani, 2016), which uniformly set some
word embeddings to 0 at random, and Reward Aug-
mented Maximum Likelihood (RAML; Norouzi
et al. (2016)), whose implementation essentially
replaces some words in the target sentences with
other words from the target vocabulary.

In this paper, we derive an extremely simple
and efficient data augmentation technique for NMT.
First, we formulate the design of a data augmenta-
tion algorithm as an optimization problem, where
we seek the data augmentation policy that max-
imizes an objective that encourages two desired
properties: smoothness and diversity. This opti-
mization problem has a tractable analytic solution,
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which describes a generic framework of which
both word dropout and RAML are instances. Sec-
ond, we interpret the aforementioned solution and
propose a novel method: independently replacing
words in both the source sentence and the tar-

get sentence by other words uniformly sampled
from the source and the target vocabularies, respec-
tively. Experiments show that this method, which
we name SwitchOut, consistently improves over
strong baselines on datasets of different scales, in-
cluding the large-scale WMT 15 English-German
dataset, and two medium-scale datasets: IWSLT
2016 German-English and IWSLT 2015 English-
Vietnamese.

2 Method

2.1 Notations
We use uppercase letters, such as X , Y , etc., to
denote random variables and lowercase letters such
as x, y, etc., to denote the corresponding actual
values. Additionally, since we will discuss a data
augmentation algorithm, we will use a hat to denote
augmented variables and their values, e.g.

b

X , bY , bx,
by, etc. We will also use boldfaced characters, such
as p, q, etc., to denote probability distributions.

2.2 Data Augmentation
We facilitate our discussion with a probabilistic
framework that motivates data augmentation algo-
rithms. With X , Y being the sequences of words
in the source and target languages (e.g. in machine
translation), the canonical MLE framework maxi-
mizes the objective

JMLE(✓) = E
x,y⇠bp(X,Y ) [logp✓

(y|x)] .

Here bp(X,Y ) is the empirical distribution over all
training data pairs (x, y) and p

✓

(y|x) is a param-
eterized distribution that we aim to learn, e.g. a
neural network. A potential weakness of MLE is
the mismatch between bp(X,Y ) and the true data
distribution p(X,Y ). Specifically, bp(X,Y ) is usu-
ally a bootstrap distribution defined only on the
observed training pairs, while p(X,Y ) has a much
larger support, i.e. the entire space of valid pairs.
This issue can be dramatic when the empirical ob-
servations are insufficient to cover the data space.

In practice, data augmentation is often used to
remedy this support discrepancy by supplying ad-
ditional training pairs. Formally, let q( bX,

b

Y ) be
the augmented distribution defined on a larger sup-
port than the empirical distribution bp(X,Y ). Then,

MLE training with data augmentation maximizes

JAUG(✓) = Ebx,by⇠q( bX,

b
Y ) [logp✓

(by|bx)] .

In this work, we focus on a specific family of q,
which depends on the empirical observations by

q( bX,

b

Y ) = E
x,y⇠bp(x,y)

h

q( bX,

b

Y |x, y)
i

.

This particular choice follows the intuition that an
augmented pair (bx, by) that diverges too far from
any observed data is more likely to be invalid and
thus harmful for training. The reason will be more
evident later.

2.3 Diverse and Smooth Augmentation

Certainly, not all q are equally good, and the more
similar q is to p, the more desirable q will be.
Unfortunately, we only have access to limited ob-
servations captured by bp. Hence, in order to use
q to bridge the gap between bp and p, it is neces-
sary to utilize some assumptions about p. Here, we
exploit two highly generic assumptions, namely:

• Diversity: p(X,Y ) has a wider support set,
which includes samples that are more diverse
than those in the empirical observation set.

• Smoothness: p(X,Y ) is smooth, and similar
(x, y) pairs will have similar probabilities.

To formalize both assumptions, let s(bx, by;x, y) be
a similarity function that measures how similar
an augmented pair (bx, by) is to an observed data
pair (x, y). Then, an ideal augmentation policy
q( bX,

b

Y |x, y) should have two properties. First,
based on the smoothness assumption, if an aug-
mented pair (bx, by) is more similar to an empirical
pair (x, y), it is more likely that (bx, by) is sampled
under the true data distribution p(X,Y ), and thus
q( bX,

b

Y |x, y) should assign a significant amount
of probability mass to (bx, by). Second, to quantify
the diversity assumption, we propose that the en-
tropy H[q( bX,

b

Y |x, y)] should be large, so that the
support of q( bX,

b

Y ) is larger than the support of bp
and thus is closer to the support p(X,Y ). Com-
bining these assumptions implies that q( bX,

b

Y |x, y)
should maximize the objective

J(q;x, y) = Ebx,by⇠q( bX,

b
Y |x,y)

⇥

s(bx, by;x, y)

⇤

+ ⌧H(q( bX,

b

Y |x, y)),
(1)
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where ⌧ controls the strength of the diversity objec-
tive. The first term in (1) instantiates the smooth-
ness assumption, which encourages q to draw sam-
ples that are similar to (x, y). Meanwhile, the sec-
ond term in (1) encourages more diverse samples
from q. Together, the objective J(q;x, y) extends
the information in the “pivotal” empirical sample
(x, y) to a diverse set of similar cases. This echoes
our particular parameterization of q in Section 2.2.

The objective J(q;x, y) in (1) is the canonical
maximum entropy problem that one often encoun-
ters in deriving a max-ent model (Berger et al.,
1996), which has the analytic solution:

q⇤
(bx, by|x, y) = exp {s(bx, by;x, y)/⌧}

P

bx0
,by0 exp {s(bx0, by0;x, y)/⌧}

(2)
Note that (2) is a fairly generic solution which is
agnostic to the choice of the similarity measure s.
Obviously, not all similarity measures are equally
good. Next, we will show that some existing algo-
rithms can be seen as specific instantiations under
our framework. Moreover, this leads us to propose
a novel and effective data augmentation algorithm.

2.4 Existing and New Algorithms
Word Dropout. In the context of machine trans-
lation, Sennrich et al. (2016a) propose to randomly
choose some words in the source and/or target sen-
tence, and set their embeddings to 0 vectors. In-
tuitively, it regards every new data pair generated
by this procedure as similar enough and then in-
cludes them in the augmented training set. For-
mally, word dropout can be seen as an instantiation
of our framework with a particular similarity func-
tion s(x̂, ŷ;x, y) (see Appendix A.1).

RAML. From the perspective of reinforcement
learning, Norouzi et al. (2016) propose to train
the model distribution to match a target distribu-
tion proportional to an exponentiated reward. De-
spite the difference in motivation, it can be shown
(c.f. Appendix A.2) that RAML can be viewed as
an instantiation of our generic framework, where
the similarity measure is s(bx, by;x, y) = r(by; y) if
bx = x and �1 otherwise. Here, r is a task-specific
reward function which measures the similarity be-
tween by and y. Intuitively, this means that RAML
only exploits the smoothness property on the target
side while keeping the source side intact.

SwitchOut. After reviewing the two existing
augmentation schemes, there are two immediate

insights. Firstly, augmentation should not be re-
stricted to only the source side or the target side.
Secondly, being able to incorporate prior knowl-
edge, such as the task-specific reward function r in
RAML, can lead to a better similarity measure.

Motivated by these observations, we propose to
perform augmentation in both source and target
domains. For simplicity, we separately measure
the similarity between the pair (bx, x) and the pair
(by, y) and then sum them together, i.e.

s(bx, by;x, y)/⌧ ⇡ r

x

(bx, x)/⌧

x

+ r

y

(by, y)/⌧

y

, (3)

where r
x

and r

y

are domain specific similarity func-
tions and ⌧

x

, ⌧
y

are hyper-parameters that absorb
the temperature parameter ⌧ . This allows us to
factor q⇤

(bx, by|x, y) into:

q⇤
(bx, by|x, y) = exp {r

x

(bx, x)/⌧

x

}
P

bx0 exp {r
x

(bx

0
, x)/⌧

x

}

⇥ exp {r
y

(by, y)/⌧

y

}
P

by0 exp {ry(by0, y)/⌧y}

(4)

In addition, notice that this factored formulation
allows bx and by to be sampled independently.

Sampling Procedure. To complete our method,
we still need to define r

x

and r

y

, and then design
a practical sampling scheme from each factor in
(4). Though non-trivial, both problems have been
(partially) encountered in RAML (Norouzi et al.,
2016; Ma et al., 2017). For simplicity, we follow
previous work to use the negative Hamming dis-
tance for both r

x

and r

y

. For a more parallelized
implementation, we sample an augmented sentence
bs from a true sentence s as follows:

1. Sample bn 2 {0, 1, ..., |s|} by p(bn) / e

�bn/⌧ .

2. For each i 2 {1, 2, ..., |s|}, with probability
bn/ |s|, we can replace s

i

by a uniform bs

i

6= s

i

.

This procedure guarantees that any two sentences
bs1 and bs2 with the same Hamming distance to s

have the same probability, but slightly changes the
relative odds of sentences with different Hamming
distances to s from the true distribution by negative
Hamming distance, and thus is an approximation
of the actual distribution. However, this efficient
sampling procedure is much easier to implement
while achieving good performance.

Algorithm 1 illustrates this sampling procedure,
which can be applied independently and in paral-
lel for each batch of source sentences and target



859

sentences. Additionally, we open source our imple-
mentation in TensorFlow and in PyTorch (respec-
tively in Appendix A.5 and A.6).

Algorithm 1: Sampling with SwitchOut.
Input : s: a sentence represented by vocab integral ids,

⌧ : the temperature, V : the vocabulary
Output : bs: a sentence with words replaced

1 Function HammingDistanceSample(s, ⌧ , |V |):
2 Let Z(⌧) 

P|s|
n=0 e

�n/⌧ be the partition function.
3 Let p(n) e

�n/⌧

/Z(⌧) for n = 0, 1, ..., |s|.
4 Sample bn ⇠ p(n).
5 In parallel, do:
6 Sample a

i

⇠ Bernoulli(bn/ |s|).
7 if a

i

= 1 then
8 bs

i

 Uniform(V \{s
i

}).
9 else

10 bs
i

 s

i

.
11 end
12 return bs

3 Experiments

Datasets. We benchmark SwitchOut on three
translation tasks of different scales: 1) IWSLT
2015 English-Vietnamese (en-vi); 2) IWSLT 2016
German-English (de-en); and 3) WMT 2015
English-German (en-de). All translations are word-
based. These tasks and pre-processing steps are
standard, used in several previous works. Detailed
statistics and pre-processing schemes are in Ap-
pendix A.3.

Models and Experimental Procedures. Our
translation model, i.e. p

✓

(y|x), is a Transformer
network (Vaswani et al., 2017). For each dataset,
we first train a standard Transformer model with-
out SwitchOut and tune the hyper-parameters on
the dev set to achieve competitive results. (w.r.t. Lu-
ong and Manning (2015); Gu et al. (2018); Vaswani
et al. (2017)). Then, fixing all hyper-parameters,
and fixing ⌧

y

= 0, we tune the ⌧

x

rate, which con-
trols how far we are willing to let bx deviate from x.
Our hyper-parameters are listed in Appendix A.4.

Baselines. While the Transformer network with-
out SwitchOut is already a strong baseline, we also
compare SwitchOut against two other baselines
that further use existing varieties of data augmenta-
tion: 1) word dropout on the source side with the
dropping probability of �word = 0.1; and 2) RAML
on the target side, as in Section 2.4. Additionally,
on the en-de task, we compare SwitchOut against
back-translation (Sennrich et al., 2016b).

Method en-de de-en en-vi

Transformer 21.73 29.81 27.97
+WordDropout 20.63 29.97 28.56
+SwitchOut 22.78† 29.94 28.67†

+RAML 22.83 30.66 28.88
+RAML +WordDropout 20.69 30.79 28.86
+RAML +SwitchOut 23.13† 30.98† 29.09

Table 1: Test BLEU scores of SwitchOut and other base-
lines (median of multiple runs). Results marked with † are
statistically significant compared to the best result without
SwitchOut. For example, for en-de results in the first column,
+SwitchOut has significant gain over Transformer; +RAML
+SwitchOut has significant gain over +RAML.

SwitchOut vs. Word Dropout and RAML.
We report the BLEU scores of SwitchOut, word
dropout, and RAML on the test sets of the tasks
in Table 1. To account for variance, we run
each experiment multiple times and report the me-
dian BLEU. Specifically, each experiment with-
out SwitchOut is run for 4 times, while each ex-
periment with SwitchOut is run for 9 times due
to its inherently higher variance. We also con-
duct pairwise statistical significance tests using
paired bootstrap (Clark et al., 2011), and record
the results in Table 1. For 4 of the 6 settings,
SwitchOut delivers significant improvements over
the best baseline without SwitchOut. For the re-
maining two settings, the differences are not sta-
tistically significant. The gains in BLEU with
SwitchOut over the best baseline on WMT 15
en-de are all significant (p < 0.0002). Notably,
SwitchOut on the source demonstrates as large
gains as these obtained by RAML on the target
side, and SwitchOut delivers further improvements
when combined with RAML.

SwitchOut vs. Back Translation. Traditionally,
data-augmentation is viewed as a method to en-
large the training datasets (Krizhevsky et al., 2012;
Szegedy et al., 2014). In the context of neural
MT, Sennrich et al. (2016b) propose to use artifi-
cial data generated from a weak back-translation
model, effectively utilizing monolingual data to en-
large the bilingual training datasets. In connection,
we compare SwitchOut against back translation.
We only compare SwitchOut against back transla-
tion on the en-de task, where the amount of bilin-
gual training data is already sufficiently large2. The

2We add the extra monolingual data from
http://data.statmt.org/rsennrich/wmt16_
backtranslations/en-de/

http://data.statmt.org/rsennrich/wmt16_backtranslations/en-de/
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-de/
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Method en-de

Transformer 21.73
+SwitchOut 22.78

+BT 21.82
+BT +RAML 21.53
+BT +SwitchOut 22.93
+BT +RAML +SwitchOut 23.76

Table 2: Test BLEU scores of back translation (BT) compared
to and combined with SwitchOut (median of 4 runs).

BLEU scores with back-translation are reported in
Table 2. These results provide two insights. First,
the gain delivered by back translation is less signifi-
cant than the gain delivered by SwitchOut. Second,
SwitchOut and back translation are not mutually ex-
clusive, as one can additionally apply SwitchOut on
the additional data obtained from back translation
to further improve BLEU scores.

Effects of ⌧
x

and ⌧

y

. We empirically study the
effect of these temperature parameters. During
the tuning process, we translate the dev set of the
tasks and report the BLEU scores in Figure 1. We
observe that when fixing ⌧

y

, the best performance
is always achieved with a non-zero ⌧

x

.

0.00 1.00

⌧

�1

x

0.00

0.80

⌧

�
1

y

20.41 20.52

20.40 20.65

20.40

20.45

20.50

20.55

20.60

0.00 0.95 1.00

⌧

�1
x

0.00

0.90

0.95

⌧

�
1

y

31.09 31.39 31.96

32.60 33.16 33.03

32.67 32.95 32.97

31.25

31.50

31.75

32.00

32.25

32.50

32.75

33.00

0.00 0.90 1.00

⌧

�1
x

0.00

0.90

1.00

⌧

�
1

y

25.20 25.44 25.74

25.70 25.60 26.02

25.70 25.67 25.96

25.3

25.4

25.5

25.6

25.7

25.8

25.9

26.0

Figure 1: Dev BLEU scores with different ⌧
x

and ⌧

y

. Top

left: WMT 15 en-de. Top right: IWSLT 16 de-en. Bottom:
IWSLT 15 en-vi.

Where does SwitchOut Help the Most? Intu-
itively, because SwitchOut is expanding the sup-
port of the training distribution, we would expect
that it would help the most on test sentences that
are far from those in the training set and would thus
benefit most from this expanded support. To test
this hypothesis, for each test sentence we find its
most similar training sample (i.e. nearest neighbor),
then bucket the instances by the distance to their

nearest neighbor and measure the gain in BLEU af-
forded by SwitchOut for each bucket. Specifically,
we use (negative) word error rate (WER) as the
similarity measure, and plot the bucket-by-bucket
performance gain for each group in Figure 2. As
we can see, SwitchOut improves increasingly more
as the WER increases, indicating that SwitchOut is
indeed helping on examples that are far from the
sentences that the model sees during training. This
is the desirable effect of data augmentation tech-
niques.
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Figure 2: Gains in BLEU of RAML+SwitchOut over RAML.
x-axis is ordered by the WER between a test sentence and its
nearest neighbor in the training set. Left: IWSLT 16 de-en.
Right: IWSLT 15 en-vi.

4 Conclusion

In this paper, we propose a method to design data
augmentation algorithms by solving an optimiza-
tion problem. These solutions subsume a few ex-
isting augmentation schemes and inspire a novel
augmentation method, SwitchOut. SwitchOut de-
livers improvements over translation tasks at differ-
ent scales. Additionally, SwitchOut is efficient and
easy to implement, and thus has the potential for
wide application.
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