
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2820–2825
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Sharp Models on Dull Hardware: Fast and Accurate Neural Machine
Translation Decoding on the CPU

Jacob Devlin
jdevlin@microsoft.com

Microsoft Research

Abstract

Attentional sequence-to-sequence models
have become the new standard for ma-
chine translation, but one challenge of
such models is a significant increase in
training and decoding cost compared to
phrase-based systems. Here, we focus on
efficient decoding, with a goal of achiev-
ing accuracy close the state-of-the-art in
neural machine translation (NMT), while
achieving CPU decoding speed/through-
put close to that of a phrasal decoder.

We approach this problem from two an-
gles: First, we describe several techniques
for speeding up an NMT beam search de-
coder, which obtain a 4.4x speedup over
a very efficient baseline decoder with-
out changing the decoder output. Sec-
ond, we propose a simple but powerful
network architecture which uses an RNN
(GRU/LSTM) layer at bottom, followed
by a series of stacked fully-connected lay-
ers applied at every timestep. This ar-
chitecture achieves similar accuracy to a
deep recurrent model, at a small frac-
tion of the training and decoding cost.
By combining these techniques, our best
system achieves a very competitive ac-
curacy of 38.3 BLEU on WMT English-
French NewsTest2014, while decoding at
100 words/sec on single-threaded CPU.
We believe this is the best published ac-
curacy/speed trade-off of an NMT system.

1 Introduction

Attentional sequence-to-sequence models have
become the new standard for machine transla-
tion over the last two years, and with the un-
precedented improvements in translation accuracy

comes a new set of technical challenges. One of
the biggest challenges is the high training and de-
coding costs of these neural machine translation
(NMT) system, which is often at least an order
of magnitude higher than a phrase-based system
trained on the same data. For instance, phrasal MT
systems were able achieve single-threaded decod-
ing speeds of 100-500 words/sec on decade-old
CPUs (Quirk and Moore, 2007), while Jean et al.
(2015) reported single-threaded decoding speeds
of 8-10 words/sec on a shallow NMT system. Wu
et al. (2016) was able to reach CPU decoding
speeds of 100 words/sec for a deep model, but
used 44 CPU cores to do so. There has been re-
cent work in speeding up decoding by reducing
the search space (Kim and Rush, 2016), but little
in computational improvements.

In this work, we consider a production sce-
nario which requires low-latency, high-throughput
NMT decoding. We focus on CPU-based de-
coders, since GPU/FPGA/ASIC-based decoders
require specialized hardware deployment and lo-
gistical constraints such as batch processing. Ef-
ficient CPU decoders can also be used for on-
device mobile translation. We focus on single-
threaded decoding and single-sentence processing,
since multiple threads can be used to reduce la-
tency but not total throughput.

We approach this problem from two angles: In
Section 4, we describe a number of techniques
for improving the speed of the decoder, and ob-
tain a 4.4x speedup over a highly efficient base-
line. These speedups do not affect decoding re-
sults, so they can be applied universally. In Sec-
tion 5, we describe a simple but powerful network
architecture which uses a single RNN (GRU/L-
STM) layer at the bottom with a large number of
fully-connected (FC) layers on top, and obtains
improvements similar to a deep RNN model at a
fraction of the training and decoding cost.

2820

2 Data Set

The data set we evaluate on in this work is WMT
English-French NewsTest2014, which has 380M
words of parallel training data and a 3003 sen-
tence test set. The NewsTest2013 set is used
for validation. In order to compare our archi-
tecture to past work, we train a word-based sys-
tem without any data augmentation techniques.
The network architecture is very similar to Bah-
danau et al. (2014), and specific details of layer
size/depth are provided in subsequent sections.
We use an 80k source/target vocab and perform
standard unk-replacement (Jean et al., 2015) on
out-of-vocabulary words. Training is performed
using an in-house toolkit.

3 Baseline Decoder

Our baseline decoder is a standard beam search
decoder (Sutskever et al., 2014) with several
straightforward performance optimizations:

• It is written in pure C++, with no heap allo-
cation done during the core search.

• A candidate list is used to reduce the out-
put softmax from 80k to ~500. We run word
alignment (Brown et al., 1993) on the training
and keep the top 20 context-free translations
for each source word in the test sentence.

• The Intel MKL library is used for matrix mul-
tiplication, as it is the fastest floating point
matrix multiplication library for CPUs.

• Early stopping is performed when the top
partial hypothesis has a log-score of δ = 3.0
worse than the best completed hypothesis.

• Batching of matrix multiplication is applied
when possible. Since each sentence is de-
coded separately, we can only batch over the
hypotheses in the beam as well as the input
vectors on the source side.

4 Decoder Speed Improvements

This section describes a number of speedups that
can be made to a CPU-based attentional sequence-
to-sequence beam decoder. Crucially, none of
these speedups affect the actual mathematical
computation of the decoder, so they can be applied
to any network architecture with a guarantee that
they will not affect the results.1

1Some speedups apply quantization which leads to small
random perturbations, but these change the BLEU score by
less than 0.02.

The model used here is similar to the original
implementation of Bahdanau et al. (2014). The
exact target GRU equation is:

dij = tanh(Wahi−1 + Vaxi)·tanh(Uasj)

αij =
edij∑
j′ edij′

ci =
∑

j

αijsj

ui = σ(Wuhi−1 + Vuxi + Uuci + bu)
ri = σ(Wrhi−1 + Vrxi + Urci + br)

ĥi = σ(ri�(Whhi−1) + Vhxi + Uhci + bh)

hi = uihi−1 + (1− ui)ĥi

Where W∗, V∗, U∗, b∗ are learned parameters, sj

is the hidden vector of the jth source word, hi−1 is
the previous target recurrent vector, xi is the target
input (e.g., embedding of previous word).

We also denote the various hyperparameters: b
for the beam size, r for the recurrent hidden size, e
is the embedding size, |S| for the source sentence
length, and |T | for the target sentence length, |E|
is the vocab size.

4.1 16-Bit Matrix Multiplication
Although CPU-based matrix multiplication li-
braries are highly optimized, they typically only
operate on 32/64-bit floats, even though DNNs can
almost always operate on much lower precision
without degredation of accuracy (Han et al., 2016).
However, low-precision math (1-bit to 7-bit) is dif-
ficult to implement efficiently on the CPU, and
even 8-bit math has limited support in terms of
vectorized (SIMD) instruction sets. Here, we use
16-bit fixed-point integer math, since it has first-
class SIMD support and requires minimal changes
to training. Training is still performed with 32-bit
floats, but we clip the weights to the range [-1.0,
1.0] the relu activation to [0.0, 10.0] to ensure
that all values fit into 16-bits with high precision.
A reference implementation of 16-bit multiplica-
tion in C++/SSE2 is provided in the supplemen-
tary material, with a thorough description of low-
level details.2

A comparison between our 16-bit integer imple-
mentation and Intel MKL’s 32-bit floating point
multiplication is given in Figure 1. We can see
that 16-bit multiplication is 2x-3x faster than 32-
bit multiplication for batch sizes between 2 and 8,
which is the typical range of the beam size b. We

2Included as ancillary file in Arxiv submission, on right
side of submission page.

2821

are able to achieve greater than a 2x speedup in
certain cases because we pre-process the weight
matrix offline to have optimal memory layout,
which is a capability BLAS libraries do not have.

Figure 1: Single-threaded matrix multiplication using our

16-bit fixed-point vs. Intel MKL’s 32-bit float, averaged over

10,000 multiplications. Both use the AVX2 instruction set.

4.2 Pre-Compute Embeddings
In the first hidden layer on the source and target
sides, xi corresponds to word embeddings. Since
this is a closed set of values that are fixed af-
ter training, the vectors V xi can be pre-computed
(Devlin et al., 2014) for each word in the vocabu-
lary and stored in a lookup table. This can only be
applied to the first hidden layer.

Pre-computation does increase the memory cost
of the model, since we must store r × 3 floats per
word instead of e. However, if we only compute
the k most frequently words (e.g., k = 8, 000),
this reduces the pre-computation memory by 90%
but still results in 95%+ token coverage due to the
Zipfian distribution of language.

4.3 Pre-Compute Attention
The attention context computation in the GRU can
be re-factored as follows:

Uci = U(
∑
j

αijsj) =
∑
j

αij(Usj)

Crucially, the hidden vector representation sj is
only dependent on the source sentence, while aij

is dependent on the target hypothesis. Therefore,
the original computation Uci requires total |T |× b
multiplications per sentence, but the re-factored
versionUsj only requires total |S|multiplications.
The expectation over α must still be computed at
each target timestep, but this is much less expen-
sive than the multiplication by U .

4.4 SSE & Lookup Tables
For the element-wise vector functions use in
the GRU, we can use vectorized instructions
(SSE/AVX) for the add and multiply func-
tions, and lookup tables for sigmoid and tanh.

Reference implementations in C++ are provided in
the supplementary material.

4.5 Merge Recurrent States
In the GRU equation, for the first target hidden
layer, xi represents the previously generated word,
and hi−1 encodes the hypothesis up to two words
before the current word. Therefore, if two par-
tial hypotheses in the beam only differ by the last
emitted word, their hi−1 vectors will be identi-
cal. Thus, we can perform matrix multiplication
Whi−1 only on the unique hi−1 vectors in the
beam at each target timestep. For a beam size of
b = 6, we measured that the ratio of unique hi−1

compared to total hi−1 is approximately 70%, av-
eraged over several language pairs. This can only
be applied to the first target hidden layer.

Words/Sec. Speedup
Type (Single-Threaded) Factor

Baseline 95 1.00x
+ 16-Bit Mult. 248 2.59x
+ Pre-Comp. Emb. 311 3.25x
+ Pre-Comp. Att. 342 3.57x
+ SSE & Lookup 386 4.06x
+ Merge Rec. 418 4.37x

Table 1: Decoding speeds on an Intel E5-2660 CPU, pro-

cessing each sentence independently.

4.6 Speedup Results
Cumulative results from each of the preceding
speedups are presented in Table 1, measured
on WMT English-French NewsTest2014. The
NMT architecture evaluated here uses 3-layer 512-
dimensional bidirectional GRU for the source, and
a 1-layer 1024-dimensional attentional GRU for
the target. Each sentence is decoded indepen-
dently with a beam of 6. Since these speedups
are all mathematical identities excluding quantiza-
tion noise, all outputs achieve 36.2 BLEU and are
99.9%+ identical.

The largest improvement is from 16-bit matrix
multiplication, but all speedups contribute a sig-
nificant amount. Overall, we are able to achieve
a 4.4x speedup over a fast baseline decoder. Al-
though the absolute speed is impressive, the model
only uses one target layer and is several BLEU
behind the SOTA, so the next goal is to maxi-
mize model accuracy while still achieving speeds
greater than some target, such as 100 words/sec.

2822

Words/Sec
System BLEU (Single-Threaded)

Basic Phrase-Based MT (Schwenk, 2014) 33.1 -
SOTA Phrase-Based MT (Durrani et al., 2014) 37.0 -
RNN Search, 1-Layer Att. GRU, w/ Large Vocab (Jean et al., 2015) 34.6 †
Google NMT, 8-Layer Att. LSTM, Word-Based (Wu et al., 2016) 37.9 [
Google NMT, 8-Layer Att. LSTM, WPM-32k (Wu et al., 2016) 39.0‡ [
Convolutional Seq-to-Seq (Gehring et al., 2017) 40.5 -
Transformer Network (Vaswani et al., 2017) 41.0 -

(S1) Trg: 1024-AttGRU 36.2 418
(S2) Trg: 1024-AttGRU + 1024-GRU 36.8 242
(S3) Trg: 1024-AttGRU + 3-Layer 768-FC-Relu + 1024-FC-Tanh 37.1 271
(S4) Trg: 1024-AttGRU + 7-Layer 768-FC-Relu + 1024-FC-Tanh 37.4 229
(S5) Trg: 1024-AttGRU + 7-Layer 768-FC-Relu + 1024-GRU 37.6 157
(S6) Trg: 1024-AttGRU + 15-Layer 768-FC-Relu + 1024-FC-Tanh 37.3 163
(S7) Src: 8-Layer LSTM, Trg: 1024-AttLSTM + 7-Layer 1024-LSTM§ 37.8 28

(E1) Ensemble of 2x Model (S4) 38.3 102
(E2) Ensemble of 3x Model (S4) 38.5 65

Table 2: Results on WMT English-French NewsTest2014. Models (S1)-(S6) use a 3-layer 512-dim bidirectional GRU for

the source side. The CPU is an Intel Haswell E5-2660. † Reported as ~8 words/sec on one CPU core. [Reported as ~100

words/sec, parallelized across 44 CPU cores. § Reproduction of Google NMT, Word-Based.

5 Model Improvements

In NMT, like in many other deep learning tasks,
accuracy can be greatly improved by adding more
hidden layers, but training and decoding time in-
crease significantly (Luong et al., 2014; Zhou
et al., 2016; Wu et al., 2016). Several past
works have noted that convolutional neural net-
works (CNNs) are significantly less expensive
than RNNs, and replaced the source and/or tar-
get side with a CNN-based architecture (Gehring
et al., 2016; Kalchbrenner et al., 2016). However,
these works have found it is difficult to replace the
target side of the model with CNN layers while
maintaining high accuracy. The use of a recurrent
target is especially important to track attentional
coverage and ensure fluency.

Here, we propose a mixed model which uses
an RNN layer at the bottom to both capture full-
sentence context and perform attention, followed
by a series of fully-connected (FC) layers ap-
plied on top at each timestep. The FC layers
can be interpreted as a CNN without overlapping
stride. Since each FC layer consists of a single ma-
trix multiplication, it is 1/6th the cost of a GRU
(or 1/8th an LSTM). Additionally, several of the
speedups from Section 4 can only be applied to the
first layer, so there is strong incentive to only use
a single target RNN.

To avoid vanishing gradients, we use ResNet-

style skip connections (He et al., 2016). These al-
low very deep models to be trained from scratch
and do not require any additional matrix multi-
plications, unlike highway networks (Srivastava
et al., 2015). With 5 intermediate FC layers, target
timestep i is computed as:

hB
i = AttGRU(hB

i−1, xi, S)

h1
i = relu(W 1hB

i)
h2

i = relu(W 2h1
i)

h3
i = relu(W 3h2

i + h1
i)

h4
i = relu(W 4h3

i)
h5

i = relu(W 5h4
i + h3

i)

hT
i = tanh(WTh5

i) or GRU(hT
i−1, h

5
i)

yi = softmax(V hT
i)

Where xi is the target input embedding, S is the
set of source hidden vectors used for attention, and
V is the target output vocabulary matrix. The su-
perscripts hB and hT simply denote the “bottom”
and “top” hidden layers, while the numbered lay-
ers hn represent the intermediate fully-connected
layers.

We follow He et al. (2016) and only use skip
connections on every other FC layer, but do not
use batch normalization. The same pattern can be
used for more FC layers, and the FC layers can be
a different size than the bottom or top hidden lay-
ers. The top hidden layer can be an RNN or an
FC layer. It is important to use relu activations

2823

(opposed to tanh) for ResNet-style skip connec-
tions. The GRUs still use tanh.

5.1 Model Results
Results using the mixed RNN+FC architecture are
shown in Table 2, using all speedups. We have
found that the benefit of using RNN+FC layers on
the source is minimal, so we only perform ablation
on the target. For the source, we use a 3-layer 512-
dim bidi GRU in all models (S1)-(S6).

Model (S1) and (S2) are one and two layer base-
lines. Model (S4), which uses 7 intermediate FC
layers, has similar decoding cost to (S2) while
doubling the improvement over (S1) to 1.2 BLEU.
We see minimal benefit from using a GRU on the
top layer (S5) or using more FC layers (S6). In
(E1) and (E2) we present 2 and 3 model ensembles
of (S4), trained from scratch with different random
seeds. We can see that the 2-model ensemble im-
proves results by 0.9 BLEU, but the 3-model en-
semble has little additional improvment. Although
not presented here, we have found these improve-
ment from decoder speedups and RNN+FC to be
consistent across many language pairs.

All together, we were able to achieve a BLEU
score of 38.3 while decoding at 100 words/sec on
a single CPU core. As a point of comparison, Wu
et al. (2016) achieves similar BLEU scores on this
test set (37.9 to 38.9) and reports a CPU decoding
speed of ~100 words/sec (0.2226 sents/sec), but
parallelizes this decoding across 44 CPU cores.
System (S7), which is our re-implementation of
Wu et al. (2016), decodes at 28 words/sec on one
CPU core, using all of the speedups described in
Section 4. Zhou et al. (2016) has a similar com-
putational cost to (S7), but we were not able to
replicate those results in terms of accuracy.

Although we are comparing an ensemble to a
single model, we can see ensemble (E1) is over 3x
faster to decode than the single model (S7). Addi-
tionally, we have found that model (S4) is roughly
3x faster to train than (S7) using the same GPU re-
sources, so (E1) is also 1.5x faster to train than a
single model (S7).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Peter F Brown, Vincent J Della Pietra, Stephen A Della

Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263–311.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard M Schwartz, and John Makhoul.
2014. Fast and robust neural network joint models
for statistical machine translation. In ACL (1), pages
1370–1380. Citeseer.

Nadir Durrani, Barry Haddow, Philipp Koehn, and
Kenneth Heafield. 2014. Edinburgh’s phrase-based
machine translation systems for wmt-14. In Pro-
ceedings of the Ninth Workshop on Statistical Ma-
chine Translation, pages 97–104.

Jonas Gehring, Michael Auli, David Grangier, and
Yann N Dauphin. 2016. A convolutional encoder
model for neural machine translation. arXiv preprint
arXiv:1611.02344.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Con-
volutional sequence to sequence learning. CoRR,
abs/1705.03122.

Song Han, Huizi Mao, and William J. Dally. 2016.
Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huff-
man coding. ICLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
770–778.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large
target vocabulary for neural machine translation.
CoRR.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. arXiv preprint arXiv:1610.10099.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2014. Addressing
the rare word problem in neural machine translation.
ACL 2015.

Chris Quirk and Robert Moore. 2007. Faster beam-
search decoding for phrasal statistical machine
translation. Machine Translation Summit XI.

Holger Schwenk. 2014. http://www-lium.
univ-lemans.fr/schwenk/cslm_joint_
paper. [Online; accessed 03-September-2014].

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387.

2824

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. NIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, ukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei
Xu. 2016. Deep recurrent models with fast-forward
connections for neural machine translation. arXiv
preprint arXiv:1606.04199.

2825

