
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2588–2597
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Improving Slot Filling Performance with Attentive Neural Networks on
Dependency Structures

Lifu Huang1∗, Avirup Sil2, Heng Ji1, Radu Florian2

1 Rensselaer Polytechnic Institute, 2 IBM T.J. Watson Research Center
1{huangl7,jih}@rpi.edu, 2{avi,raduf}@us.ibm.com

Abstract

Slot Filling (SF) aims to extract the values
of certain types of attributes (or slots, such
as person:cities of residence) for a given
entity from a large collection of source
documents. In this paper we propose an
effective DNN architecture for SF with the
following new strategies: (1). Take a regu-
larized dependency graph instead of a raw
sentence as input to DNN, to compress the
wide contexts between query and candi-
date filler; (2). Incorporate two attention
mechanisms: local attention learned from
query and candidate filler, and global at-
tention learned from external knowledge
bases, to guide the model to better se-
lect indicative contexts to determine slot
type. Experiments show that this frame-
work outperforms state-of-the-art on both
relation extraction (16% absolute F-score
gain) and slot filling validation for each
individual system (up to 8.5% absolute F-
score gain).

1 Introduction

The goal of Slot Filling (SF) is to extract
pre-defined types of attributes or slots (e.g.,
per:cities of residence) for a given query entity
from a large collection of documents. The slot
filler (attribute value) can be an entity, time expres-
sion or value (e.g., per:charges). The TAC-KBP
slot filling task (Ji et al., 2011a; Surdeanu and Ji,
2014) defined 41 slot types, including 25 types for
person and 16 types for organization.

One critical component of slot filling is rela-
tion extraction, namely to classify the relation be-
tween a pair of query entity and candidate slot

∗ This work was carried out during an internship at IBM
Research.

filler into one of the 41 types or none. Most pre-
vious studies have treated SF in the same way as
within-sentence relation extraction tasks in ACE 1

or SemEval (Hendrickx et al., 2009). They created
training data based on crowd-sourcing or distant
supervision, and then trained a multi-class classi-
fier or multiple binary classifiers for each slot type
based on a set of hand-crafted features.

Although Deep Neural Networks (DNN) such
as Convolutional Neural Networks (CNN) and Re-
current Neural Networks (RNN) have achieved
state-of-the-art results on within-sentence relation
extraction (Zeng et al., 2014; Liu et al., 2015;
Santos et al., 2015; Nguyen and Grishman, 2015;
Yang et al., 2016; Wang et al., 2016), there are lim-
ited studies on SF using DNN. Adel and Schütze
(2015) and Adel et al. (2016) exploited DNN for
SF but did not achieve comparable results as tradi-
tional methods. In this paper we aim to answer
the following questions: What is the difference
between SF and ACE/SemEval relation extraction
task? How can we make DNN work for SF?

We argue that SF is different and more chal-
lenging than traditional relation extraction. First, a
query and its candidate filler are usually separated
by much wider contexts than the entity pairs in tra-
ditional relation extraction. As Figure 1 shows, in
ACE data, for 70% of relations, two mentions are
embedded in each other or separated by at most
one word. In contrast, in SF, more than 46% of
〈query, filler〉 entity pairs are separated by at least
7 words. For example, in the following sentence:

E1. “Arcandorquery owns a 52-percent stake
in Europe’s second biggest tourism group
Thomas Cook, the Karstadt chain of depart-
ment stores and iconic shops such as the
KaDeWefiller in what used to be the com-
mercial heart of West Berlin.”,

1http://www.itl.nist.gov/iad/mig/tests/ace/
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Here, Arcandor and KaDeWe are far separated
and it’s difficult to determine the slot type as
org:subsidiaries based on the raw wide contexts.

Figure 1: Comparison of the Percentage by the #
of Words between two entity mentions in ACE05
and SemEval-2010 Task 8 relations, and between
query and slot filler in KBP2013 Slot Filling.

In addition, compared with relations defined in
ACE (18 types) and SemEval (9 types), slot types
are more fine-grained and heavily rely on indica-
tive contextual words for disambiguation. Yu
et al. (2015) and Yu and Ji (2016) demonstrate
that many slot types can be specified by contex-
tual trigger words. Here, a trigger is defined as the
word which is related to both the query and can-
didate filler, and can indicate the type of the target
slot. Considering E1 again, owns is a trigger word
between Arcandor and KaDeWe, which can in-
dicate the slot type as org:subsidiaries. Most pre-
vious work manually constructed trigger lists for
each slot type. However, for some slot types, the
triggers can be implicit and ambiguous.

To address the above challenges, we propose the
following new solutions:

• To compress wide contexts, we model the
connection of query and candidate filler using
dependency structures, and feed dependency
graph to DNN. To our knowledge, we are the
first to directly take dependency graphs as in-
put to CNN.

• Motivated by the definition of trigger, we de-
sign two attention mechanisms: a local atten-
tion and a global attention using large exter-
nal knowledge bases (KBs), to better capture
implicit clues that indicate slot types.

2 Architecture Overview

Figure 2 illustrates the pipeline of a SF system.
Given a query and a source corpus, the system

retrieves related documents, identifies candidate
fillers (including entities, time, values, and titles),
extracts the relation between query and each can-
didate filler occurring in the same sentence, and
finally determines the filler for each slot. Relation
extraction plays a vital role in such a SF pipeline.
In this work, we focus on relation extraction com-
ponent and design a neural architecture.

Given a query, a candidate filler, and a sentence,
we first construct a regularized dependency graph
and take all 〈governor, dependent〉 word pairs as
input to Convolutional Neural Networks (CNN).

Moreover, We design two attention mecha-
nisms: (1) Local Attention, which utilizes the
concatenation of Query and Candidate Filler vec-
tors to measure the relatedness of each input bi-
gram (we set filter width as 2) to the specific query
and filler. (2) Global attention: We use pre-
learned slot type representations to measure the re-
latedness of each input bigram with each slot type
via a transformation matrix. These two attention
mechanisms will guide the pooling step to select
the information which is related to query and filler
and can indicate slot type.

3 Regularized Dependency Graph based
CNN

3.1 Regularized Dependency Graph
Dependency parsing based features, especially the
shortest dependency path between two entities,
have been proved to be effective to extract the most
important information for identifying the relation
between two entities (Bunescu and Mooney, 2005;
Zhao and Grishman, 2005; GuoDong et al., 2005;
Jiang and Zhai, 2007). Several recent studies also
explored transforming a dependency path into a
sequence and applied Neural Networks to the se-
quence for relation classification (Liu et al., 2015;
Cai et al., 2016; Xu et al., 2015).

However, for SF, the shortest dependency path
between query and candidate filler is not always
sufficient to infer the slot type due to two reasons.
First, the most indicative words may not be in-
cluded in the path. For example, in the following
sentence:

E2. Survivors include two sons and daughters-in-
law, Troyfiller and Phyllis Perry, Kennyquery

and Donna Perry, all of Bluff City.

the shortest dependency path between Kenny and
Troy is: “Troy←conj Perry←conj Kenny”, which
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Figure 2: Overview of the Architecture.

does not include the most indicative words: sons
and daughters for their per:siblings relation. In
addition, the relation between query and candi-
date filler is also highly related to their entity
types, especially for disambiguating slot types
such as per:country of birth per:state of birth
and per:city of birth. Entity types can be inferred
by enriching query and filler related contexts. For
example, in the following sentence:

E3. Merkelquery died in the southern German
city of Passaufiller in 1967.

we can determine the slot type as city related by
incorporating rich contexts (e.g., “city”).

To tackle these problems, we propose to reg-
ularize the dependency graph, incorporating the
shortest dependency path between query and can-
didate filler, as well as their rich contextual words.

Given a sentence s including a query q and can-
didate filler f , we first apply the Stanford Depen-
dency Parser (Manning et al., 2014) to generate
all dependent word pairs: 〈governor, dependent〉,
then discover the shortest dependency path be-
tween query and candidate filler based on Breadth-
First-Search (BFS) algorithm. The regularized de-
pendency graph includes words on the shortest de-
pendency path, as well as words which can be con-
nected to query and filler within n hops. In our
experiments, we set n = 1. Figure 3 shows the
dependency parsing output for E1 mentioned in
Section 1, and the regularized dependency graph
with the bold circled nodes. We can see that,
the most indicative trigger owns can be found in
both the shortest dependency path of Arcandor

Figure 3: Regularized Dependency Graph for
Query Arcandor and Filler KaDeWe in E1.

and KaDeWe, and the context words of Arcan-
dor. In addition, the context words, such as shops,
can also infer the type of candidate filler KaDeWe
as an Organization.

3.2 Graph based CNN

Previous work (Adel et al., 2016) split an input
sentence into three parts based on the positions of
the query and candidate filler and generate a fea-
ture vector for each part using a shared CNN. To
compress the wide contexts, instead of taking the
raw sentence directly as input, we split the reg-
ularized dependency graph into three parts: query
related subgraph, candidate filler related subgraph,
and the dependency path between query and filler.
Each subgraph will be taken as input to a CNN, as
illustrated in Figure 2. We now describe the details
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of each part as follows.

Input layer: Each subgraph or path G in
the regularized dependency graph is represented
as a set of dependent word pairs G =
{〈g1, d1〉, 〈g2, d2〉, ...〈gn, dn〉}. Here, gi, di denote
the governor and dependent respectively. Each
word is represented as a d-dimensional pre-trained
vector. For the word which does not exist in the
pre-trained embedding model, we assign a ran-
dom vector for it. Each word pair 〈gi, di〉 is con-
verted to a R2×d matrix. We concatenate the ma-
trices of all word pairs and get the input matrix
M ∈ R2n×d.

Convolution layer: For each subgraph, M ∈
R2n×d is the input of the convolution layer, which
is a list of linear layers with parameters shared by
filtering windows with various size. We set the
stride as 2 to obtain all word pairs from the input
matrix M . For each word pair pin = 〈vgi , vdi

〉,
we compute the output vector pout of a convolu-
tion layer as:

pout = tanh(W · pin + b)

where pin is the concatenation of vectors for the
words vgi and vdi

, W denotes the convolution
weights, and b is the bias. In our work all three
convolution layers share the same W and b.

K-Max Pooling Layer: we follow Adel et al.
(2016) and use K-max pooling to select K values
for each convolution layer. Later we will incorpo-
rate attention mechanisms into K-max pooling.

Fully Connected Layer: After getting the high-
level features based on the (attentive) pooling
layer for each input subgraph, we flatten and con-
catenate these three outputs as input to a fully con-
nected layer. This layer connects each input to ev-
ery single neuron it contains, and learns non-linear
combinations based on the whole input.

Output Layer: It takes the output of the fully
connected layer as input to a softmax regression
function to predict the type. We use negative log-
likelihood as loss function to train the parameters.

4 Attention Strategies for SF

4.1 Local Attention

The basic idea of attention mechanism is to assign
a weight to each position of a lower layer when
computing the representations for an upper layer,

so that the model can be attentive to specific re-
gions (Bahdanau et al., 2014). In SF, the indica-
tive words are the most meaningful information
that the model should pay attention to. Wang et al.
(2016) applied attention from the entities directly
to determine the most influential parts in the in-
put sentence. Following the same intuition, we
apply the attention from the query and candidate
filler to the convolution output instead of the input,
to avoid information vanishing during convolution
process (Yin et al., 2016).

Figure 4: Local Attention.

Figure 4 illustrates our approach to incorporate
local attention. We first concatenate the vector of
query q and candidate filler f using pre-trained
embeddings v = [vq, vf ],∈ R2d. For q or f that
includes multiple words, we average the vectors of
all individual words. For each convolution output
F , which is a feature map ∈ RK̂×N , where N is
the number of word pairs from the input, and K̂ is
the number of filters, we define the attention simi-
larity matrix A ∈ RN×1 as:

Ai = cosine(L · v, F [:, i])

where L ∈ RK̂×2d is the transformation matrix
between the concatenated vector v and convolu-
tion output. F [:, i] denotes the vector of column i
in F . Then we use the attention matrix A to update
each column of the feature map F , and generate an
updated attention feature map F

′
as follows:

F
′
[:, i] = F [:, i] ·A[i]

4.2 Global Attention
Considering E1 in Section 1 again, the most dis-
criminating word owns is not only related to the
query and filler, but more specific to the type
org:subsidiaries. Local attention aims to identify
the query and filler related contexts. In order to de-
tect type-indicative parts, we design global atten-
tion, using pre-learned slot type representations.
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Wang et al. (2016) explored relation type atten-
tion with automatically learned type vectors from
training data. However, in most cases, the training
data is not balanced and some relation types can-
not be assigned high-quality vectors with limited
data. Thus, we designed two methods to generate
pre-learned slot type representations.

First, we compose pre-trained lexical word em-
beddings of each slot type name to directly gen-
erate type representations. For example, for the
type per:date of birth, we average the vectors of
all single tokens (person, birth, date) within the
type name as its representation.

Another new method is to take advantage of the
large size of facts from external knowledge base
(KB) to represent slot types. We use DBPedia as
the target KB and manually map KB relations to
slot types. For example, per:alternate names can
be mapped to alternativeNames, birthName and
nickName in DBPedia. Thus for each slot type,
we collect many triples: 〈query, slot, filler〉 and
use TransE (Bordes et al., 2013), which models
slot types as translations operating on the embed-
dings of query and filler, to derive a representation
for each slot type. Compared with the first lexical
based slot type representation induction approach,
TransE jointly learns entity and relation represen-
tations and can better capture the correlation and
differentiation among various slot types. Later, we
will show the impact of these two types of slot type
representations in Section 5.2.

Next we use the pre-learned slot type represen-
tations to guide the pooling process. Formally, let
R ∈ Rd×r be the matrix of all slot type vectors,
where d is the vector dimension size and r is the
number of slot types. Let F ∈ RK̂×N be a con-
volution output, which is the same as Section 4.1.
We define the attention weight matrix S as:

Si,j = cosine(F [:, i], W ·R[:, j])

where W ∈ RK̂×d is the transformation matrix
for pre-learned slot type representations and con-
volution output. Given the weight matrix S, we
generate the attention feature map F

′′
as follows:

F
′′
[:, i] = F [:, i] ·max

j
{S[i, j]}

where S[i, :] denotes the similarity scores between
column i in F with all slot type vectors, and
max{S[i, :]} is the max value among all similar-
ity scores for column i in F .

Figure 5: Global Attention.

We apply local attention to each convolution
output of each subgraph, then take the concatena-
tion of three flattened attentive pooling outputs to
a fully connected layer and generate a robust fea-
ture representation. Similarly, another feature rep-
resentation is generated based on global attention.
We concatenate these two features to the softmax
layer to get the predicted types.

5 Experiments

5.1 Data

For model training, Angeli et al. (2014) created
some high-quality clean annotations for SF based
on crowd-sourcing2. In addition, Adel et al. (2016)
automatically created a larger size of noisy train-
ing data based on distant supervision, including
about 1,725,891 positive training instances for 41
slot types. We manually assessed the correctness
of candidate filler identification and their slot type
annotation, and extracted a subset of their noisy
annotations and combined it with the clean anno-
tations. Ultimately, we obtain 23,993 positive and
3,000 negative training instances for all slot types.

We evaluate our approach in two settings: (1)
relation extraction for all slot types, given the
boundaries of query and candidate fillers. We use a
script3 to generate a test set (4892 instances) from
KBP 2012/2013 slot filling evaluation data sets
with manual assessment. (2) apply our approach
to re-classify and validate the results of slot fill-
ing systems. We use the data from the KBP 2013
Slot Filling Validation (SFV) shared task, which
consists of merged responses returned by 52 runs
from 18 teams submitted to the Slot Filling task.

We used the May-2014 English Wikipedia
dump to learn word embeddings based on the Con-
tinuous Skip-gram model (Mikolov et al., 2013).

2http://nlp.stanford.edu/software/mimlre-2014-07-17-
data.tar.gz

3http://cistern.cis.lmu.de.
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Table 1 shows the hyper-parameters that we use to
train embeddings and our model.

Parameter Parameter Name Value
d Word Embedding Size 50
λ Initial Learning Rate 0.1
K̂ # of Filters in Convolution Layer 500
h Hidden Unit Size in Fully

Connected Layer
1000

kp Max Pooling Size 3

Table 1: Hyper-parameters.

5.2 Relation Extraction
We compare with several existing state-of-the-art
slot filling and relation extraction methods on slot
filling data sets. Besides, we also design several
variants to demonstrate the effectiveness of each
component in our approach. Table 2 presents the
detailed approaches and the features used by these
methods.

We report scores with Macro F1 and Micro F1.
Macro F1 is computed from the average precision
and recall of all types while Micro F1 is computed
from the overall precision and recall, which is
more useful when the size of each category varies.
Table 3 shows the comparison results on relation
extraction.

We can see that by incorporating the shortest
dependency path or regularized dependency graph
into neural networks, the model can achieve more
than 13% micro F-score gain over the previously
widely adopted methods by state-of-the-art sys-
tems for SemEval relation classification. It con-
firms our claim that SF is a different and more
challenging task than traditional relation classifi-
cation and also demonstrates the effectiveness of
dependency knowledge for SF.

In addition, by incorporating local or global at-
tention mechanism into the GraphCNN, the per-
formance can be further improved, which proves
the effectiveness of these two attention mecha-
nisms. Our method finally achieves absolute 16%
F-score gain by incorporating the regularized de-
pendency graph and two attention mechanisms.

To better quantify the contribution of different
attention mechanisms on each slot type, we fur-
ther compared the performances on each single
slot type. Table 4 shows the gain/loss percentage
of the Micro F1 by adding local attention or global
attention into GraphCNN for each slot type. We
can see that both attentions yield improvement for
most slot types.

5.3 Slot Filling Validation
In TAC-KBP 2013 Slot Filling Validation
(SFV) (Ji et al., 2011b) task, there are 100
queries. We first retrieve the sentences from the
source corpus (about 2,099,319 documents) and
identify the query and candidate filler using the
offsets generated by each response, then apply
our approach to re-predict the slot type. Figure 6
shows the F-scores based on our approach and the
original system. For a system which has multiple
runs, we select one for comparison. We can see
that our approach consistently improves the per-
formance of almost all SF systems in an absolute
gain range of [-0.18%, 8.48%]. With analysis of
each system run, we find that our approach can
provide more gains to the SF systems which have
lower precision.

Figure 6: Comparison on Individual System

Previous studies (Tamang and Ji, 2011; Ro-
driguez et al., 2015; Zhi et al., 2015; Viswanathan
et al., 2015; Rajani and Mooney, 2016a; Yu
et al., 2014a; Rajani and Mooney, 2016b) for SFV
trained supervised classifiers based on features
such as confidence score of each response and sys-
tem credibility. For comparison, we developed a
new SFV approach: a new SVM classifier based
on a set of features (docId, filler string, original
predicted slot type and confidence score, new pre-
dicted slot type confidence score based on our neu-
ral architecture) for each response to take advan-
tage of the redundant information from various
system runs. Table 5 compares our SFV perfor-
mance against previous reported scores on judging
each response as true or false. We can see that our
approach advances state-of-the-art methods.

5.4 Detailed Analysis

Significance Test: Table 3 shows the results
of multiple variants of our approach. To demon-
strate the difference between the results of these
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Method Description Features

Previous
Methods

FCM (Yu et al.,
2014b)

A factor-based compositional embedding model by de-
riving sentence-level and substructure representations

word embedding, dependency
parse, WordNet, name tagging

CR-CNN (Santos
et al., 2015)

Applying a pairwise ranking loss function over CNNs word embedding, word posi-
tion embedding

Context-CNN (Adel
et al., 2016)

Splitting each sentence into three parts based on query
and filler positions, and apply a CNNs to each part

word embedding

Our
Methods

DepCNN Applying CNNs to the shortest dependency path be-
tween query and filler

word embedding, dependency
parse

GraphCNN DepCNN + applying CNNs to both query and filler re-
lated contextual graphs

word embedding, dependency
parse

GraphCNN+L incorporating query and filler information as local at-
tention into the GraphCNN

word embedding, dependency
parse

GraphCNN+G1 incorporating slot type representations learned from
type names as global attention into the GraphCNN

word embedding, dependency
parse

GraphCNN+G2 incorporating slot type representations learned from
external KB as global attention into the GraphCNN

word embedding, dependency
parse, knowledge base

GraphCNN+L+G2 incorporating both local and KB based global atten-
tions into the GraphCNN

word embedding, dependency
parse, knowledge base

Table 2: Approach Descriptions for Multi-Class Relation Classification

Method Micro F1 Macro F1

Previous
Methods

FCM 41.13 12.68
CR-CNN 41.61 -
ContextCNN 41.31 29.01

Variants
of Our
Methods

DepCNN 54.91 36.63
GraphCNN 55.63 36.74
GraphCNN+L 56.29 37.12
GraphCNN+G1 56.18 36.87
GraphCNN+G2 56.81 38.15

Our
Method

GraphCNN+L+G2 57.39 38.26

Table 3: Relation Extraction Component Perfor-
mance on Slot Filling Data Set (%).

approaches are not random, we randomly sample
10 subsets (each contains 500 instances) from the
testing dataset, and conduct paired t-test between
each of these two approaches over these 10 data
sets to check whether the average difference in
their performances is significantly different or not.
Table 6 shows the two-tailed P values. The differ-
ences are all considered to be statistically signifi-
cant while all p-values are less than 0.05.

Impact of Training Data Size: We examine the
impact of the size of training data on the perfor-
mance for each slot type. Table 4 shows the distri-
bution of training data and the F-score of each sin-
gle type. We can see that, for some slot types, such
as per:date of birth and per:age, the entity types
of their candidate fillers are easy to learn and dif-
ferentiate from other slot types, and their indica-
tive words are usually explicit, thus our approach
can get high f-score with limited training data (less
than 507 instances). In contrast, for some slots,
such as org:location of headquarters, their clues

are implicit and the entity types of candidate fillers
are difficult to be inferred. Although the size of
training data is larger (more than 1,433 instances),
the f-score remains quite low. One possible so-
lution is to incorporate fine-grained entity types
from existing tools into the neural architecture.

Impact of Wide Context Distribution: We
further compared the performance and distri-
bution of instances with wide contexts across
all slot types. A context is considered as
wide if the query and candidate filler are sep-
arated with more than 7 words. The last col-
umn of Table 4 shows the performance by in-
corporating regularized dependency graph (Con-
textCNN v.s. GraphCNN). We can see that,
for most slot types with wide contexts, such as
per:states of residence and per:employee of, the
f-scores are improved significantly while for some
slots such as per:date of birth, the f-scores de-
crease because most date phrases do not exist in
our pre-trained embedding model.

Error Analysis: Both of the relation extraction
and SFV results showed that, more than 58% clas-
sification errors are spurious. Besides, we also ob-
served many misclassifications that are caused by
conflicting clues. There may be several indicative
words within the contexts, but only one slot type is
labeled, especially between per:location of death
and per:location of residence. For example, in the
following sentence:

E4. Billy Maysquery, a beloved and parodied
pitchman who became a pop-culture figure
through his commercials for cleaning prod-
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Slot Type Impact of Attention (%) Training Data
Distribution (%)

F1
(%)

Wide Context
Distribution (%)

Impact of Depen-
dency Graph (%)Local Global-KB

state of death 9.8 -0.4 0.9 41.8 66.7 44.2
date of birth 7.3 121.3 1.3 84.1 20.0 -81.9
age 4.1 -5.3 1.3 98.5 15.9 28.5
per:alternate names -2.0 21.2 1.5 36.6 41.5 62.0
origin -0.9 7.8 1.7 61.5 29.3 137.3
country of birth 16.7 12.0 1.9 61.5 55.6 162.5
city of death 1.1 3.3 1.9 61.3 70.3 24.4
state of headq. 9.7 -5.1 3.1 51.7 54.8 95.7
cities of residence 4.5 5.7 3.5 57.3 77.0 40.5
states of residence -4.3 2.3 3.8 50.5 45.9 175.8
country of headq. 5.6 -0.8 5.3 41.5 54.4 146.3
city of headq. 1.6 -6.9 6.7 30.3 54.9 39.3
employee of 14.9 4.9 7.3 65.9 54.9 132.5
countries of residence 37.7 8.6 7.4 47.4 47.2 134.9

Table 4: Comparison Analysis for Each Slot Type.

Methods Precision
(%)

Recall
(%)

F-score
(%)

Random 28.64 50.48 36.54
Voting 42.16 70.18 52.68
Linguistic Indicators 50.24 70.69 58.73
SVM 56.59 48.72 52.36
MTM (Yu et al., 2014a) 53.94 72.11 61.72
Our Approach 70.46 64.07 67.11

Table 5: Overall Performance for SFV: all the
Baseline Systems are from Yu et al. (2014a).

Method 1 Method 2 P Value
DepCNN GraphCNN 0.0165
GraphCNN GraphCNN+L 0.0007
GraphCNN GraphCNN+G1 0.0160
GraphCNN GraphCNN+G2 <0.0001
GraphCNN+L GraphCNN+L+G2 0.0009
GraphCNN+G2 GraphCNN+L+G2 0.0010

Table 6: Statistical Significance Test.

ucts like Orange Glo, OxiClean and Kaboom,
died Sunday at his home in Tampafiller, Fla.,

the correct slot type is per:city of death
while our approach mistakenly labeled it as
per:city of residence with clue words like home.
In addition, as we mentioned before, slot typing
heavily relies on the fine-grained entity type
of candidate filler, especially for the location
(including city, state, country) related slot types.
When the context is not specified enough, we can
only rely on the pre-trained embeddings of can-
didate fillers, which may not be as informative as
we hope. Such cases will benefit from introducing
additional gazetteers such as Geonames 4.

4http://www.geonames.org/

6 Related Work

One major challenge of SF is the lack of labeled
data to generalize a wide range of features and pat-
terns, especially for slot types that are in the long-
tail of the quite skewed distribution of slot fills (Ji
et al., 2011a). Previous work has mostly focused
on compensating the data needs by constructing
patterns (Sun et al., 2011; Roth et al., 2014b),
automatic annotation by distant supervision (Sur-
deanu et al., 2011; Roth et al., 2014a; Adel et al.,
2016), and constructing trigger lists for unsuper-
vised dependency graph mining (Yu and Ji, 2016;
Yu et al., 2016). Some work (Rodriguez et al.,
2015; Zhi et al., 2015; Viswanathan et al., 2015;
Hong et al., 2015; Rajani and Mooney, 2016a;
Yu et al., 2014a; Rajani and Mooney, 2016b; Ma
et al., 2015) also attempted to validate slot types
by combining results from multiple systems.

Our work is also related to dependency path
based relation extraction. The effectiveness of de-
pendency features for relation classification has
been reported in some previous work (Bunescu
and Mooney, 2005; Zhao and Grishman, 2005;
GuoDong et al., 2005; Jiang and Zhai, 2007;
Neville and Jensen, 2003; Ebrahimi and Dou,
2015; Xu et al., 2015; Ji et al., 2014). Liu et al.
(2015), Cai et al. (2016) and Xu et al. (2015)
applied CNN, bidirectional recurrent CNN and
LSTM to CONLL relation extraction and demon-
strated that the most important information has
been included within the shortest paths between
entities. Considering that the indicative words
may not be included by the shortest dependency
path between query and candidate filler, we enrich
it to a regularized dependency graph by adding
more contexts.
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7 Conclusions and Future Work

In this work, we discussed the unique challenges
of slot filling compared with tradition relation ex-
traction tasks. We designed a regularized depen-
dency graph based neural architecture for slot fill-
ing. By incorporating local and global attention
mechanisms, this approach can better capture in-
dicative contexts. Experiments on relation extrac-
tion and Slot Filling Validation data sets demon-
strate the effectiveness of our neural architecture.
In the future, we will combine additional rules,
patterns, and constraints with DNN techniques to
further improve slot filling.
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