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Abstract

We tackle discourse-level relation recognition,
a problem of determining semantic relations
between text spans. Implicit relation recogni-
tion is challenging due to the lack of explicit
relational clues. The increasingly popular neu-
ral network techniques have been proven ef-
fective for semantic encoding, whereby widely
employed to boost semantic relation discrimi-
nation. However, learning to predict seman-
tic relations at a deep level heavily relies on a
great deal of training data, but the scale of the
publicly available data in this field is limited.
In this paper, we follow Rutherford and Xue
(2015) to expand the training data set using
the corpus of explicitly-related arguments, by
arbitrarily dropping the overtly presented dis-
course connectives. On the basis, we carry out
an experiment of sampling, in which a simple
active learning approach is used, so as to take
the informative instances for data expansion.
The goal is to verify whether the selective use
of external data not only reduces the time con-
sumption of retraining but also ensures a bet-
ter system performance. Using the expanded
training data, we retrain a convolutional neu-
ral network (CNN) based classifer which is a
simplified version of Qin et al. (2016)’s stack-
ing gated relation recognizer. Experimen-
tal results show that expanding the training
set with small-scale carefully-selected exter-
nal data yields substantial performance gain,
with the improvements of about 4% for accu-
racy and 3.6% for F-score. This allows a weak
classifier to achieve a comparable performance
against the state-of-the-art systems.

1 Introduction

Since the Penn Discourse Treebank of version 2.0
(PDTB) was released in 2008 (Prasad et al., 2008),
there is a significant amount of research has been
carried out on discourse-level relation recognition
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between a variety of text spans (namely, argument-
argument relations). From a perspective of inclu-
sion or omission of conjunctions, the study in this
field has been directed toward two issues: recog-
nizing explicit relations or implicit. Listed below
are two pairs of arguments, where the arguments
in 1) hold an explicit causal relation while those in
2) are implicitly related with a causal relation.

1) [She left the company]Arg1 because
[she would move to California]Arg2.

2) [We have never seen the kitty since
then]Arg1. [John told us the kitty has
been adopted]Arg2.

In general, the explicit relations can be directly
signaled by the conjunctions (also called connec-
tives) which inherently exist, such as the conjunc-
tion “because” in 1). This allows a predictor to
speculate relations by the word senses of conjunc-
tions. Using conjunctions as relational predicates,
the earlier study has achieved a prediction perfor-
mance of no less than 93% for accuracy (Pitler and
Nenkova, 2009). By contrast, the implicit relations
like that in 2) are difficult to automatically recog-
nize due to the lack of conjunctions.

We focus on the implicit relation recognition in
this paper, and follow Rutherford and Xue (2015)
to strengthen the current neural discourse-level re-
lation classification by expanding the training data
set. The explicit-to-implicit (Exp2Imp for short)
relation transformation is used. In particular, we
propose to introduce active learning into the data
expansion process, with the aim to reduce redun-
dancy and reinforce the use of informative in-
stances. In our experiments, we cooperate active
learning with a simple version of Exp2Imp trans-
formation. Experimental results show that such a
cooperation allows substantial improvements to be
achieved for 4 main relation types in PDTB.
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2 Related Work

Multi-class implicit relation recognition can be
boiled down to a classification problem. This en-
corages the study of supervised classification at
the earlier time (Pitler and Nenkova, 2009; Lin
et al., 2009; Louis et al., 2010; Park and Cardie,
2012; Rutherford and Xue, 2014). Recently, the
neural network based approaches become increas-
ingly popular due to the capacity of deep seman-
tic learning and understanding (Zhang et al., 2015;
Qin et al., 2016; Chen et al., 2016; Qin et al., 2017;
Liu and Li, 2016). However, a large amount of
labeled data is urgently needed to train the mod-
els. (Rutherford and Xue, 2015; Braud and Denis,
2016; Liu et al., 2016; Wu et al., 2017).

The explicitly-related arguments in the corpus
of PDTB has been sufficiently proven to be usable
for creating implicitly-related arguments (Ruther-
ford and Xue, 2015; Braud and Denis, 2016; Liu
et al., 2016; Wu et al., 2017), only if the omis-
sion of inherent conjunctions will not distort the
original semantic relations (Rutherford and Xue,
2015). Benefiting from the high-accuracy ex-
plicit relation recognition, a simple pattern, such
as Argument1+because+Argument2, may enable
the acquisition of countless explicitly-related ar-
guments from texts. It makes it possible to coop-
erate with Rutherford and Xue (2015)’s Exp2Imp
relation transformation for creating a tremendous
number of labeled implicit relation instances.

However, it is inevitable to bring in the redun-
dant information when using such a scale of unre-
fined artificial instances to directly expand the ex-
isting training data. This causes a time-consuming
retraining process. By contrast, random sampling
for retrenchment may leave informative instances
out of the expanded data set.

Active learning (AL) is especially applicable to
redundancy reduction. It is able to automatically
select the most informative samples for use in a
cycle of training. Nowadays, there have been a va-
riety of AL models successfully used in different
language processing tasks (Li and Guo, 2013; Guo
and Wang, 2015; Yang et al., 2015; Zhang et al.,
2017; Ramirez-Loaiza et al., 2017). This allows
us to draw lessons from the experiences.

3 Informative Instances

In general, in the field of machine learning, an in-
formative instance is defined as the one which has
been classified with less confidence (i.e., higher
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Figure 1: Examples of informative instances

uncertainty). Assume that Irj (xi,M) refers to the
the level of uncertainty at which a classifier M de-
termines an instance xi as the member of the class
rj , thus xi is informative only if it significantly in-
creases the level of uncertainty:

x∗ = argmax
∑
rj∈R

Irj (xi;M) (1)

The utilization of informative instances in data
expansion for training has been proven effective in
improving the fully-supervised classification mod-
els. For example, the instances marked with a dot-
dashed circle in Figure 1 can be regarded to be
informative. It is because a classifier may fail to
deterministically distinguish between them. If us-
ing such instances as additional training data, we
may retrain the classifier to revise the original de-
cision boundary, and pursue the ground-truth.

4 Active Learning (AL)

AL is a kind of retraining mechanism by data ex-
pansion. Figure 2 shows the workflow, which pri-
marily includes 4 steps:

• Step 1: in which a learning model is required
to be trained on the previously labeled data.

• Step 2: where the well-trained model is used
to classify the unlabeled external data.

• Step 3: relies on the classification results to
evaluate informativeness over the unlabeled
data. The informative instances will be even-
tually adopted for manual annotation.

• Step 4: adds the newly annotated data to the
existing, and retrains the learning model.

It is noteworthy that AL is not an “once-for-all”
deal. On the contrary, it needs to be carried out re-
peatedly and iteratively, until a predefined condi-
tion is met, such as the time at which the classifica-
tion performance remains almost the same within
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Figure 2: Workflows of ALs

a series of successive iterations, or termination af-
ter a fixed number of iterations.

5 Cooperating AL with Exp2Imp

We cooperate AL with Exp2Imp transformation.
The workflow is also shown in Figure 2, where
the labeled data set contains a certain number of
implicitly-related argument pairs, while the unla-
beled the explicitly-related.

In each iteration of AL, a classifier is trained
on the labeled implicitly-related argument pairs,
but it is driven to forcibly classify the explicitly-
related argument pairs. On the basis, informative-
ness measurement is performed to sample the in-
formative explicitly-related argument pairs. And
then, instead of experts, the Exp2Imp transforma-
tion module serves as an annotator to mark the re-
lations of the sampled argument pairs. Along with
the automatically-annotated relations, such argu-
ment pairs are used as the counterfeit implicit re-
lation instances. They are eventually added to the
original labeled data set for expansion.

5.1 Informativeness Measurement
We employ an uncertainty sampling function (Zhu
et al., 2008; Settles, 2010; Yang et al., 2015;
Ramirez-Loaiza et al., 2017) to measure the infor-
mativeness:

Inf(xi) =
∑
rj∈R

Irj (xi;M) (2)

=
∑
rj∈R

P (rj |xi) logP (rj |xi) (3)

where, for an instance xi, the entropy of the pre-
dicted probabilities over all kinds of PDTB rela-
tion classes is used as the score of informativeness.

In order to reduce the computational complexity
in practice, we sample informative instances in an
iteration-independent batch-by-batch manner. In
each iteration, a batch of instances in the unlabeled

Learning rate 0.001 Filter size (2, 3, 5)

Number of filter 512 Optimizer Adam
Batch size 128 threshold θ 0.95

Table 1: Hyperparameter settings of CNN

data set will be taken, only if their informativeness
scores are higher than a constant threshold θ:

U ′ = {xi | Inf(xi) > θ,∀xi ∈ U} (4)

where, U is the unlabeled data set while U ′ con-
sists of the potentially informative instances.

5.2 Statistical Information based Exp2Imp
We implement a much simpler Exp2Imp transfor-
mation model than Rutherford and Xue (2015)’s
work. Statistical information is used.

For an explicitly-related argument pair in U ,
we rely on the conjunction to determine the rela-
tion. For example, if the arguments are syntac-
tically connected by the conjunction “because”,
their relation will be identified as Contingency

(Causality plus Condition). We previously look
up conjunctions in a small subset of U and analy-
sis the ground-truth explicit relations they signal.
If a conjunction invariably signals a single type of
relation (e.g., because→ Contingency), we pre-
serve the one-to-one correspondence between the
conjunction and the relation type. Else if a con-
junction used to signal multiple-type relations, we
align it solely with the relation it most frequently
signals ever.

The Exp2Imp module first determines explicit
relations based on conjunction-relation alignment,
and then omits the conjunctions to create the coun-
terfeit implicitly-related argument pairs.

5.3 CNN based Classification
We follow Qin et al. (2016) to use Siamese CNN
for argument modeling and relation classification.
The 300-dimensional word embeddings and 50-
dimensional POS embeddings are used to repre-
sent the arguments. We also follow Mikolov et al.
(2013) to pretrain the word embeddings and ini-
tialize the POS by random sampling in [-1,1]. Ta-
ble 1 shows the hyperparameter settings.

The source codes of AL, Exp2Imp and Siamese
CNN1 to fully reproduce the experiments has been
made publicly available, to which we attached the
set of informative training data.

1https://github.com/AndreaXu0401/ALIDRC
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Metrics Baseline Blender (U) AL (U)
Tem. P 61.54 66.67 81.82

R 14.55 14.54 16.36
F1 23.53 23.88 27.27

Com. P 38.74 72.72 82.50
R 29.66 17.94 22.76
F1 33.59 28.73 35.68

Con. P 53.15 45.64 59.00
R 27.84 32.60 34.80
F1 36.54 38.03 43.78

Exp. P 60.08 55.98 59.57
R 83.09 79.92 88.48
F1 69.73 65.85 71.21

Accuracy 56.78 54.70 60.63
Macro F1 40.85 39.12 44.48

Table 2: The four-way classification performance

6 Experimentation

We experiment on the PDTB v2.0 (Prasad et al.,
2008). Sections 2-20 are used as the benchmark
training set. They are also used as the labeled set
in the AL process. Sections 21-22 are taken as the
test set and sections 0-1 the development set.

The ground-truth explicitly-related argument
pairs in the PDTB corpus are divided into two sub-
sets: one consists of 450 instances which are used
for aligning conjunctions and relation types, the
other is consisted of 17,000 instances and used as
the unlabeled data set U in the AL process.

6.1 Main Results

For the purpose of comparison, we expand the
benchmark training data set (Baseline) in two dif-
ferent ways: Blender and AL. Blender combines
the benchmark with U. Exp2Imp transformation
is performed for the instances in U. Thus Blender
mixes the true implicitly-related argument pairs
and all the counterfeits in U. By contrast, AL sam-
ples informative counterfeits for expansion.

We train CNN on the benchmark and the ex-
panded versions, and test the best-developed mod-
els for four-way classification among the relation
types of Expansion (Exp), Contingency (Con),
Comparison (Com) and Temporality (Tem). Ta-
ble 2 shows the performance. It can be observed
that simply adding all the counterfeits to the train-
ing data set negatively influences the learning pro-
cess, causing a performance loss of about 1.73%
for macro F1 and 2.08% for accuracy. This may

Systems Accuracy Macro F1

IO (2015) 57.10 40.50
MNN (2016) 57.27 44.98
MTN (2016) - 42.50
DSWE (2017) 58.85 44.84
MANN (2017) 57.39 47.80
Ours 60.63 44.48

Table 3: Comparison with the state of the art

result from the fact that the relations of some coun-
terfeits change to be uncertain due to the omission
of inherent conjunctions. Such counterfeits prob-
ably mislead CNN during the learning process.

On the contrary, AL obtains a substantial perfor-
mance gain. Using about 15 percent of instances
in U for expansion, AL improves CNN with 3.85%
for accuracy and 3.63% for macro F1. This may
imply that the carefully-selected counterfeits by
AL most probably have positive effects on the re-
training. The uncertainty caused by arbitrary con-
junction omission plays a counter-productive role,
prompting CNN to pursue more precise classifica-
tion boundaries in the AL process.

6.2 Discussion

6.2.1 Comparison to Expansion Methods
We compare the proposed method to the recently
popular, all of which more or less expand the train-
ing data, so as to introduce comprehensive linguis-
tic knowledge into the learning process:

• Intelligent Omission (IO) (Rutherford and
Xue, 2015) consciously omits conjunctions
in explicitly related argument pairs to create
counterfeits. Herein, a model is developed to
identify the counterfeits whose semantic rela-
tions keep unchanged after conjunction omis-
sion. Such samples are used for expansion.

• Multi-task Neural Network (MNN) (Liu
et al., 2016). The training set is expanded
with RST-DT (Carlson et al., 2003) and NYT
(Sandhaus, 2008). The other two MNN based
models include Wu et al. (2016)’s MTN
and Lan et al. (2017)’s MANN. MANN is
more sophisticated due to the use of attention
mechanism, while MTN acts as a bilingual
discourse analysis system. Both of them in-
troduce external datasets in the training pro-
cesses, NANT and BiSynData, respectively .
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• DSWE based CNN model (Wu et al., 2017),
where Discourse-Specific Word Embeddings
(DSWE) are used. DSWE are pre-trained on
the large English Gigaword corpus.

It can be found that our method achieves com-
petitive performance, showing the best accuracy
and almost comparable F score to those of most
competitors. It is noteworthy that the neural net-
work we use is much weaker than the sophisticated
MNN, MTN and MANN. Besides, there are fewer
instances used for expansion than that for training
DSWE. This may imply that AL is cost-effective.

6.2.2 Informative Instances
We randomly sample a couple of informative in-
stances by tracking the AL process, along with
some less informative cases. They helps illustrate
the intuition that informativeness verification ben-
efits data cleaning, in the process of using counter-
feits for distant supervision.

3) [He further said that it would study
other alternatives]Arg1 omitted con-
junction [it hasn’t yet made any propos-
als to shareholders]Arg2.

Conjunction: however
Relation: Comparison.Contrast

4) [all of a sudden you are relegated to
a paltry sum]Arg1 omitted conjunction
[you become a federal judge]Arg2.

Conjunction: when
Relation:Temporality.Synchrony

The instances listed above are to some ex-
tent informative. When the conjunctions inher-
ently connecting the arguments were pruned off,
the semantic relations changed to be uncertain.
For example, assume the conjunctions “however”
and “when” are respectively replaced by “there-
fore” and “although”, the arguments in 3) will
appear to have a Contingency.Causality
relation as well, and those in 4) seems to hold
a Contingency.Compromise relation with a
very reasonable possibility. It means that the rela-
tions the argument pair hold are ambiguous if there
isn’t any manually-edited explicit relational signal
(e.g., conjunction). Nevertheless, from the other
perspective, such instances are frankly useful for
training a classifier. It is because:

• Learning to distinguish the relations of such
arguments is challenging beyond other cases.

• A challenging task enables the training pro-
cess to be more strict but effective.

• This makes it possible to learn the subtle dif-
ferences among argument pairs which belong
to different relation classes.

On the contrary, the instances listed below are
far from informative. There are less alternative re-
lations can be imaged to replace the original, even
if the conjunctions “although” and “because” have
been pruned off. Note that such instances are un-
doubtedly useful at the very beginning of the train-
ing process. At that time, they facilitate the initial-
ization of fuzzy classification boundaries. How-
ever, they are most probably useless for calibrating
the boundaries at the level of subtle difference.

5) [She was dreadful to her war-
damaged husband]Arg1 omitted con-
junction [she was kind and playful to
her children]Arg2.

Conjunction: although
Relation: Comparison.Contrast

6) [The ad was devastating]Arg1. omit-
ted conjunction [it raised questions
about Mr. Courter’s credibility]Arg2.

Conjunction: because
Relation: Contingency.Cause

7 Conclusion

This paper demonstrates the contributions of AL
to the enhancement of implicit relation classifica-
tion. Using an AL model, we successfully sample
a batch of informative explicitly-related argument
pairs. Following Exp2Imp strategy, we convert the
arguments into implicitly-related cases. This helps
expand training data for fully-supervised relation
modeling. By retraining, we enable a weak CNN
model to achieve competitive performance.

Active learning can be systematically cooper-
ated with Rutherford and Xue (2015)’s intelligent
omission. This will enable the sampling of both
informative and reliable instances for data expan-
sion. Besides, using the carefully expanded train-
ing data set, the sophisticated learning model like
MNN may be further enhanced significantly.
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