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Abstract

We present a system for identifying cog-
nate sets across dictionaries of related lan-
guages. The likelihood of a cognate re-
lationship is calculated on the basis of a
rich set of features that capture both pho-
netic and semantic similarity, as well as
the presence of regular sound correspon-
dences. The similarity scores are used
to cluster words from different languages
that may originate from a common proto-
word. When tested on the Algonquian lan-
guage family, our system detects 63% of
cognate sets while maintaining cluster pu-
rity of 70%.

1 Introduction

Cognates are words in related languages that have
originated from the same word in an ancestor lan-
guage; for example English earth and German
Erde. On average, cognates display higher pho-
netic and semantic similarity than random word
pairs between languages that are indisputably re-
lated (Kondrak, 2013). The term cognate is some-
times used within computational linguistics to de-
note orthographically similar words that have the
same meaning (Nakov and Tiedemann, 2012). In
this work, however, we adhere to the strict linguis-
tic definition of cognates and aim to distinguish
them from lexical borrowings by detecting regular
sound correspondences.

Cognate information between languages is crit-
ical to the field of historical and comparative lin-
guistics, where it plays a central role in determin-
ing the relations and structures of language fami-
lies (Trask, 1996). Automated phylogenetic recon-
structions often rely on cognate information as in-
put (Bouchard-Côté et al., 2013). The percentage
of shared cognates can also be used to estimate the
time of pre-historic language splits (Dyen et al.,

1992). While cognates are valuable to linguists,
their identification is a time-consuming process,
even for experts, who have to sift through hun-
dreds or even thousands of words in related lan-
guages. The languages that are the least well stud-
ied, and therefore the ones in which historical lin-
guists are most interested, often lack cognate in-
formation.

A number of computational methods have been
proposed to automate the process of cognate iden-
tification. Many of the systems focus on iden-
tifying cognates within classes of semantically
equivalent words, such as Swadesh lists of basic
concepts. Those systems, which typically con-
sider only the phonetic or orthographic forms of
words, can be further divided into the ones that
operate on language pairs (pairwise) vs. multilin-
gual approaches. However, because of seman-
tic drift, many cognates are no longer exact syn-
onyms, which severely limits the effectiveness of
such systems. For example, a cognate pair like En-
glish bite and French fendre “to split” cannot be
detected because these words are listed under dif-
ferent basic meanings in the Comparative Indoeu-
ropean Database (Dyen et al., 1992). In addition,
the number of basic concepts is typically small.

In this paper, we address the challenging task of
identifying cognate sets across multiple languages
directly from dictionary lists representing related
languages, by taking into account both the forms
of words and their dictionary definitions (c.f. Fig-
ure 1). Our methods are designed for less-studied
languages — we assume only the existence of ba-
sic dictionaries containing a substantial number of
word forms in a semi-phonetic notation, with the
meaning of words conveyed using one of the major
languages. Such dictionaries are typically created
before Bible translations, which have been accom-
plished for most of the world’s languages.

While our approach is unsupervised, assuming
no cognate sets from the analyzed language fam-
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aːyweːpiwin ease, rest
kaːskipiteːw he pulls him scraping
mihkweːkin red cloth
…

ahkawaːpiwa he watches
meškweːkenwi red woolen handcloth
yoːwe earlier, before
…

iːnekænok they are so big, tall
kaːskeponæːw he scratches him
mæhkiːkan red flannel
…

aːnweːpiwin rest, repose
kaːškipin scrape, claw
miskweːkin red cloth
…

C

F

M

O

C  aːyweːpiwin ease, rest
O  aːnweːpiwin rest, repose

C  mihkweːkin red cloth
F  meškweːkenwi red woolen handcloth
M  mæhkiːkan red flannel
O  miskweːkin red cloth

C  kaːskipiteːw he pulls him scraping
M  kaːskeponæːw he scratches him
O  kaːškipin scrape, claw

42

1725

872

Figure 1: Example of multilingual cognate set identification across four Algonquian dictionaries: Cree
(C), Fox (F), Menominee (M) and Ojibwa (O). Cognate set numbers are shown on the right.

ily to start with, it incorporates supervised ma-
chine learning models that either leverage cognate
data from unrelated families, or use self-training
on subsets of likely cognate pairs. We derive
two types of models to classify pairs of words
across languages as either cognate or not. The
language-independent general model employs a
number of features defined on both word forms
and definitions, including word vector representa-
tions. The additional specific models exploit regu-
lar sound correspondences between specific pairs
of languages. The scores from the general and
specific models inform a clustering algorithm that
constructs the proposed cognate sets.

We evaluate our system on dictionary lists that
represent four indigenous North American lan-
guages from the Algonquian family. On the task
of pairwise classification, we achieve a 42% error
reduction with respect to the state of the art. On
the task of multilingual clustering, our system de-
tects 63% of gold sets, while maintaining a cluster
purity score of 70%. The system code is publicly
available.1

2 Related Work

Most previous work in automatic cognate identi-
fication only consider words as cognates if they
have identical definitions. As such, they make lim-
ited or no use of semantic information. The sim-
plest variant of this task is to make pairwise cog-
nate classifications based on orthographic or pho-

1https://github.com/ajstarna/SemaPhoR

netic forms. Turchin et al. (2010) apply a heuris-
tic based on consonant classes to identify the ratio
of cognate pairs to non-cognate pairs between lan-
guages in an effort to determine the likelihood that
they are related. Ciobanu and Dinu (2013) find
cognate pairs by referring to dictionaries contain-
ing etymological information. Rama (2015) ex-
periments with features motivated by string ker-
nels for pairwise cognate classification.

A more challenging version of the task is to
cluster cognates within lists of words that have
identical definitions. Hauer and Kondrak (2011)
use confidence scores from a binary classifier that
incorporates a variety of string similarity features
to guide an average score clustering algorithm.
Hall and Klein (2010, 2011) define generative
models that model the evolution of words along
a phylogeny according to automatically learned
sound laws in the form of parametric edit dis-
tances. List and Moran (2013) propose an ap-
proach based on sound class alignments and an av-
erage score clustering algorithm. List et al. (2016)
extend the approach to include partial cognates
within word lists.

Cognate identification that considers semantic
information is a less-studied problem. Again, the
task can be framed as either a pairwise classifi-
cation or multi-lingual clustering. In a pairwise
context, Kondrak (2004) describes a system for
identifying cognates between language dictionar-
ies which is based on phonetic similarity, com-
plex multi-phoneme correspondences, and seman-
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tic information. The method of Wang and Sitbon
(2014) employs word sense disambiguation com-
bined with classic string similarity measures for
finding cognate pairs in parallel texts to aid lan-
guage learners.

Finally, very little has been published on creat-
ing cognate sets based on both phonetic and se-
mantic information, which is the task that we fo-
cus on in this paper. Kondrak et al. (2007) com-
bine phonetic and sound correspondence scores
with a simple semantic heuristic, and create cog-
nate sets by using graph-based algorithms on con-
nected components. Steiner et al. (2011) aim at
a fully automated approach to the comparative
method, including cognate set identification and
language phylogeny construction. Neither of those
systems and datasets are publicly available for the
purpose of direct comparison to our method.

3 Methods

In this section, we describe the design of our
language-independent general model, as well as
the language-specific models. Given a pair of
words from related languages, the models produce
a score that reflects the likelihood of the words
being cognate. The models are implemented as
Support Vector Machine (SVM) classifiers via the
software package SVM-Light (Joachims, 1999).
The scores from both types of models are used to
cluster words from different languages into cog-
nate sets.

3.1 Features of the General Model

The general model is a supervised classifier that
makes cognate judgments on pairs of words ac-
companied by their semantic definitions. The
model is intended to be language-independent, so
that it can be trained on cognate annotations from
well-studied languages, and applied to completely
unrelated families. The features of the general
model are of two kinds: phonetic, which pertain
to the analyzed word forms, and semantic, which
refer to their definitions.

The phonetic features are defined on the word
forms, represented in ASJP format (Brown et al.,
2008), which is a simplified phonetic representa-
tion.

• Normalized edit distance is calculated at the
character level, and normalized by the length
of the longer word.

• LCSR is the longest common subsequence ra-
tio of the words.

• Alignment score reflects an overall phonetic
similarity, provided by the ALINE phonetic
aligner (Kondrak, 2009).

• Consonant match returns the number of
aligned consonants normalized by the num-
ber of consonants in the longer word.

For example, consider the words meškwe:kenwi
and mæhki:kan (meSkwekenwi and mEhkikan in
ASJP notation) from cognate set 1725 in Figure 1.
The corresponding values for the above four fea-
tures are 0.364, 0.364, 0.523, and 0.714, respec-
tively.

The semantic features refer to the dictionary
definitions of words. We assume that the defini-
tions are provided in a single meta-language, such
as English or Spanish. We consider not only a def-
inition in its entirety, but also its sub-definitions,
which are separated by commas and semicolons.
We distinguish between a closed class of about
300 stop words, which express grammatical re-
lationships, and an open class of content words,
which carry a meaning. Filtering out stopwords re-
duces the likelihood of spurious matches between
dictionary definitions.

Our semantic features can be divided into those
that focus on surface definition resemblance, and
those that attempt to detect the affinity of meaning.
The features of the first type are the following:

• Sub-definition match denotes an exact match
between any of the word sub-definitions (c.f.
set 42 of Figure 1).

• Sub-definition content match is performed af-
ter removing stop words from definitions.

• Normalized word-level edit distance calcu-
lates the minimum distance between sub-
definitions at the level of words, normalized
by the length of the longer sub-definition.

• Content overlap fires if any sub-definitions
have at least one content word in common.

The second type of semantic features are aimed
at detecting deeper meaning connections between
definitions. We use WordNet (Fellbaum, 1998)
to identify the relations of synonymy and hyper-
nymy, and to associate different inflectional forms
of words. The WordNet-based features are as fol-
lows:
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• Synonym overlap indicates a WordNet syn-
onymy relation between content words across
sub-definitions (e.g. “ease” and “repose”).

• Hypernym overlap indicates a WordNet hy-
pernymy relation between content words
across sub-definitions (e.g. “flannel” and
“cloth”).

• Inflection overlap is a feature that associates
inflectional variants of content words (e.g.
“scrape” and “scraping”).

• Inflection synonym overlap indicates a syn-
onymy relation between lemmas of content
words (e.g. “scratches” and “scraping”).

• Inflection hypernym overlap is defined analo-
gously to the inflection synonym overlap fea-
ture.

In order to detect subtle definition similarity that
goes beyond inflectional variants and simple se-
mantic relations, we add two features designed to
take advantage of recent advances in word vec-
tor representations. The two vector-based features
are:

• Vector cosine similarity is the cosine sim-
ilarity between the two vectors that repre-
sent the average of each vector within a sub-
definition.

• Content vector cosine similarity is analogous,
but only includes content words.

As an example, consider the definitions “he is
in mourning” and “she is widowed,” from Table 5,
which do not fire any of the WordNet-based fea-
tures. Using the entire definitions yields a vec-
tor cosine similarity of 0.566, while considering
only the content words “mourning” and “wid-
owed” produces a feature value of 0.146.

3.2 Regular Correspondences
The features described in the previous section
are language-independent, but we would also like
to take into account cognate information that is
specific to pairs of languages, namely regular
sound correspondences. For example, th/d is a
sound correspondence between English and Ger-
man, occurring in words such as think/denken and
leather/Leder. A model trained on another lan-
guage family would not be able to learn that a cor-
responding th and d is an important indicator of
cognation in English/German pairs.

For each language pair, we derive a specific
model by implementing the approach of Bergsma
and Kondrak (2007). As features, we extract pairs
of substrings, up to length 3, that are consistent
with the alignment induced by the minimum edit
distance algorithm. The models are able to learn
when a certain substring in one language corre-
sponds to a certain substring in another language.

In order to train the specific models, we need
a substantial number of cognate pairs, which are
not initially available in our unsupervised setting.
We use a heuristic method to overcome this lim-
itation. We create sets of words that satisfy the
following two constraints: (1) identical dictionary
definition, and (2) identical first letter. For ex-
ample, this heuristic will correctly cluster the two
words defined as “red cloth” in Figure 1, but will
miss the two other cognates from Set 1725. We
ensure that every set contains words from at least
two languages. The resulting word sets are mu-
tually exclusive, and contain mostly cognates. (In
fact, we use this method as our baseline in the Ex-
periments section.) We extract positive training
examples from these high-precision sets, and cre-
ate negative examples by sampling random entries
from the language dictionaries. A separate specific
model is learned for each language pair in order to
capture regular sound correspondences. Note that
the specific models include no semantic features.
We combine the specific models with the general
model by simply averaging their respective scores.

3.3 Cognate Clustering

We apply our general and specific models to score
pairs of words across languages. Featurizing all
possible pairs of words from all languages is very
time consuming, so we first filter out dissimilar
word pairs that obtain a normalized score below
0.35 from ALINE. In development experiments,
we observed that over 95% of cognate pairs ex-
ceed this threshold.

Once pairwise scores have been computed, we
cluster words into putative cognate sets using a
variant of the UPGMA clustering algorithm (Sokal
and Michener, 1958), which has been used in pre-
vious work on cognate clustering (Hauer and Kon-
drak, 2011; List et al., 2016). Initially, all words
are placed into their own cluster. The score be-
tween clusters is computed as the average of all
pairwise scores between the words within those
clusters. In each iteration, the two clusters with
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the highest average score are merged. For effi-
ciency reasons, only positive scores are included
in the pairwise similarity matrix, which implies
that merges are only performed if all pairwise
scores between two clusters are positive. The al-
gorithm terminates when no pair of clusters have
a positive average score.

4 Experiments

In this section, we discuss two evaluation exper-
iments. After describing the datasets, we com-
pare our cognate classifier to the current state of
the art in pairwise classification. We then consider
the evaluation metrics for our main task of cog-
nate set recovery from raw language dictionaries,
which is followed by the results on the Algonquian
dataset. We refer to our system as SemaPhoR, to
reflect the fact that it exploits three kinds of ev-
idence: Semantic, Phonetic, and Regular Sound
Correspondences.

4.1 Data Sets

Our experiments involve three different language
families: Algonquian, Polynesian, and Totonacan.

The Algonquian dataset consists of four dic-
tionary lists (c.f. Figure 1) compiled by Hewson
(1993) and normalized by Kondrak (2004). We
convert the phonetic forms into a Unicode en-
coding. The gold-standard annotation consists
of 3661 cognate sets, which were established by
Hewson on the basis of the regular correspon-
dences identified by Bloomfield (1946). The
dataset contains as many as 22,747 unique defini-
tions, which highlights the difference between our
task and previous work in cognate identification
within word lists, where cognate relationships are
restricted to a limited set of basic concepts.

The second dataset corresponds to a version
of POLLEX, a large-scale comparative dictionary
of over 60 Polynesian languages (Greenhill and
Clark, 2011). Table 1 shows that nearly 99% of
words in the POLLEX dataset belong to a cognate
set, meaning that it is composed almost entirely
of cognate sets rather than language dictionaries.
This makes the POLLEX dataset unsuitable for
system evaluation; however, we use it to train our
general classifier, by randomly selecting 25,000
cognate and 250,000 non-cognate word pairs. For
calculating our word vector based features, we use
the Python package gensim (Řehůřek and Sojka,
2010) applied to word vectors pre-trained on ap-

Family Lang. Entries Sets Cognates
Algonquian 4 26,985 3,661 8,675
Polynesian 62 27,049 3,690 26,699
Totonacan 10 43,073 ? ?

Table 1: The number of languages, total dictionary
entries, cognate sets, and cognate words for each
language family.

proximately 100 billion English words using the
approach of Mikolov et al. (2013).2 The posi-
tive training instances are constrained to involve
languages that belong to different Polynesian sub-
families.

The final dataset consists of 10 dictionaries of
the Totonacan language family spoken in Mexico.
Since the definitions of the Totonacan dictionar-
ies are in Spanish, we use the Spanish WordNet,
a list of 200 stop words, and approximately 1 bil-
lion pre-trained Spanish word vectors (Cardellino,
2016) for this dataset.3 The Totonacan data is yet
to be fully analyzed by historical linguists, and as
such provides an important motivation for devel-
oping our system.

Although the Totonacan dataset includes no
cognate information, we manually evaluated a
number of candidate cognate sets generated by
our system in the development stage. From these
annotations, we created a pairwise development
set, including all possible 6755 cognate pairs and
67,550 randomly selected non-cognate pairs, and
used it for testing our general model that was
trained on the Polynesian dataset. The resulting
pairwise F-Score of 88.0% shows that our cognate
classification model need not be trained on the
same language family that it is applied to. More-
over, it confirms that our system can function on
datasets where definitions are written in a meta-
language that is different from the one used in the
training set.

4.2 Pairwise Classification Results

Although our main objective is multilingual clus-
tering, the goal of the first experiment is to com-
pare the effectiveness of our pairwise classifiers
against the system of Kondrak (2004), which was
designed to process one language pair at a time.
As much as possible, we try to follow the original
evaluation methodology, which reports 11-point
interpolated precision (Manning et al., 2008, page

2https://code.google.com/archive/p/word2vec
3http://crscardellino.me/SBWCE
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K-2004 SemaPhoR
Dev/Train: CO CO POLLEX

CO 78.7 84.8 82.3
CF 69.8 77.8 76.6
CM 61.8 78.4 80.5
FM 65.2 81.7 81.8
FO 69.5 83.3 79.3
MO 64.1 80.3 81.7

Average 66.1 80.3 80.0

Table 2: 11-Point interpolated precision on the Al-
gonquian noun dataset.

158) on lists of positively classified word pairs
that have been sorted according to their confidence
scores. We also use the same dataset, which is
limited to the nouns in the Algonquian data. As
the original system contained no machine-learning
component, it required no training data, but the
Cree-Ojibwa language pair served as the develop-
ment and tuning set.

We evaluate two variants of our general model:
one trained on the Cree-Ojibwa (CO) noun sub-
set, and another on the POLLEX dataset. The
language-specific models are trained on each re-
spective language pair, using the unsupervised
heuristic approach described in Section 3.2.

Table 2 shows the results on each language pair.
K-2004 denotes the results reported in Kondrak
(2004). The increase in the average 11-point pre-
cision on the five test sets (except Cree-Ojibwa)
from 66.1% to 80.3% represents an error reduc-
tion of 42%. This improvement demonstrates the
superiority of a machine learning approach with a
rich feature set over a categorical approach with
manually-tuned parameters. When our classifier
is trained instead on cognate data from an unre-
lated Polynesian language family, the average 11-
point precision on the test sets drops only slightly
to 80.0%, which confirms its generality.

The correspondence-based specific models con-
tribute towards the high accuracy of our system.
Without them, the average results on the test sets
decrease by 0.9% to 79.4% for the CO-trained
model, and by 3.0% to 77.0% for the POLLEX-
trained model. We conjecture that the language-
specific models are less helpful in the former case
because the general model already incorporates
much of the information that is particular to the
Algonquian family.

4.3 Evaluation Metrics for Clustering

The choice of evaluation metrics for multilingual
cognate clustering, which is our main task, re-
quires careful consideration. Pairwise F-score
works well for pairwise cognate classification, but
in the context of clustering, the number of word
pairs grows quadratically with the size of a set,
which creates a bias against smaller sets. For ex-
ample, a set containing 10 words may contribute
as much to the pairwise recall as 45 two-word sets.

For the task of clustering words with identi-
cal definitions, Hauer and Kondrak (2011) pro-
pose to use B-Cubed F-score (Bagga and Baldwin,
1998). However, we found that B-Cubed F-score
assigns counter-intuitive scores to clusterings in-
volving datasets of dictionary size, in which many
words are outside of any cognate set in the refer-
ence annotation. For example, on the Algonquian
dataset, a trivial strategy of placing each word into
its own cluster (MaxPrecision) would achieve a B-
Cubed F-Score of 89.6%.

In search for a better metric, we considered
MUC (Vilain et al., 1995), which is designed to
score co-reference algorithms. MUC assigns pre-
cision, recall and F-Score based on the number of
missing links in the proposed clusters. However, as
pointed out by Bagga and Baldwin (1998), when
penalizing incorrectly placed elements, MUC is
insensitive to the size of the cluster in question.
For example, a completely useless clustering of all
Algonquian words into one giant set (MaxRecall)
yields a higher MUC F-Score than most of the rea-
sonably effective approaches.

We believe that an appropriate measure of re-
call for a cognate clustering system is the total
number of found sets. A set that exists in the
gold annotation is considered found if any of the
words that belong to the set are clustered together
by the system. We report both partially and com-
pletely found sets. Arguably, the number of par-
tially found sets may be more important, as it is
easier for a linguist to extend a found set to other
languages than to discover the set in the first place.
In fact, a discovery of a single pair of cross-lingual
cognates implies the existence of a correspond-
ing proto-word in their ancestor language, which
is likely to have reflexes in the other languages of
the family.

As a corresponding measure of precision, we
report cluster purity, which has previously been
used to evaluate cognate clusterings by Hall and
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Klein (2011) and Bouchard-Côté et al. (2013). In
order to calculate purity, each output set is first
matched to a gold set with which it has the most
words in common. Then purity is calculated as
the fraction of total words that are matched to
the correct gold set. More formally, let G =
{G1, G2, ..., Gn} be a gold clustering and C =
{C1, C2, ..., Cm} be a proposed clustering. Then

purity(C, G) =
1
N

m∑
i=1

maxj |Gj ∩ Ci|

where N is the total number of words. The trade-
off between the number of found sets and clus-
ter purity gives a good idea of the performance
of a cognate clustering. For example, both of
the MaxRecall and MaxPrecision strategies men-
tioned above would obtain 100% scores according
to one of the measures, but close to 0% according
to the other.

4.4 Cognate Clustering Results
In our main experiment, we apply our system to
the task of creating cognate sets from the Algo-
nquian dataset. The general classification model
is trained on the POLLEX dataset, as described
in Section 4.2, while the language-specific mod-
els are derived following the procedure described
in Section 3.2. The scores from both models are
then used to guide the clustering process. Only
one word from each language is allowed per clus-
ter.

Since most work done in the area of cognate
clustering starts from semantically aligned word
lists, it is difficult to make a direct comparison.
We report the results obtained with LEXSTAT (List
and Moran, 2013).4 The system has no capability
to consider the degree of semantic similarity be-
tween words, so we first group together the words
that have identical definitions and provide these as
its input. As a baseline, we adopt the heuristic
described in Section 3.2, which creates sets from
words that have identical definitions and start with
the same letter.

Table 3 shows the results. LEXSTAT performs
slightly better than the heuristic baseline, but both
are limited by their inability to relate words that
have non-identical definitions. In fact, only 21.4%
of all gold cognate sets in the Algonquian dataset
contain at least two words with the same defi-
nition, which establishes an upper bound on the

4http://lingpy.org

System Found Sets Purity
Heuristic Baseline 18.9 (9.9) 96.4

LEXSTAT 19.6 (10.5) 97.1
SemaPhoR 63.1 (48.2) 70.3

Table 3: Cognate clustering results on the Algo-
nquian dataset (in %). The absolute percentage of
fully found sets is given in parentheses.

number of found sets for systems that are designed
to operate on word lists, rather than dictionaries.
For example, most of the cognates in Figure 1 can-
not be captured by such systems.

Our system, SemaPhoR, finds approximately
three times as many cognate sets as LEXSTAT, and
over 75% of those sets are complete with respect
to the gold annotation. In practical terms, our sys-
tem is able to provide concrete evidence for the
existence of most of the proto-words that have re-
flexes in the recorded languages, and identifies the
majority of those reflexes in the process. The pu-
rity of the produced clusters indicates that there
are many more hits than misses in the system out-
put. In addition, the clusters can be sorted accord-
ing to their confidence scores, in order to facilitate
the analysis of the results by an expert linguist.

5 Discussion

In this section, we interpret the results of our
feature ablation experiments, and analyze several
types of errors made by our system.

5.1 Feature Ablation

In order to determine the relative effect of the fea-
tures described in Section 3.1, we test four vari-
ants of the general model, which employ increas-
ingly complex subsets of features. The simplest
variant uses only the phonetic features that are de-
fined on the word forms. The next variant adds
the features that consider surface definition resem-
blance. The third variant also includes WordNet-
based semantic features. The final variant is the
full system configuration that incorporates the fea-
tures defined on word vector representations, but
without language-specific models.

Table 4 shows the results. The phonetic fea-
tures alone are sufficient to detect just over half
of the cognate sets. Each successive variant sub-
stantially improves the recall at a cost of slightly
lower precision. The full feature set yields a 27%
relative increase in the number of found sets over
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Features Found Sets Purity
Phonetic only 52.0 (36.3) 70.2
+ Definitions 57.4 (41.7) 68.4
+ WordNet 61.9 (46.9) 68.1
+ Word Vectors 66.2 (51.3) 66.5

Table 4: Cognate clustering results on the Algo-
nquian dataset (in %) with subsets of features.

the phonetic-only variant, with only a 5% drop in
cluster purity.

In comparison with our full system, which in-
corporates the language-specific models, the fi-
nal variant finds a greater number of the cognate
sets, but with a trade-off in overall precision (c.f.
SemaPhoR in Table 3). This shows that our sys-
tem is able to exploit regular sound correspon-
dences to filter out a substantial number of false
cognates, such as lexical borrowings or chance re-
semblances. However, the overall contribution of
the specific models is relatively small. One possi-
ble explanation is that the Algonquian languages
are relatively closely related, which enables the
general model to discern most of the cognate re-
lationships on the basis of phonetic and semantic
similarity. For example, many of the regular corre-
spondences detected by the specific models, such
as s:s and hk:kk, involve identical phonemes. The
impact of the specific models could be greater for
a more distantly-related language family.

5.2 Error Analysis

A number of omission errors can be traced to
the imperfect heuristic that constrains the positive
training instances for the language-specific mod-
els to begin with the same letter. Indeed, 88.1% of
Algonquian cognate sets are composed of words
that share the initial phoneme. While this con-
straint yields high-precision training sets that sat-
isfy the transitivity condition, it also introduces a
bias against cognates that differ in the first letter.

The second type of errors made by our system
are caused by semantic drift that has altered the
meaning of the original proto-word. For exam-
ple, “sickness” is difficult for our general model
to associate with “bitterness, pain.” On the other
hand, there are many instances where our system
is successful in identifying non-obvious semantic
similarity, often thanks to the word vector features
of our model. Table 5 provides examples of cog-
nates found by our system that would have been

C ma:ya:čite:he:w he is angry
M miana:četæhæ:w he is nauseated
C pi:sisiw he is in bits
O pi:ssisi he is ground up
C ayiwiskawe:w he is taller than someone else
O aniwiškaw precede, surpass someone
C si:ka:wiw he is in mourning
M se:kawew she is widowed

Table 5: Examples of cognates found with the as-
sistance of word vector features.

very difficult to identify without word vector tech-
nology.

A substantial number of apparent errors made
by our system are due to the complex polysyn-
thetic morphology of Algonquian, in which a
single Algonquian word can express a meaning
of several English words. A number of dis-
tinct cognate sets are highly similar in their def-
initions and phonetic forms. For example, our
system erroneously places the Menominee word
a:kuaqtæ:hsen into a cluster with two similar Cree
and Ojibwa words, instead of associating it with
the Ojibwa word a:kawa:tte:ššin (Table 6). Al-
though it could be argued that such closely-related
forms are all cognate, we refrain from modifying
any gold annotations, even if this negatively im-
pacts the overall accuracy of our system.

C a:kawa:ste:simo:w he lies down in the shade
O a:kawa:tte:ššimo:n be in the shadow
M a:kuaqtæ:hsen he is in the shade
O a:kawa:tte:ššin make shadow

Table 6: A clustering error due to morphology.

Finally, some apparent errors made by our sys-
tem may not be errors at all, but rather reflect the
incompleteness of the gold annotation. For exam-
ple, consider the two false positive pairs in Table
7. Even though they are not listed in Hewson’s
(1993) etymological dictionary, the exact defini-
tion match, coupled with striking phonetic simi-
larity and the presence of regular sound correspon-
dences strongly suggest that they are actually cog-
nates.

M pekuač growing wild
O pekwači growing wild
C niso:te:w twin
O ni:šo:te:nq twin

Table 7: Examples of proposed cognate sets that
are not found in the gold data.
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6 Conclusion

We have presented a comprehensive system for
the novel task of identifying cognate sets directly
from dictionaries of related languages by leverag-
ing both word forms and word definitions. To the
best of our knowledge, it is the first system to use
word vector representations for cognate identifi-
cation. The main insight from our work is that
a cognate classification model can be trained on
one language family, and achieve impressive re-
sults when classifying a completely unrelated lan-
guage family. This allows cognate information
from a high-resource language family to guide
cognate identification between languages that lit-
tle is known about.

There are aspects of cognate identification that
can only be detected by human experts, such as
cognates that have undergone extensive phonetic
and semantic changes, or large-scale lexical bor-
rowing between languages. However, we believe
that our system represents a step towards auto-
mated cognate identification, and will prove a use-
ful tool for historical linguists.
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