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Abstract

The diagnosis of serious mental health
conditions such as schizophrenia is based
on the judgment of clinicians whose train-
ing takes many years and cannot be easily
formalized into objective measures. How-
ever, clinical research suggests there are
disturbances in aspects of the language
use of patients with schizophrenia, which
opens a door for the use of NLP tools
in schizophrenia diagnosis and progno-
sis. Using metaphor-identification and
sentiment-analysis algorithms to automat-
ically generate features, we create a clas-
sifier that, with high accuracy, can predict
which patients will develop (or currently
suffer from) schizophrenia. To our knowl-
edge, this study is the first to demonstrate
the utility of automated metaphor identifi-
cation algorithms for detection or predic-
tion of disease.

1 Introduction

Schizophrenia is a severe mental disorder that has
a devastating impact on those who suffer from
it, as well as on their families and communities.
Schizophrenia is characterized by psychotic be-
haviors (hallucinations, delusions, thought disor-
ders, movement disorders), flat affect and anhedo-
nia, and trouble with focusing and executive func-
tioning, among other symptoms (American Psy-
chiatric Association, 2013). It afflicts over 21 mil-
lion people worldwide, and is associated with a
100-150 percent increase in early mortality (Goff
et al., 2005; World Health Organization, 2016;
Simeone et al., 2015). As a result, diagnosis and
treatment of schizophrenia has important public
health consequences. Unfortunately, practition-
ers who are qualified to diagnose and treat seri-
ous mental health issues such as schizophrenia are

in chronically short supply, and their accumulated
knowledge cannot be easily formalized into repro-
ducible metrics (Patel et al., 2007).

However, clinical research into the symptoms
and mechanisms of schizophrenia suggests that
disturbances in language use, and especially in
metaphor use and affect, characterize schizophre-
nia. This suggests that automated NLP meth-
ods may have the potential to help in diagnosis
and prognosis of schizophrenia. In this paper, we
work from open-ended transcripts of patients in-
terviewed by non-specialists. We then apply NLP
algorithms for metaphor identification and senti-
ment analysis to automatically generate features
for a classifier that, with high accuracy, can pre-
dict which patients will develop schizophrenia and
which patients would currently be diagnosed with
schizophrenia by psychiatrists.

2 Background & Related work

2.1 NLP and Computational Psychiatry

Several recent studies have proven that NLP text-
analysis techniques can be successfully applied
to predict mental illness. Vincze et al. (2016)
use linguistic and demographic features to pre-
dict whether a speech transcript was produced by
an individual with mild cognitive impairment or
by a healthy control. To our knowledge, Elvevåg
et al. (2007) were the first to use automated NLP
methods to predict whether or not patients suffered
from schizophrenia. The technical specifics of
their method are unclear, as the paper was intended
for a clinical audience, but they use a k-nearest
neighbors algorithm in a feature space made up of
n-gram features and distributional semantic fea-
tures to classify 26 schizophrenia patients and 25
healthy controls. They achieve classification accu-
racy of 78.4% on this task. Mota et al. (2012) em-
ploy a graph-based method to classify transcripts
taken from interviews with eight patients with
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schizophrenia, eight healthy controls, and eight
manic patients, achieving both precision and recall
of 0.875. Bedi et al. (2015) apply semantic co-
herence measures and measures based on part-of-
speech tags to predict whether 34 youths at risk of
psychosis would have a psychotic episode within
2.5 years of being interviewed (five of whom did
transition within the study period). They correctly
classify 100% of participants.

2.2 Metaphor, Affect and Schizophrenia
Mental-health clinicians have long had intuitions
that schizophrenia patients differ from healthy in-
dividuals in their use of metaphor. A survey by
Kuperberg (2010) of over 50 years of observa-
tions in the schizophrenia literature concludes that
schizophrenia patients “may use common words
in an idiosyncratic or bizarre manner.” Particularly
colorful (and metaphorical) examples of bizarre
speech recorded by Andreasen (1986) include pa-
tients who referred to watches as “time vessels”
and to gloves as “hand shoes.”

Billow et al. (1997) carried out the first exper-
imental exploration of this phenomenon. They
measure the metaphor production of patients with
schizophrenia and healthy controls during free re-
sponses to a structured interview. They find that
patients with schizophrenia produce comparable
rates of felicitous, coherent metaphors as healthy
controls, but produce deviant metaphorical speech
with significantly greater frequency.

It is not clear what could account for these dif-
ferences in metaphor production, but neuroscien-
tific studies of patients with schizophrenia offer
some clues. Research shows that schizophrenia
is associated with dysfunction of the amygdala,
a brain structure responsible for regulating emo-
tion (Rasetti et al., 2009). Other work demon-
strates impairments in emotion perception and
production in patients with schizophrenia (Vask-
inn et al., 2008) and even demonstrates that face
emotion recognition deficits are a predictor of psy-
chosis onset (Corcoran et al., 2015). Based on
these findings, and recognizing the important role
that metaphor plays in emotional language (see
(Kövecses, 2003)), Elvevåg et al. (2011) hypoth-
esize that metaphor production disturbances in pa-
tients with schizophrenia are deeply tied to “emo-
tional” language (i.e., language with high affective
polarity). However, it should be noted in this re-
gard that most work on metaphor processing has
focused on cortical regions involved (Chen et al.,
2008; Schmidt et al., 2010; Benedek et al., 2014).

2.3 Sentiment Analysis & Metaphor
Detection Algorithms

Sentiment analysis is a natural-language process-
ing task that involves determining, for given text,
whether the text conveys a positive or negative
sentiment, and how positive or negative the sen-
timent is. The book by Liu (2015) gives a compre-
hensive overview of sentiment analysis.

Metaphor detection is the task of determin-
ing whether a given word, phrase, or passage
is being used metaphorically or literally. It is
an emerging field in NLP, with research still
in relatively early stages. A variety of differ-
ent machine-learning and statistical methods have
been applied to the task, including clustering
(Birke and Sarkar, 2006; Shutova et al., 2010;
Li and Sporleder, 2010; Shutova and Sun, 2013);
topic models (Bethard et al., 2009; Li et al., 2010;
Heintz et al., 2013); topical structure and image-
ability analysis (Strzalkowski et al., 2013); seman-
tic similarity graphs (Sporleder and Li, 2009), and
feature-based classifiers (Gedigian et al., 2006; Li
and Sporleder, 2009; Turney et al., 2011; Dunn,
2013a,b; Hovy et al., 2013; Mohler et al., 2013;
Neuman et al., 2013; Tsvetkov et al., 2013, 2014;
Klebanov et al.). Metaphor detection methods
differ in how they define the task of metaphor
detection–for instance, some algorithms seek to
determine whether a phrase (such as sweet vic-
tory) is metaphorical (Krishnakumaran and Zhu,
2007; Turney et al., 2011; Tsvetkov et al., 2014;
Bracewell et al., 2014; Gutiérrez et al., 2016),
while others attempt to tag metaphoricity at the
level of the utterance (Dunn, 2013a), or at the level
of individual tokens in running text (Klebanov
et al.; Schulder and Hovy, 2014; Do Dinh and
Gurevych, 2016). For a recent review, see Shutova
(2015). For our purposes, we decided that token-
level metaphor detection offered the most appro-
priate level of granularity, and we chose the algo-
rithm of (Do Dinh and Gurevych, 2016) because
of its state-of-the-art performance at this task at
the time we began this project.

3 Data

3.1 First-Episode Schizophrenia Transcripts
Our main data set1 consists of interviews with
17 patients who have suffered a first episode of
schizophrenia (denoted by 1EP+) and 15 healthy

1Patient data are confidential and can only be used via a
Data-Sharing Agreement with authors Corcoran and Corlett;
please contact these authors for more information.
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controls (denoted by 1EP-). Healthy controls were
obtained from the same source population as pa-
tients with schizophrenia in the metropolitan New
York City region, using web-based advertising
on Craigslist, as well as by posting of flyers in
and around the region. Participants engaged in
open-ended interviews lasting approximately one
hour, during which they were encouraged to ex-
press themselves narratively. Participants were
queried on four topics, for which interviewers pro-
vided clarifying questions if they were not sponta-
neously discussed. The four discussion topics, as
well as details of interviewer training and partici-
pant selection criteria, are discussed in more detail
in the supplementary materials as well as in (Ben-
David et al., 2014). Independent transcribers tran-
scribed the interviews. Participants were matched
for socioeconomic characteristics and education
level. The average age of the 1EP- cohort was 35,
and the average age of the 1EP+ cohort was 39.
However, the 1EP- cohort was 47% male, while
the 1EP+ cohort was 76% male. We refer to this
data set as 1EP.

3.2 Prodromal Psychosis Transcripts

We use the data set introduced by Bedi et al.
(2015) of transcripts from 34 youths at clinical
high risk (CHR) for psychosis, based on the Struc-
tured Interview for Prodromal Syndromes (Miller
et al., 2003). Demographic details are provided
in Bedi et al. (2015). There were no significant
differences for age, gender, ethnicity or medica-
tion usage between CHR converters vs. CHR non-
converters. Notably, all CHR participants were
ascertained using gold-standard clinical measures
for which the researchers obtained excellent inter-
rater reliability with other CHR programs in North
America. Open-ended baseline interviews were
collected from the participants using the same pro-
tocol as above. Participants were then assessed
quarterly for 2.5 years to determine whether they
had transitioned to psychosis. Five of the partic-
ipants suffered a first episode of psychosis within
the assessment period (denoted by CHR+); the re-
mainder did not (denoted by CHR-).

4 Experiments

The review of the literature in §2.2 suggests that
a constellation of disturbances in metaphor use
and extremeness/lability of sentiment may charac-
terize schizophrenia. In order to assess whether
these phenomena can truly distinguish patients

with schizophrenia from healthy controls or to
predict future schizophrenic episodes, we pro-
duce five features. Four of these features are de-
rived from sentiment scores produced by a senti-
ment analysis algorithm, and one is derived from
metaphor tags produced by a metaphor identifica-
tion algorithm.

4.1 Feature Set

Metaphoricity We hope to detect the alteration
in metaphor production observed in patients with
schizophrenia by Billow et al. (1997) using an
automated metaphor detection algorithm that tag
word tokens as metaphorical or not. We adapt
the token-level metaphor identification algorithm
of Do Dinh and Gurevych (2016) to our task. In
particular, we use a multilayer perceptron (MLP)
architecture with three layers. The input layer is
comprised of the concatenation of the word em-
beddings for each token and the two tokens be-
fore and after (not including non-content tokens,
and padded with a randomly created embedding
at sentence beginnings and endings). The vector
for each token is composed of the word’s 300-
dimensional Word2Vec skip-gram negative sam-
pling word embedding 2, concatenated with a one-
hot binary vector that indicates the token’s part of
speech. The hidden layer has ten fully connected
hidden units with the hyperbolic tangent activation
function. The output node classifies a token as lit-
eral or metaphorical using the softmax activation
function.

Training is accomplished by minimizing a
cross-entropy objective using stochastic gradient
descent; the learning rate is decremented linearly
during each epoch, for a maximum of 100 epochs.
As in Do Dinh and Gurevych (2016), the MLP is
trained on the VU Amsterdam Metaphor Corpus
(VUAMC), a subset of the BNC where each token
has been annotated as metaphorical or not (Steen
et al., 2010), using cross-validation with an 80%-
20% train-test split to optimize the regularization
and learning rate parameters.

We then measure the percentage of all tokens
labeled metaphorical by the metaphor identifica-
tion algorithm in each transcript, denoting it by
Met. We present an example text tagged by this
algorithm in figure 1. Notably, the algorithm mis-
takenly tags the adverbially used preposition up in
ended up as metaphorical; Do Dinh and Gurevych

2http://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/
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We ended up going to different high schools
...and then at home we also ran in different
social circles and things like that.

Figure 1: Sample sentence from one of the tran-
scripts in the 1ep data set. Tokens in bold was
tagged metaphorical by the token-level metaphor
detection algorithm.

(2016) cite this as one of the common failure
modes of their algorithm, along with failure to de-
tect metaphors that are only clearly metaphorical
from a large amount of surrounding context.

Sentiment We posit that the sentiment scores
produced by automated sentiment analysis algo-
rithms should be able to detect disturbances in the
production of emotional language, particularly in
regard to metaphor. To this end, we create two fea-
tures that summarize the distribution of sentiment
scores in each transcript. In order to obtain token-
and phrase-level sentiment scores, we use the im-
plementation of the Recursive Neural Tensor Net-
work sentiment analysis algorithm (Socher et al.,
2012) that is included in the Stanford CoreNLP
toolkit, with default settings. This implementation
comes pre-trained on the Stanford Sentiment Tree-
bank. Tokens are tagged on an integer scale from
1 (Very Negative) to 5 (Very Positive). For each
transcript, we take the percentage of all token-
level sentiment scores that were either extremely
positive (score of 1) or extremely negative (score
of 5), which we denote by SentTok and similarly
compute the percentage of all phrase-level senti-
ment scores, which we denote by SentPhr. We
also compute sentiment coherence as

1
N

N∑
i=1

|si − si−1|

where the si denotes either the sentiment score for
token i (to compute CohTok), or the sentiment
score for phrase i (to compute CohPhr).

4.2 Classification Algorithms
For all algorithms and data sets, we present re-
sults produced by leave-one-out cross-validation
because of the small number of transcripts avail-
able. We use a radial-basis-function support-
vector classifier and a convex-hull classifier to
classify transcripts based on the variables above.
The convex-hull classifier was previously used by
Bedi et al. (2015). A test point is classified as orig-
inating from a CHR- participant if it lies within

the convex-hull of all the CHR- data points in the
training set; otherwise, it is classified as CHR+.
The intuition behind the convex-hull approach is
that individuals that eventually develop psychosis
do not necessarily do so following a unique path
to conversion, and moreover psychosis itself can-
not be considered a well-defined single condition
(Binbay et al., 2012); thus it is reasonable to hy-
pothesize that the “breakdown” of mental abilities
may occur along different trajectories for individ-
ual CHR+ patients.

5 Results & Discussion

5.1 Statistical Analysis

As predicted, we find that the metaphor identifi-
cation algorithm does indeed tag a significantly
higher proportion of the tokens in the transcripts
of patients with schizophrenia as metaphorical
(6.3%) than in the healthy controls’ transcripts
(5.2%); (t = 3.76, p < .001). No significant dif-
ference was found between the other variables of
interest between patients with schizophrenia and
healthy controls. No significant difference was
found between males and females in metaphor use
frequency (t = 1.105, p = 0.28).

5.2 Classification Performance

First-Episode Schizophrenia Transcripts Ta-
ble 1 shows the performance of classifiers that in-
dividually use each of the five features §4.1 as
predictors, as well as the classifier that uses all
five in tandem (All)3. Baseline represents
the results of a simple majority classifier (because
18 of the 33 transcripts belonged to patients with
schizophrenia, this entails classifying all tran-
scripts as belonging to patients with schizophre-
nia). Because the 1EP set was not balanced for
gender or age, we also present the results of classi-
fying men as having schizophrenia and women as
not having schizophrenia (Gender) as well as the
results of training a classifier on age (Age). Bedi
and Mota represent the classification results at-
tained by applying the features/method of Bedi
et al. (2015) and Mota et al. (2012), respectively.
Using all of the features to train the support-vector
classifier performed better than using any of the
features individually. The accuracy of the classi-
fier based on all the features was significantly bet-
ter than baseline (Fisher’s exact test, p < .005).
Notably, our features outperformed the features

3The All classifier does not use gender or age features.
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suggested by Bedi et al. (2015) and by Mota et al.
(2012).

Prodromal Psychosis Transcripts On the pro-
dromal transcripts, a classifier trained on all the
features once again outperformed classifiers on
any of the features individually, which performed
at or near baseline. Interestingly, the convex-hull
classifier outperformed the support vector classi-
fier on this data. The convex-hull classifier trained
on all five features correctly identified the outcome
of 33 of the 34 CHR patients (97.1% accuracy).
The sole patient who was misclassified belonged
to the CHR+ group. This is comparable to the
100% accuracy of the Bedi et al. (2015) method
and superior to the 79.4% accuracy of the Mota
et al. (2012) method.

In order to explore the relationship between the
two data sets, we also applied the best classifier
trained on the 1EP data to the prodromal data. In-
terestingly, the 1EP classifier tagged 29 of the 34
CHR patients as patients with schizophrenia, in-
cluding all five patients in the CHR+ group. The
hypersensitivity of the 1EP classifier when applied
to the prodromal data suggests that the cues that
discriminate between patients with first-episode
schizophrenia and healthy controls tend to place
CHR patients into the same category as patients
with first-episode schizophrenia. It is worth noting
that the classifier tagged all of the CHR+ patients
as 1EP+. We believe this indicates that our method
would be useful as a tool meant to channel limited
attention and resources toward patients with par-
ticularly high risk (above and beyond the criteria
that currently flag a patient as being CHR).

6 Conclusion

To our knowledge, this study is the first to demon-
strate the utility of automated metaphor iden-
tification algorithms in a public-health setting,

Table 1: Classification performance on 1ep set.
Variables F-score Accuracy
Baseline 0.703 0.563
Gender 0.703 0.656
Age 0.629 0.594
CohTok 0.694 0.531
CohPhr 0.703 0.656
Met 0.789 0.750
SentTok 0.732 0.688
SentPhr 0.718 0.656
All 0.848 0.844
Bedi 0.744 0.688
Mota 0.732 0.688

and particularly for the prediction or detection
of schizophrenia. Our algorithm’s performance
on the task of schizophrenia diagnosis from tran-
scripts outperforms the two existing methods de-
tailed in existing literature.

Our results also contribute to clinical knowl-
edge of the nature of language-use abnormal-
ities in schizophrenia, as they support previ-
ous research which finds that those suffering
from schizophrenia produce more metaphors in
free speech than healthy controls. Previously it
was only possible to measure such disturbances
by labor-intensive and subjective hand-coding of
transcripts for metaphoricity, or by the assessment
of expert clinicians, whose time is limited. This
work breaks new ground by showing that such dis-
turbances can be measured in an automated and
reproducible fashion, using features generated via
machine learning.

Our work is somewhat constrained by the small
sample size available to us. As our data comes
from a vulnerable population, obtaining a larger
data set is challenging, but essential for future
work. In fact, two of the authors are in the pro-
cess of collecting data from a total of 120 CHR in-
dividuals. This would enable a more thorough in-
vestigation of a larger and more sophisticated suite
of linguistic features, and especially a more fine-
grained analysis of the interaction of metaphor and
emotional language in schizophrenia.
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