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Abstract

In this work, we propose a novel segmen-
tal hypergraph representation to model over-
lapping entity mentions that are prevalent in
many practical datasets. We show that our
model built on top of such a new represen-
tation is able to capture features and inter-
actions that cannot be captured by previous
models while maintaining a low time com-
plexity for inference. We also present a the-
oretical analysis to formally assess how our
representation is better than alternative repre-
sentations reported in the literature in terms
of representational power. Coupled with neu-
ral networks for feature learning, our model
achieves the state-of-the-art performance in
three benchmark datasets annotated with over-
lapping mentions.1

1 Introduction

One of the most crucial steps towards building a
natural language understanding system is the iden-
tification of basic semantic chunks in text. Such
a task is typically characterized by the named
entity recognition task (Grishman, 1997; Tjong
Kim Sang and De Meulder, 2003), or the more
general mention recognition task, where mentions
are defined as references to entities that could
be named, nominal or pronominal (Florian et al.,
2004). The extracted mentions can be used in var-
ious downstream tasks for performing further se-
mantic related tasks, including question answer-
ing (Abney et al., 2000), relation extraction (Mintz
et al., 2009; Liu et al., 2017), event extraction
(Riedel and McCallum, 2011; Li et al., 2013), and
coreference resolution (Soon et al., 2001; Ng and
Cardie, 2002; Chang et al., 2013).

One popular approach to the task of mention ex-
traction is to regard it as a sequence labeling prob-

1We make our system and code available at: http://
statnlp.org/research/ie
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Figure 1: Examples of overlapping mentions.

lem, with the underlying primary assumption be-
ing that the mentions are non-overlapping spans
in the text. However, as highlighted in several
prior research efforts (Alex et al., 2007; Finkel
and Manning, 2009; Lu and Roth, 2015), men-
tions may overlap with one another in practice.
Thus, models based on such a simplified assump-
tion may result in sub-optimal performance for a
down-stream task when they are deployed in prac-
tice. For example, consider a phrase “At the Seat-
tle zoo, . . . ” shown in Figure 1, the relation LO-
CATEDIN between the mentions “the Seattle zoo”
(of type FACILITY) and “Seattle” (of type GPE:
Geo-political entities) will not be extracted unless
both of these two overlapping mentions could be
extracted. Similarly, there are 4 mentions of the
same type (PROTEIN) in the text span “. . . PEBP2
alpha A1, alpha B1 . . . ” taken from the biomed-
ical domain. A downstream question answering
system may fail to return the correct answer as de-
sired, if the mention extraction system it relies on
is unable to extract all these valid mentions.

Various approaches to extracting overlapping
mentions have been proposed in the past decade.
The cascaded approach (Alex et al., 2007) builds a
pipeline of sequence labeling models using condi-
tional random fields (CRF) (Lafferty et al., 2001).
However, the model is unable to handle overlap-
ping mentions of the same type. Finkel and Man-
ning (2009) presented a parsing based approach to
nested mention extraction. Due to the chart-based
parsing algorithm involved, the model has a cubic
time complexity in the number of words in the sen-

http://statnlp.org/research/ie
http://statnlp.org/research/ie
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tence. A recent approach by Lu and Roth (2015)
introduced a hypergraph representation for captur-
ing overlapping mentions, which was shown fast
and effective. The work was improved by Muis
and Lu (2017), who proposed a sequence labeling
approach that assigns tags to gaps between words.
However, both approaches suffer from the struc-
tural ambiguity issue during inference, as we will
further discuss in this paper.

We summarize our contributions as:
1. We propose a novel segmental hypergraph

representation that is capable of modeling
arbitrary combinations of (potentially over-
lapping) mentions in a given sentence. The
model has a O(cmn) time complexity (m is
the number of mention types, n is the number
of words in a sentence, and c is the maximal
number of words for each mention), and is
able to capture features that cannot be cap-
tured by existing approaches.

2. Theoretically, we show that our approach
based on such a new representation does not
have the limitations associated with some re-
cently proposed state-of-the-art approaches
for overlapping mention extraction.

3. We show through extensive experiments on
standard data that by exploiting both word-
level and span-level features learned from
neural networks, our model is able to achieve
the state-of-the-art performance for recogniz-
ing overlapping mentions.

Our model is also general and robust. Further
experiments show that our model yields competi-
tive results when evaluated on data that does not
have overlapping mentions annotated when com-
paring against other recently proposed state-of-
the-art neural models that are capable of extracting
non-overlapping mentions only.

2 Related Work

Overlapping Mention Recognition

One of the earliest research efforts on handling
overlapping mentions is a rule-based approach
(Zhang et al., 2004; Zhou et al., 2004; Zhou, 2006)
that is evaluated on the GENIA dataset (Kim
et al., 2003). The authors first detected the inner-
most mentions and then relied on rule-based post-
processing methods to identify overlapping men-
tions. McDonald et al. (2005) presented a multil-
abel classification algorithm to model overlapping
segments in a sentence systematically.

Alex et al. (2007) proposed several ways to
combine multiple conditional random fields (CRF)
(Lafferty et al., 2001) for such tasks. Their best
results were obtained by cascading several CRF
models in a specific order while each model is
responsible for detecting mentions of a particu-
lar type. Outputs of one model can also serve as
features to the next model. However, such an ap-
proach cannot model overlapping mentions of the
same type, which frequently appear in practice.

Finkel and Manning (2009) approached this
task from a parsing perspective by constructing a
constituency tree, mapping each mention to a node
in the tree. This approach assumes one mention is
contained by the other when they overlap. While
such an assumption largely holds in practice, it
comes with a cost – the chart-based parser suf-
fers from its cubic time complexity, making it not
scalable to large datasets involving long sentences.
Based on the same idea, Wang et al. (2018) pro-
posed a scalable transition-based approach to con-
struct a constituency forest (a collection of con-
stituency trees).

Instead of relying on structured models, Xu
et al. (2017) proposed a local classifier for each
possible span. However, this local approach is
unable to capture the interactions between spans.
Similar to (Alex et al., 2007), Ju et al. (2018)
dynamically stacked multiple flat layers which
recognize mentions sequentially from innermost
mentions to outermost mentions.

Our work is inspired by the model of Lu and
Roth (2015), who introduced a mention hyper-
graph representation for capturing overlapping
mentions. Their model was shown fast and ef-
fective, and was improved by the mention sepa-
rator model (Muis and Lu, 2017). However, we
note that (as also highlighted in their papers) both
models suffer from the structural ambiguity issue
during inference, which we will discuss later. Our
new representation does not have this limitation.2

Recently, Katiyar and Cardie (2018) also proposed
a hypergraph-based representation based on the
BILOU tagging scheme. Their model is trained
greedily using neural networks by viewing the hy-
pergraph construction procedure as a multi-label
assignment process.

Neural Models for Mention Recognition
Recently, neural network based approaches to en-
tity or mention recognition have received signifi-

2A model comparison can be found later in Table 1.
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Figure 2: An example of partial segmental hypergraph
(hyperedges of different types in different colors).

cant attention. They have been proven effective,
even in the absence of handcrafted features. Col-
lobert et al. (2011) used convolutional neural net-
works (CNN) over word sequences, paired with a
CRF output layer. Huang et al. (2015) replaced the
CNN with a bidirectional long short-term mem-
ory network (LSTM) (Hochreiter and Schmidhu-
ber, 1997). Strubell et al. (2017) proposed an it-
erated dilated CNN to improve computational ef-
ficiency. Beyond word-level compositions, sev-
eral methods incorporated character-level compo-
sitions with character embeddings, either through
CNN (Chiu and Nichols, 2016; Ma and Hovy,
2016) or LSTM (Lample et al., 2016).

3 Segmental Hypergraph

A segmental hypergraph is a representation that
aims at representing all possible combinations of
(potentially overlapping) mentions in a given sen-
tence. It belongs to a class of directed hypergraphs
(Gallo et al., 1993), where each hyperedge e con-
sists of a single designated parent node (head of
e) and an ordered list of child nodes (tail of e).
Specifically, our segmental hypergraph consists of
the following 5 types of nodes:
• Ai encodes all such mentions that start with

the i-th or a later word
• Ei encodes all mentions that start exactly

with the i-th word
• Tk

i represents all mentions of type k starting
with the i-th word
• Iki,j represents all mentions of type k that con-

tain the j-th word and start with the i-th word
• X marks the end of a mention.
Hyperedges connecting these nodes are de-

signed to indicate how the semantics of a par-
ent node can be re-expressed in terms of its child
nodes. Figure 2 gives a partial segmental hyper-
graph representing all combinations of mentions
within the span [i, i + 3] consisting of 4 words.
There are 4 types of hyperedges:
1. A hyperedge {Ai → (Ai+1,Ei)} from Ai to

its children implies the fact that Ai consists of
those mentions that either “start exactly with
the i-th word” (Ei), or “start with a word that
appears strictly after the i-th word” (Ai+1).

2. A hyperedge {Ei → (T1
i , . . . ,T

m
i )} from Ei

to its children implies that we should consider
all possible types for the mentions (possibly
of length 0) that start with the i-th word.

3. Two hyperedges {Tk
i → Iki,i} and {Tk

i → X}
from Tk

i indicate that either there exists at
least one mention starting with the i-th word
(the former hyperedge), or there does not ex-
ist any such mention (the latter hyperedge).

4. Three hyperedges {Iki,j → Iki,j+1}, {Iki,j →
X}, and {Iki,j → (Iki,j+1,X)} from Iki,j indi-
cate the following three cases respectively: 1)
both the j-th and (j + 1)-th words belong
to at least one mention that starts with the
i-th word, 2) there exists one mention that
starts with the i-th word and ends with the
j-th word, and 3) both cases are valid.

Essentially, the complete hypergraph compactly
encodes the whole search space of all possible
mentions that can ever appear within a sentence,
where such mentions may or may not overlap with
one another. When we traverse the complete seg-
mental hypergraph by following the directions as
specified by the hyperedges, selecting only one
outgoing hyperedge at a time at each node, we
arrive at a hyperpath3 – a rooted, directed sub-
structure contained by the original hypergraph.

Figure 3 shows an example. Here, “Israeli UN
Ambassador” of type PERSON is captured by the
following sequence of nodes (along a hyperpath):
“A1, E1, T2

1, I21,1, I21,2, I21,3, X”, while “Israeli
UN Ambassador Danny” of type PERSON corre-
sponds to the following node sequence: “A1, E1,
T2

1, I21,1, I21,2, I21,3, I21,4, X”. Similarly, the follow-
ing sequence “A1, A2, E2, T1

2, I12,2, X” represents
the mention “UN” of type ORGANIZATION. As
we can see, such node sequences together form a
single hyperpath that encodes this specific combi-
nation of mentions that overlap with one another.

3Each hyperpath is a hypertree (Brandstädt et al., 1998).
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Figure 3: A specific hyperpath for encoding three
mentions. For brevity, we only show two types.

More details on segmental hypergraph and hyper-
paths are in the supplementary material.

Theoretical Analysis

Our proposed segmental hypergraph representa-
tion has the following theoretical property:

Theorem 3.1. (Structural Ambiguity Free) For
any sentence and its segmental hypergraph G =
(V, E), let S be the set of all possible mention com-
binations for the given sentence, and P be the set
of all hyperpaths contained by G, there is a one-to-
one correspondence between elements inP and S.

Due to space, we provide a proof sketch and in-
clude more details in the supplementary material.
Proof Sketch We note that each hyperpath is
uniquely characterized by its collection of hy-
peredges that involve X nodes. These hyper-
edges uniquely determine the collection of men-
tions. Conversely, a collection of mentions can be
uniquely characterized by a collection of such hy-
peredges, which yields a unique hyperpath.

Note that such a theorem states that our novel
representation has no structural ambiguity, a nice
property that both mention hypergraph model of
(Lu and Roth, 2015) and mention separator model
of (Muis and Lu, 2017) do not hold. As the au-
thors have mentioned in their papers, for a given
sub-structure in their model, there exist multiple
ways of interpreting the combination of mentions.
Specifically, in both representations, the decisions
on where the beginning and the end of a men-
tion are made locally. Such a design will lead to
the structural ambiguity as there will be multiple
interpretations to the mentions given a particular
collection of positions marked as beginning and

end of mentions. To illustrate, consider a phrase
with 4 words “A B C D” where there are only
two overlapping mentions “B C” and “A B C D”.
In both of the previous approaches, their models
would make local predictions and assign both “A”
and “B” as left boundaries, and both “C” and “D”
as right boundaries. However, based on such lo-
cal predictions one could also interpret “A B C”
as a mention – this is where the ambiguity arises.
In contrast, our model enjoys the structural ambi-
guity free property as it uses our newly defined I
nodes (together with X nodes) to jointly capture
the complete boundary information of mentions.
Table 1 shows a full comparison. 4

4 Learning

We adopt a log-linear approach to model the con-
ditional probability of each hyperpath as follows:

p(y|x) =
exp f(x,y)∑
y′ exp f(x,y′)

(1)

where f(x,y) is the score function for any pair
of input sentence x and output mention combina-
tion y, which corresponds to a unique hyperpath
Gy. Our objective is to minimize the negative log-
likelihood of all instances in the training set D:

−
∑

(x,y∗)∈D

log p(y∗|x) (2)

We define features over each hyperedge within
the hyperpath Gy. The score function can be de-
composed into the following form:

f(x,y) =
∑
e∈Gy

ψ(e,x) (3)

where e ∈ Gy denotes a hyperedge that appears
within the hyperpath Gy, and ψ(e,x) is a score
defined over e when the input sentence is x.

Apart from word-level features, the segmental
hypergraph also allows span-level features to be
defined. The node Iki,j corresponds to a particu-
lar span [i, j] over which we can extract our local
features. The hyperedge between I nodes can cap-
ture the interactions between partial mentions and
hyperedge between Iki,j and X precisely represents
the mention [i, j] with type k. We note that such
features and interactions cannot be captured by the
models of (Lu and Roth, 2015) and (Muis and Lu,
2017). Such a unique property makes our segmen-
tal hypergraph model more expressive than theirs.

4The mention hypergraph (Lu and Roth, 2015) also suf-
fers from the spurious structures issue, while we do not. We
refer the readers to (Muis and Lu, 2017) for details.
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Spurious Structural Only Nested Pipeline Different Time
Structures Ambiguity Mentions Approach Types Only Complexity

Alex et al. (2007) NO NO NO YES YES O(mn)
Finkel & Manning (2009) NO NO YES NO NO O(|G|n3)

Lu & Roth (2015) YES YES NO NO NO O(mn)
Muis & Lu (2017) NO YES NO NO NO O(mn)
Wang et al. (2018) NO NO YES NO NO O(mn)

This work NO NO NO NO NO O(cmn)

Table 1: Model comparison. |G| is the number of rules in grammar G.

4.1 Softmax-Margin Training
Inspired by (Mohit et al., 2012), we consider the
softmax-margin (Gimpel and Smith, 2010) in our
model. The function ψ(e,x) is defined as follows:

ψ(e,x) = φ(e,x) + ∆(e,Gy∗) (4)

where φ(e,x) is a feature function, and ∆(e,Gy∗)
is the cost function that defines the margin:

∆(e,Gy∗) =

{
β TX[e] ∧ e /∈ Gy∗

1 TI[e] ∧ e /∈ Gy∗

0 otherwise
(5)

Here, y∗ is the gold mention combination, and
TX[e] and TI[e] are indicator functions that re-
turn true if e is between T and X and between
T and I respectively, and false otherwise. We set
β ≥ 1 such that the cost function will assign more
penalty to false negatives than to false positives.

4.2 Feature Representation
We use two bidirectional LSTMs to learn word-
level and span-level feature representations that
can be used in our approach, resulting in our neu-
ral segmental hypergraph model. We first map the
i-th word in a sentence to its pre-trained word em-
bedding ei, and its POS tag to its embedding pi if
it exists. The final representation for i-th word is
the concatenation of them: vi = [ei,pi]. Next, we
use the a bidirectional LSTM to capture context-
specific information for each word, resulting in the
word-level features:

hw
i = [biLSTM1(v0, ...,vn)]i (6)

Such representations are then used as inputs to a
second LSTM to generate span-level features: In-
spired by (Kong et al., 2016), we compute all pos-
sible span embeddings efficiently with time com-
plexity O(cn) using dynamic programming, with
n being the number of words in the input x and c
being the maximal length of a mention.

hs
i:j = biLSTM2(hw

i , ...,h
w
j ) (7)

Recall that there are 4 types of hyperedges in
our hypergraph, over which we can define the
score functions. Since every valid mention hyper-
path contains the first and second kind of hyper-
edges, defining scores over such hyperedges are
unnecessary as their scores would serve as a con-
stant factor that can be eliminated in the overall
loss function of the log-linear model. Thus we
only need to define the score functions on the lat-
ter two types of hyperedges. For hyperedges that
only involve two nodes, we use a linear layer to
compute their scores:

φ({Tk
i → X},x) = W

(k)
TX · h

w
i (8)

φ({Tk
i → Iki,j},x) = W

(k)
TI · h

w
i (9)

φ({Iki,j → Iki,j+1},x) = W
(k)
II ·[h

s
i:j ,h

s
i:j+1] (10)

φ({Iki,j → X},x) = W
(k)
IX · h

s
i:j (11)

where matrices WTX,WTI ∈ Rd1×m, WII ∈
R2d2×m, WIX ∈ Rd2×m, with superscript (k) re-
ferring to the k-th column of the matrix, d1 is the
dimension of hw, d2 is the dimension of hs, and
m is the number of mention types.

For the hyperedges that involve more than two
nodes, the score is computed as follows:

φ({Iki,j → (X, Iki,j+1)},x)

= W
′(k)
II · [hs

i:j ,h
s
i:j+1] + W

′(k)
IX · hs

i:j (12)

where W′
II ∈ R2d2×m, W′

IX ∈ Rd2×m. Note that
in this work, we set W′

II = WII and W′
IX = WIX

to reduce the number of free parameters.
Learning uses stochastic gradient descent with

the update rule of Adam (Kingma and Ba, 2014)
and a gradient clipping of 3.0. Dropout (Srivastava
et al., 2014) for input vectors v and `2 regulariza-
tion are used to reduce overfitting; both are tuned
during the development process.

4.3 Character-level Representation
To make fair comparisons with recent models (Ju
et al., 2018; Wang et al., 2018) that additionally
incorporate character-level components in captur-
ing orthographic and morphological features of
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words, we follow Lample et al. (2016) to use a
bidirectional LSTM that takes the character em-
beddings as input. Specifically, the character-level
representation chi for each word is obtained by
concatenating the last hidden vectors of the for-
ward and backward LSTMs. When this compo-
nent is activated, the representation of each word
is changed to: vi = [ei,pi, chi].

5 Inference

Inference can be done efficiently using a gener-
alized inside-outside style message-passing algo-
rithm (Baker, 1979). The partition function of (1)
can be computed using the inside algorithm ap-
plied to the complete hypergraph G, where we tra-
verse from leaf nodes X to the root node A1, pass-
ing messages to a parent node p from its child
nodes:

µ[p]← log
(∑
e:h(e)≡p

exp
(
ψ(e,x) +

∑
c∈T (e)

µ[c]
))

(13)

where h(e) is the head of the hyperedge e, and
T (e) is the collection of nodes that form the tail of
e – they are the child nodes of h(e) given e. The
message passing step for the outside algorithm can
be defined analogously. It can be verified that
such a message passing algorithm, that is analo-
gous to the sum-product belief propagation algo-
rithm (Kschischang et al., 2001) used in standard
graphical models, will converge after one forward
and one backward pass.

For decoding, we perform the standard MAP in-
ference on top of the complete hypergraph to find
the most probable hyperpath. The resulting proce-
dure is similar to the max-product message pass-
ing algorithm, where we consider only the feature
function φ for constructing the messages:

µ[p]← max
e:h(e)≡p

(
φ(e,x) +

∑
c∈T (e)

µ[c]
)

(14)

During inference, each node corresponds to a
sum/max computation. Since one node is incident
to 3 hyperedges maximally, the time complexity of
inference algorithm can be implied by the number
of nodes in the graph, which is O(cmn), where c
is the maximal length for any mention. This com-
plexity is the same as that of a zero-th order semi-
Markov CRF model (Sarawagi and Cohen, 2005).
Please refer to the supplementary material for a
detailed explanation of the inference algorithm.

ACE-2004 GENIA
Train (%) Test (%) Train (%) Test (%)

# sentences 6,799 (00) 879(00) 14,836 (00) 1,855 (00)
with o.l. 2,683 (39) 272 (42) 3,199 (22) 448 (24)

# mentions 22,207 (00) 3,031 (00) 46,473 (00) 5,600 (00)
o.l. 10,170 (46) 1,418 (47) 8,337 (18) 1,217 (22)

o.l. (st) 5,431 (24) 780 (26) 4,613 (10) 634 (11)
o.l. (st & slb) 2,188 (10) 307 (10) 2,133 (05) 287 (05)

lengh > 6 1,439 (06) 199 (07) 2,449 (05) 301 (05)
max lengh 57 (00) 43 (00) 28 (00) 19 (00)

Table 2: Statistics (ACE04, GENIA). o.l.: overlapping
mentions, st/slb: same type/left boundary.

6 Experiments

6.1 Datasets

We mainly evaluate our models on the standard
ACE-2004, ACE-2005 (Doddington et al., 2004),
and GENIA (Kim et al., 2003) datasets with the
same splits used by previous works (Lu and Roth,
2015; Muis and Lu, 2017). Sample data statistics
of these datasets are listed in Table 2. 5 We can
see that overlapping mentions frequently appear
in such datasets. For ACE2004, over 46% of the
mentions overlap with one another. GENIA fo-
cuses on biomedical entity recognition6 and over-
lapping mentions are also common in it. Most
mentions (over 93%) are not longer than 6 tokens
which we select as maximal length (c) for the re-
stricted models.

6.2 Baseline Approaches

We consider the following baseline models:
• CRF (LINEAR): a linear-chain CRF model.

Since the linear-chain CRF cannot handle
overlapping structures, we only use the outer-
most mentions for learning. Specifically, ev-
ery outer-most mention is labeled based on
the BILOU tagging scheme, which was em-
pirically shown to be better than the BIO
scheme (Ratinov and Roth, 2009).
• CRF (CASCADED): the cascaded CRF based

approach following (Alex et al., 2007). Note
that this approach cannot model the overlap-
ping mentions of the same type.
• Semi-CRF: the semi-Markov CRF model

(Sarawagi and Cohen, 2005). The semi-CRF
model is also only trained on the outer-most
mentions. It can also capture span-level fea-

5See supplementary material for complete data statistics.
6Following previous works, we used version 3.02p which

comes with annotated POS tags (Tateisi, 2004) . Following
(Finkel and Manning, 2009), we collapse DNA, RNA and pro-
tein subtypes into DNA, RNA and protein respectively, keep
cell line and cell type and remove mentions of other types.
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ACE-2004 ACE-2005 GENIA
P R F1 P R F1 P R F1

Non-Neural

CRF (LINEAR) 71.8 40.8 52.1 69.5 44.5 54.2 77.1 63.3 69.5
CRF (CASCADED) 78.4 46.4 58.3 74.8 49.1 59.3 75.9 66.1 70.6
Semi-CRF (c=6) 76.1 41.4 53.6 72.8 45.0 55.6 74.5 66.0 70.0
Semi-CRF (c=n) 66.7 42.0 51.5 67.5 46.1 54.8 74.2 65.8 69.7
Finkel and Manning (2009) - - - - - - 75.4 65.9 70.3
Lu and Roth (2015) 70.0 56.9 62.8 66.3 59.2 62.5 74.2 66.7 70.3
Muis and Lu (2017) 72.7 58.0 64.5 69.1 58.1 63.1 75.4 66.8 70.8
SH (-NN, c=6) 69.4 57.0 62.0 70.3 55.8 62.2 77.0 66.1 71.1
SH (-NN, c=n) 71.1 60.6 65.4 69.5 60.7 64.8 76.2 67.5 71.6

Neural

FOFE (Xu et al., 2017) (c=6) 68.2 54.3 60.5 67.4 55.1 60.6 71.2 64.3 67.6
FOFE (Xu et al., 2017) (c=n) 57.3 46.8 51.5 56.3 44.6 49.8 63.2 59.3 61.2
Katiyar and Cardie (2018) 73.6 71.8 72.7 70.6 70.4 70.5 79.8 68.2 73.6
Ju et al. (2018) 7 - - - 74.2 70.3 72.2 78.5 71.3 74.7
Wang et al. (2018) 74.9 71.8 73.3 74.5 71.5 73.0 78.0 70.2 73.9
SH (c=6) 79.1 67.3 72.7 75.7 69.6 72.5 76.6 71.0 73.7
SH (c=6) + char 80.1 67.5 73.3 75.9 70.0 72.8 76.8 71.8 74.2
SH (c=n) 77.7 72.1 74.5 76.6 71.9 74.2 76.1 72.9 74.5
SH (c=n) + char 78.0 72.4 75.1 76.8 72.3 74.5 77.0 73.3 75.1

Table 3: Main results. SH: segmental hypergraphs (our approach).

tures defined over a complete segment. Sim-
ilar to our model, semi-CRF typically comes
with a length restriction (c) which indicates
the maximal length of a mention.
• Finkel and Manning (2009): a parsing-based

approach for recognizing nested mentions
that reported results on the GENIA dataset.
• Lu and Roth (2015): the model that makes

use of mention hypergraphs for recognizing
overlapping mentions.
• Muis and Lu (2017): the model that makes

use of mention separators to tag gaps between
words for recognizing overlapping mentions.
• FOFE (Xu et al., 2017): a local classifier

based on neural networks that runs on every
possible span to detect mentions. The maxi-
mal mention length (c) can also be used here.
• Katiyar and Cardie (2018): a hypergraph-

based model that uses LSTM for learning fea-
ture representations.
• Ju et al. (2018): a cascaded model that makes

use of multiple LSTM-CRF layers to recog-
nize mentions in an inside-out manner.
• Wang et al. (2018): a neural transition-based

model that construct nested mentions through
a sequence of actions.
• SH (-NN): a non-neural version of our seg-

mental hypergraph model that excludes the
LSTMs but employs handcrafted features. 8

As discussed earlier, we also evaluate the vari-

7Note that in ACE2005, Ju et al. (2018) did their exper-
iments with a different split than Lu and Roth (2015) which
we follow as our split.

8To make a proper comparison, we use the same hand-
crafted features used by (Lu and Roth, 2015), which were
proven effective in previous approaches.

ACE-2004 ACE-2005 GENIA
(c=6) (c=n) (c=6) (c=n) (c=6) (c=n)

SH 72.7 74.5 72.5 74.2 73.7 74.5
-D 71.5 73.1 71.3 72.9 72.1 72.8
-SM 72.0 73.3 71.8 73.5 72.4 73.3
-P 71.5 72.7 71.2 73.0 72.0 73.2

Table 4: Results of various ablations. D: dropout, SM:
softmax-margin, P: pre-trained embeddings.

ants of our model that takes character-level repre-
sentations (+char).

6.3 Training
Pre-trained embeddings GloVe (Pennington et al.,
2014) of dimension 100 are used to initialize the
trainable word vectors for experiments in ACE
and GENIA datasets.9 The embeddings for POS
tags are initialized randomly with dimension 32.
Early stopping is used based on the performance
of development set. The value β used in softmax-
margin is chosen from [1, 3] with step size 0.5.

6.4 Experimental Results
Main results can be found in Table 3. Using
the same set of handcrafted features, our unre-
stricted non-neural model SH (-NN, c=n) achieves
the best performance compared with other non-
neural models, revealing the effectiveness of our
newly proposed segmental hypergraph represen-
tation. It achieves around 1-2% gain in terms of
F1 compared with mention hypergraph of Lu and
Roth (2015) and mention separator of Muis and Lu
(2017), showing the necessity of eliminating struc-
tural ambiguity. CRF (LINEAR) and Semi-CRF do
not perform well due to incapability of handling

9We also additionally tried using embeddings trained on
PubMed for GENIA but the performance was comparable.
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overlapping mentions. In contrast, the pipeline ap-
proach CRF (CASCADED) performs better.

Our unrestricted neural segmental hypergraph
model SH (c=n) already achieves the best results
among all previous models in ACE datasets, show-
ing the effectiveness of our neural segmental hy-
pergraph. The improvement mainly comes from
its ability to recall more mentions. In GENIA,
even without using external features like Brown
clustering features as all non-neural models do,
our neural models still get significant improve-
ments. Compared with the non-neural SH (-NN)
which has around 4.2M parameters, our neural
model SH only has 1.9M parameters yet it still per-
forms better. We empirically see that the represen-
tations learned by LSTM can better capture com-
plex contextual dependencies in sentences. The
character-level representations (+ char) make both
restricted and unrestricted SH perform even bet-
ter. Particularly, SH (c=n) + char achieves the best
results in all datasets compared with other recent
neural models (Katiyar and Cardie, 2018; Ju et al.,
2018; Wang et al., 2018).

One hypothesis we may have is that, without
length restriction, a model will enjoy the benefit
of recalling more long mentions, but also will be
exposed to more false positives. This poses a chal-
lenge for a model – whether it is capable of balanc-
ing these two factors. Empirically, we find that the
length restriction (c=6) improves the precision of
semi-CRF and SH at the expense of the recall, pro-
viding some evidence to support the hypothesis.
However, in terms of F1, the unrestricted semi-
CRF performs worse while unrestricted SH per-
forms better compared to their restricted counter-
parts. The reason is that the span-level handcrafted
features that the semi-CRF relies on can be very
sparse when mentions are overly long. We empir-
ically found this issue is alleviated in the model
SH (-NN), possibly due to its ability in captur-
ing interactions between neighboring spans. Even
with length restriction, SH still yields competitive
results, making it attractive in processing large-
scale datasets considering its linear time complex-
ity. Furthermore, we find that as c increases, SH
performs better consistently in terms of F1. The
choice of c then becomes a tradeoff between time
complexity and performance. Please refer to the
supplementary material for details.

Compared with the local approach FOFE, our
global approach gives a much better performance,
showing its effectiveness in capturing interactions

Overlapping Non-Overlapping
w/s

P R F1 P R F1

Lu and Roth (2015) 68.1 52.6 59.4 64.1 65.1 64.6 503
Muis and Lu (2017) 70.4 55.0 61.8 67.2 63.4 65.2 253
Wang et al. (2018) 77.4 70.5 73.8 76.1 69.6 72.7 1445
SH (c=6) 80.2 68.3 73.8 74.8 70.0 72.3 248
SH (c=n) 80.6 73.6 76.9 75.5 71.5 73.4 157

Table 5: Results on different types of sentences
(ACE05), w/s: # of words decoded per second.

between spans. Moreover, FOFE’s performance
suffers significantly in the absence of the length
restriction. The reason is that it will generate much
more negative training instances under this setting,
which makes its learning more challenging.

6.5 Additional Analyses

To understand our model better, we conduct some
further experiments in this section.

Ablation study

We first conduct an ablation study by removing
dropout, softmax-margin and pre-trained embed-
dings from our model respectively. The results are
shown in Table 4. The dropout and pre-trained
embeddings can improve the performance of our
model significantly and this behavior is consistent
with previous neural models for NER (Chiu and
Nichols, 2016; Lample et al., 2016). Meanwhile,
our new cost function based on softmax margin
training also contributes significantly to the good
performance of our model across these datasets.

How well does it handle overlapping mentions?

To further understand how well our model can
handle overlapping mentions, we split the test data
into two portions: sentences with and without
overlapping mentions. We compare our model
with the two state-of-the-art models and report re-
sults on ACE-05 in Table 5.10 In both portions,
SH achieves significant improvements, especially
in the portion with overlapping mentions. This ob-
servation indicates that our model can better cap-
ture the structure of overlapping mentions than
these two previous models. It also helps explain
why the margin of improvement is larger in ACE
than in GENIA since the former has more overlap-
ping mentions than the latter, as shown in Table 2.
Compared with the model with length restriction
c, the unrestricted model mainly benefits from its
ability to recall more overlapping mentions.

10Full results are listed in the supplementary material.
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Model F1

SH (c=6) 89.6
SH (c=6) + char 90.5
SH (c=n) 89.2
SH (c=n) + char 90.2
Collobert et al. (2011) 88.7
Chiu and Nichols (2016) 90.9
Lample et al. (2016) 90.9
Ma and Hovy (2016) 91.2
Xu et al. (2017) 90.7
Strubell et al. (2017) 90.5

Table 6: Additional results on CoNLL-2003.

Running time

Since other compared models also feature linear
time complexity (see Table 1), we examine the de-
coding speed in terms of the number of words pro-
cessed per second. We re-implement the models of
Lu and Roth (2015) and Muis and Lu (2017) using
the same platform as ours (PyTorch) and run them
on the same machine (CPU: Intel i5 2.7 GHz). The
model of (Wang et al., 2018) is also tested with the
same environment. Results on ACE-05 are listed
in Table 5. The length bound (c=6) makes our
model much faster, resulting in a speed compa-
rable to the model of Muis and Lu (2017). The
transition-based model by (Wang et al., 2018) has
the best scalability partially because of its greedy
strategy for decoding.

What if the data has no overlapping mentions?

To assess the robustness of our model and under-
stand whether it could serve as a general men-
tion extraction model, we additionally evaluate our
model on CoNLL 2003 dataset which is annotated
with non-overlapping mentions only. We com-
pared our model with recent state-of-the-art neu-
ral network based models. For a fair comparison,
we used the Collobert et al. (2011) embeddings
widely used by previous models, and ignored POS
tag features even though they are available. Re-
sults are in Table 6. Only neural models without
using external features are included. 11 By only
relying on word (and character) embeddings, our
model achieves competitive results compared with
other state-of-the-art neural models that also do
not exploit external features, yet these models are
mostly designed to handle only non-overlapping
mentions. The only exception is the FOFE ap-
proach by (Xu et al., 2017) as we discussed earlier.

11See the supplementary material for complete results.

Notes on mention interactions
The dependencies between overlapping mentions
can be very beneficial. SH can capture a specific
kind of interaction between neighboring spans.
Such interactions happen between mentions that
share the same type and the same left boundary.
As we can see from the sentence in Figure 3, one
mention could also serve as a pre-modifier for an-
other mention and both could share the same type.
As shown in Table 2, there are over 8% such men-
tions in ACE and over 4% in GENIA. Specifi-
cally, SH relies on the hyperedges between I nodes
to capture such interactions explicitly. To verify
the effectiveness of this connection, we zero the
weights between I nodes. The ablated model only
achieves around 70.0% in ACEs and 71.4% in GE-
NIA, implying the impact of this dependency con-
nection. On the other hand, it also reveals the
potential direction of improving SH by explicitly
modeling more dependencies between mentions,
such as the dependencies between mentions with
different types. LSTM that serves as feature rep-
resentation may capture such interactions implic-
itly, but building the connections could still be an
important aspect for improvement.

7 Conclusion and Future Work

In this work, we propose a novel neural segmental
hypergraph model that is able to capture overlap-
ping mentions. We show that our model has some
theoretical advantages over previous state-of-the-
art approaches for recognizing overlapping men-
tions. Through extensive experiments, we show
that our model is general and robust in handling
both overlapping and non-overlapping mentions.
The model achieves the state-of-the-art results in
three standard datasets for recognizing overlap-
ping mentions. We anticipate this model could
be leveraged in other similar sequence modeling
tasks that involve predicting overlapping struc-
tures such as recognizing overlapping and discon-
tinuous entities (Muis and Lu, 2016) which fre-
quently exist in the biomedical domain.
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