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Abstract

We approach the problem of generalizing pre-
trained word embeddings beyond fixed-size
vocabularies without using additional contex-
tual information. We propose a subword-
level word vector generation model that views
words as bags of character n-grams. The
model is simple, fast to train and provides
good vectors for rare or unseen words. Ex-
periments show that our model achieves state-
of-the-art performances in English word sim-
ilarity task and in joint prediction of part-of-
speech tag and morphosyntactic attributes in
23 languages, suggesting our model’s ability
in capturing the relationship between words’
textual representations and their embeddings.

1 Introduction

Word embeddings have been an essential part of
neural-network based approaches for natural lan-
guage processing tasks (Goldberg, 2016). How-
ever, many popular word embeddings techniques
have a fixed vocabulary (Mikolov et al., 2013;
Pennington et al., 2014), i.e., they can only pro-
vide vectors over a finite set of common words
that appear frequently in a given corpus. Such
methods fail to generate vectors for rare words
and words not present in the training corpus, but
appearing in the test corpus or downstream task
texts, raising difficulty for any methods relying on
word vectors to efficiently extract useful features
from text. This is often referred to as the out-of-
vocabulary (OOV) word problem. We aim to ad-
dress this problem by inferring vectors for OOV
words with only access to pre-trained vectors over
a fixed vocabulary of common words and the OOV
word itself without context.

The motivations come from both linguistics and
natural language processing applications. First,
from a linguistic view a word can be decomposed

into multiple morphemes: stems, affixes, modi-
fiers and etc. This is more often the case for rare
words. In some field such as chemistry and ag-
glutinative languages such as Turkish, there exists
a systematic way of composing words from mor-
phemes. Some can even be arbitrarily long.

Apart from the explicit and systematic way of
making words, we can also observe the ability of
a language speaker to infer the meaning of an un-
seen word. For instance, one can guess that “pre-
EMNLP” means “before EMNLP”, even without
the presence of any context, suggesting that it is
part of our implicit linguistic knowledge to infer
meaning of an unseen word solely from its lexi-
cal form. This observation, together with the mor-
pheme decomposition of many rare words, implies
the feasibility of inferring their vectors from those
for common words, and also raises the algorithmic
question of how to compute them efficiently.

Second, there are many NLP applications where
estimating word embeddings of OOV is critical.
For instance, in the case of analyzing Twitter data,
while there exists pre-trained word embeddings
with giant vocabularies trained on massive num-
ber of tweets, such as GloVe vectors (Pennington
et al., 2014), this would still not cover new words
coined by users everyday. In such cases, it is more
prudent to extend the available pre-trained vectors
trained on very large corpora, so that we can es-
timate embeddings for OOV words, instead of re-
training a new word / subword level embedding
model on the new extended data corpus.

OOV words have always been a problem for
methods that assume fixed vocabularies. A com-
mon workaround is to view all OOV words as a
special UNK token and use the same vector for
all of them. This would restrict any downstream
models from accessing distinct features of those
words. Thus, we would like a method to provide
vectors that capture semantic and grammatical fea-
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tures even for OOV words. We also would like
such method to maximally rely on the word itself,
instead of its context, as contextual information
is already used later with sentence level models
stacking over word vectors.

To achieve this, we aim to build a word embed-
ding model that generalizes pre-trained word em-
beddings to OOV words. First, given word embed-
dings for a fixed vocabulary, our model learns the
relationship between the subwords present in each
word and its corresponding pre-trained word vec-
tor. Then, using the learned subword information,
our model can generate word embeddings for any
word, regardless if it is OOV or not.

Contribution We propose a simple yet effec-
tive subword-level word embedding method that
can be efficiently trained given pre-trained word
vectors for a limited number of words. Once
trained, our embedding model takes the characters
n-grams in a word as input and gives its word vec-
tor as output.1

Our experiments on word similarity tasks in
English and POS tagging in a variety of lan-
guages suggests that the proposed word embed-
der is able to mimic and generalize consistently
the word vectors from in-vocabulary words to
out-of-vocabulary words, and achieves state-of-
the-art scores for the tasks compared to previ-
ous subword-level word embedders trained under
the same setting. This gives evidence that such
a simple model is capable of capturing language
speaker’s morphological knowledge, and also pro-
vides an easy way to generate word vectors for rare
or unseen (OOV) words with potential application
to various natural language processing tasks.

Related work There exist a large body of works
that try to incorporate morphological information
into word representations, e.g., (Alexandrescu and
Kirchhoff, 2006; Luong et al., 2013a; Qiu et al.,
2014; Botha and Blunsom, 2014; Cotterell and
Schütze, 2015; Soricut and Och, 2015). These ap-
proaches typically rely on the morphological de-
composition of words. Some other approaches
using subword information do not rely on mor-
phological decomposition but requires context in-
formation from large text corpus (Schütze, 1993;
Santos and Zadrozny, 2014; Ling et al., 2015; Wi-
eting et al., 2016).

1The code is available at https://github.com/
jmzhao/bag-of-substring-embedder.

In particular, Bojanowski et al. (2017) intro-
duced fastText, a word embedding method en-
hanced with subword (character n-gram) embed-
dings. They are able to generate vectors for OOV
words, which has been shown useful for text clas-
sification (Joulin et al., 2016), but the model is to
be trained over large text corpus.

Pinter et al. (2017) use a character-level bidi-
rectional LSTM model called MIMICK, mapping
from word strings to word vectors. The idea
of using character-level recurrent neural networks
(RNNs) for word vectors is not new (Ling et al.,
2015; Plank et al., 2016), but as per authors’
knowledge, they are by far the only attempt to
the exact task of generalizing word vectors from
only pre-trained vectors with a fixed vocabulary,
i.e. with no access to contextual information.

2 Bag-of-Substring Model

Our Bag-of-Substring (BoS) word vector gener-
ation model views a word as a bag of its sub-
strings, or character n-grams. Specifically, we
maintain a vector lookup table for each possi-
ble substrings (or character n-grams) of length
between lmin and lmax. A word vector is then
formed as the average of vectors of all its sub-
strings with lengths in the range. Let Σ be the fi-
nite set of characters in the language, subsba(s) =
{t is substring of s : a ≤ |t| ≤ b} for string s ∈
Σ∗ be the set of substrings of s whose length is be-
tween a and b inclusive, and <s> be the concatena-
tion of character <, string s and character > where
<,> 6∈ Σ. The BoS embedding for a string/word s
can be expressed as

BoS(s;V ) =
1

|S<s>|
∑

t∈S<s>

vt, (1)

where V ∈ Rd×(|Σ|lmin+···+|Σ|lmax ) are the param-
eters which stores the embeddings of dimension
d for each possible substring of length between
lmin and lmax, vt is the vector in V indexed by
t, S<s> is a shorthand for subslmax

lmin
(<s>). Spe-

cial characters <,> 6∈ Σ are used to mark the start
and the end of the word and thus help the model
to distinguish homographic morphemes that occur
at different word parts, e.g. prefixes or suffixes.
An example BoS representation for word infix
is subs4

3(<infix>) = {<in, <inf, inf,
infi, nfi, nfix, fix, fix>, ix>}.

fastText (Bojanowski et al., 2017) uses the same
idea for their word vector generation part. How-

https://github.com/jmzhao/bag-of-substring-embedder
https://github.com/jmzhao/bag-of-substring-embedder
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ever, unlike them, we train the model directly to-
wards pre-trained vectors, instead of via context
prediction over text corpora.

Training Given pre-trained vectors for a set of
common words, our model views them as targets
and is trained to fit these targets. Once the param-
eters (the vectors vt for the substrings) are learned,
the model can then be used to infer vectors for
rare words. Let U ∈ Rd×|W | be the target vec-
tors of the same dimension d over finite vocabu-
lary W ⊂ Σ∗. Our model is trained by minimiz-
ing the overall loss between the generated and the
given vectors for each word:

minimize
V

1

|W |
∑
w∈W

l(BoS(w;V ), uw) (2)

where the loss function l(v, u) = 1
2‖v − u‖22,

namely the mean squared loss.
After training, one can use the learned V and

Eqn (1) to compute the vector for any given word,
even if it is OOV.

Hyperparameters We set the following hyper-
parameters for all the experiments. For BoS
model, lmin = 3 and lmax = 6 following Bo-
janowski et al. (2017). Note that under this setting,
S<s> can never be empty for non-empty string s.
For optimization, stochastic gradient descent with
learning rate 1 for 100 epochs. The dimension of
the word vectors is not a hyperparameters here as
it needs to agree with the target vector.

3 Word Similarity

We run experiments to quantitatively evaluate the
our model’s generalizability towards OOV words.

The word similarity task asks to predict word
similarity between a pair of two words. Given a
set of pairs of words and gold labels for their sim-
ilarities, the performance of word embeddings is
measured by the correlation between the gold sim-
ilarities and the similarities induced by the gen-
erated embeddings. And we can thus imply how
good our model is at generating word vectors. The
word similarity here is computed using the cosine
distance between the two word vectors, and the
correlation is computed using Spearman’s ρ.

Datasets We evaluate over Stanford RareWord
(RW) introduced by Luong et al. (2013b) and
WordSim353 (WS) introduced by Finkelstein
et al. (2001). RW consists of less common words

Dim. # Tokens RW WS
Polyglot 64 100k 41(58%) 45(5%)
Google 300 160k 53(11%) 69(1%)

Table 1: Target vectors statistics and word similarity task
scores in Spearman’s ρ× 100. In parentheses are OOV rates.

Model Size Target RW WS
EditDist - - 18 -2
MIMICK 649KB Polyglot 14 12
BoS 238MB Polyglot 36 36
BoS 1.3GB Google 46 56
fastText 8.0GB - 48 74

Table 2: Word similarity task results measured in Spear-
man’s ρ× 100.

so we use it to access our model’s ability to gen-
eralize word embeddings to OOV words. WS is
composed of mostly common words and we use
it to test if our subword-level models successfully
mimic the target vectors.

Target vectors We train our BoS model over
the English Polyglot vectors 2 to establish a direct
comparison with results from MIMICK (Pinter
et al., 2017), and as well as the Google word2vec
vectors 3 which are popularly used in NLP tasks.
Polyglot (Al-Rfou et al., 2013) is a multilingual
NLP dataset, which also provides pre-trained word
vectors over each language’s corpus with a vocab-
ulary of 100,000 most frequent words. For Google
vectors, most of their vocabulary consists of non-
words such as URLs and phrases, so we normal-
ize tokens into ASCII characters by taking off all
the diacritics and take only tokens consisting of
a single word with all lower letters. Statistics of
the processed vectors are summarized in Table 1,
along with their word similarity task scores (for
in-vocabulary words only) and OOV rate over the
aforementioned evaluation sets.

Baselines We compare the scores with other
subword-level models (fastText and MIMICK)
and word similarity induced by non-parametric
edit distance (EditDist).

fastText (Bojanowski et al., 2017) uses the same
subword-level character n-gram model but is to
be trained via context prediction over large text
corpora (here English Wikipedia dump 4). MIM-

2http://polyglot.readthedocs.io/en/
latest/Download.html

3https://code.google.com/archive/p/
word2vec/

4https://fasttext.cc/docs/en/
pretrained-vectors.html

http://polyglot.readthedocs.io/en/latest/Download.html
http://polyglot.readthedocs.io/en/latest/Download.html
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
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ICK (Pinter et al., 2017) is a character-level bidi-
rectional LSTM word embedder trained against
pre-trained word vectors (here Polyglot vectors 5).

Edit distance is defined between two strings
as the smallest number of modifications: adding,
deleting and changing one character, needed to
turn one string into the other. It can be computed
using dynamic programming in O(|s1| × |s2|)
time. The word similarity betweenw1 andw2 here
is the edit distance normalized by the length of the
longer word:

sEditDist(w1, w2) = − dedit(w1, w2)

max(|w1|, |w2|)
(3)

where dedit is edit distance.

Results Results are summarized in Table 2.
When trained over Polyglot vectors, our BoS
model works better than EditDist and MIMICK.
When trained on Google vectors, the correlation
scores are almost as good as those of fastText,
the state-of-the-art subword level word embedder.
However, unlike fastText, our model does not have
access to word contexts in a large text corpus for
training. In both cases, the significant differences
of scores compared to those of EditDist, suggest
that our model indeed learns to capture semantic
similarities between words, rather than superficial
similarities in spelling.

Comparing to MIMICK, our model is able to fill
up 81% (14 to 36 against 41) and 73% (12 to 36
against 45) of the gaps in scores over RW and WS
respectively. This improvement is more significant
on RW with most (58%) of its words are OOV
for the PloyGlot vectors, suggesting our model’s
power in generating consistent word vectors for
OOV words. Surprisingly MIMICK performs no
better than the edit distance baseline when evalu-
ated on RW. Combined with the fact that it does
no better for WS which has a near-zero OOV rate,
it suggests MIMICK’s limited power of generaliz-
ing word vectors towards OOV words, or even re-
produce consistent word vector for in-vocabulary
words. As a sanity check, we see that all of the
embedder models scores obviously better than Ed-
itDist when evaluated over common words (WS),
showing that all of them are able to at least remem-
ber or mimic the word vectors for in-vocabulary
words.

Also note that our model is fast to train. With a
naive single-thread CPU-only Python implemen-

5https://github.com/yuvalpinter/Mimick

tation, it can finish 100 epochs of training over
English PolyGlot vectors within 352 seconds on
a machine with an Intel Core i7-6700 (3.4 GHz)
CPU, 32GB memory and 1TB SSD. Compared to
fastText which, with a fast multithread C++ im-
plementation, takes hours to be trained over giga
bytes of text corpus, our method provides a cheap
way to generalize reasonably good word vectors
for OOV words.

4 Joint Prediction of Part-of-Speech Tags
and Morphosyntactic Attributes

Besides word similarity, we try to access our em-
bedders’ ability of capturing words’ syntactic and
semantic features by evaluating with the task of
predicting part-of-speech (POS) tags and mor-
phosyntactic attributes for words in a sentence.
For each word in a given sentence, the task asks
for a POS tag and a label for each applicable
morphosyntactic category, such as gender, case or
tense.

Dataset We use Universal Dependencies (UD)
dataset (Petrov et al., 2012) for this task. UD is
an open-community effort to build consistent an-
notated treebank cross many languages. We pick
the specific version 1.4 to enable a direct compar-
ison with Pinter et al. (2017). Since we use Poly-
Glot vectors to train our word embedders, we con-
duct experiments on the 23 languages that appear
in both Polyglot and UD 1.4.

Model We adopt the same sentence-level bidi-
rectional LSTM model from Pinter et al. (2017)
for the joint prediction of both labels. Given a
sentence as a sequence of words, we first embed
each word using the word embedder we choose
and then fed the embeddings into the LSTM. The
output of LSTM is then used to predict POS and
morphosyntactic tags.

We emphasize the difference in the setting that
we fix the word embeddings during the training,
as to better evaluate the ability and consistency of
the embeddings in capturing words’ semantics and
syntactics, rather than LSTM’s ability to memo-
rize words and infer the role of words from their
context.

We use the same set of hyperparameters for the
LSTM model as Sec. 5.3 in Pinter et al. (2017)
and train the model for 20 epochs for each lan-
guage. The BoS and MIMICK word embedders

https://github.com/yuvalpinter/Mimick
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Ntrain
POS tagging Morphosyntactic attributes

random MIMKCK BoS random MIMICK BoS
Kazakh 4,949 0.589 0.681 0.758(0.077) 0.021 0.032 0.240(0.208)
Tamil 6,329 0.480 0.678 0.774(0.097) 0.568 0.673 0.762(0.089)
Latvian 13,781 0.589 0.757 0.872(0.115) 0.374 0.572 0.676(0.104)
Vietnamese 31,800 0.749 0.564 0.846(0.282) - - -
Hungarian 33,017 0.594 0.858 0.922(0.065) 0.569 0.775 0.836(0.061)
Turkish 41,748 0.636 0.767 0.890(0.123) 0.543 0.776 0.826(0.050)
Greek 47,449 0.819 0.907 0.965(0.058) 0.783 0.903 0.934(0.031)
Bulgarian 50,000 0.804 0.903 0.971(0.068) 0.649 0.851 0.915(0.064)
Swedish 66,645 0.748 0.813 0.945(0.132) 0.707 0.812 0.930(0.118)
Basque 72,974 0.662 0.823 0.913(0.091) 0.564 0.778 0.820(0.042)
Russian 79,772 0.665 0.897 0.948(0.051) 0.592 0.855 0.915(0.060)
Danish 88,980 0.788 0.834 0.947(0.114) 0.745 0.813 0.927(0.114)
Indonesian 97,531 0.724 0.788 0.915(0.127) - - -
Chinese 98,608 0.721 0.793 0.835(0.042) 0.699 0.767 0.790(0.022)
Persian 121,064 0.843 0.866 0.957(0.091) 0.745 0.792 0.918(0.125)
Hebrew 135,496 0.814 0.858 0.957(0.099) 0.648 0.837 0.903(0.066)
Romanian 163,262 0.796 0.874 0.956(0.082) 0.718 0.876 0.942(0.066)
English 204,587 0.770 0.826 0.932(0.106) 0.822 0.859 0.947(0.089)
Arabic 225,853 0.780 0.901 0.950(0.049) 0.711 0.901 0.942(0.041)
Hindi 281,057 0.824 0.848 0.939(0.091) 0.863 0.888 0.951(0.063)
Italian 289,440 0.810 0.909 0.964(0.056) 0.839 0.927 0.964(0.037)
Spanish 382,436 0.819 0.914 0.959(0.045) 0.793 0.915 0.954(0.038)
Czech 1,173,282 0.695 0.908 0.966(0.058) 0.622 0.845 0.905(0.061)

Table 3: POS tagging accuracy and morphosyntactic attributes micro F1 over 23 languages (UD 1.4). In
parentheses are the gains to MIMICK.

are trained beforehand with PolyGlot dataset us-
ing the same way described earlier.

Results The POS tagging accuracies and micro
F1 scores for morphosyntactic attributes are re-
ported in Table 3 with word vectors generated by
different models. The BoS and MIMICK model
here are trained against Polyglot vectors. As a
comparison, we include the results using random
word vectors of the same dimension (64).

Our BoS model shows steady and significant
gain compared to MIMICK embeddings for both
tasks in all languages. We especially observe the
greatest margins for agglutinative languages such
as Turkish and Indonesian, and in Germanic lan-
guages English, Swedish and Danish, suggesting
that our model learns stable representations for
morphemes to consistent word type signal.

5 Conclusion

We proposed a subword-level word embedding
model and a word vector generalization method
that enables extending pre-trained word embed-
dings with fixed size vocabularies to estimate word
embeddings for out-of-vocabulary words. Intrin-
sic evaluation on word similarity tasks and extrin-
sic evaluation on POS tagging task demonstrate
that our model captures morphological knowledge
and generates good estimates of word vectors for

OOV words.
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