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Abstract

We propose a new encoder-decoder ap-
proach to learn distributed sentence rep-
resentations that are applicable to multiple
purposes. The model is learned by using a
convolutional neural network as an encoder
to map an input sentence into a continuous
vector, and using a long short-term mem-
ory recurrent neural network as a decoder.
Several tasks are considered, including sen-
tence reconstruction and future sentence
prediction. Further, a hierarchical encoder-
decoder model is proposed to encode a sen-
tence to predict multiple future sentences.
By training our models on a large collection
of novels, we obtain a highly generic con-
volutional sentence encoder that performs
well in practice. Experimental results on
several benchmark datasets, and across a
broad range of applications, demonstrate
the superiority of the proposed model over
competing methods.

1 Introduction

Learning sentence representations is central to
many natural language modeling applications. The
aim of a model for this task is to learn fixed-
length feature vectors that encode the seman-
tic and syntactic properties of sentences. Deep
learning techniques have shown promising per-
formance on sentence modeling, via feedfor-
ward neural networks (Huang et al., 2013), re-
current neural networks (RNNs) (Hochreiter and
Schmidhuber, 1997), convolutional neural net-
works (CNNs) (Kalchbrenner et al., 2014; Kim,
2014; Shen et al., 2014), and recursive neural net-
works (Socher et al., 2013). Most of these models
are task-dependent: they are trained specifically for
a certain task. However, these methods may be-

come inefficient when we need to repeatedly learn
sentence representations for a large number of dif-
ferent tasks, because they may require retraining a
new model for each individual task. In this paper,
in contrast, we are primarily interested in learning
generic sentence representations that can be used
across domains.

Several approaches have been proposed for learn-
ing generic sentence embeddings. The paragraph-
vector model of Le and Mikolov (2014) incorpo-
rates a global context vector into the log-linear neu-
ral language model (Mikolov et al., 2013) to learn
the sentence representation; however, at predic-
tion time, one needs to perform gradient descent to
compute a new vector. The sequence autoencoder
of Dai and Le (2015) describes an encoder-decoder
model to reconstruct the input sentence, while the
skip-thought model of Kiros et al. (2015) extends
the encoder-decoder model to reconstruct the sur-
rounding sentences of an input sentence. Both the
encoder and decoder of the methods above are mod-
eled as RNNs.

CNNs have recently achieved excellent results
in various task-dependent natural language applica-
tions as the sentence encoder (Kalchbrenner et al.,
2014; Kim, 2014; Hu et al., 2014). This motivates
us to propose a CNN encoder for learning generic
sentence representations within the framework of
encoder-decoder models proposed by Sutskever
et al. (2014); Cho et al. (2014). Specifically, a
CNN encoder performs convolution and pooling
operations on an input sentence, then uses a fully-
connected layer to produce a fixed-length encoding
of the sentence. This encoding vector is then fed
into a long short-term memory (LSTM) recurrent
network to produce a target sentence. Depending
on the task, we propose three models: (i) CNN-
LSTM autoencoder: this model seeks to reconstruct
the original input sentence, by capturing the in-
tra-sentence information; (ii) CNN-LSTM future
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Figure 1: Illustration of the CNN-LSTM encoder-decoder models. The sentence encoder is a CNN, the
sentence decoder is an LSTM, and the paragraph generator is another LSTM. (Left) (a)+(c) represents the
autoencoder; (b)+(c) represents the future predictor; (a)+(b)+(c) represents the composite model. (Right)
hierarchical model. In this example, the input contiguous sentences are: this is great. you will love it! i
promise.

predictor: this model aims to predict a future sen-
tence, by leveraging inter-sentence information;
(iii) CNN-LSTM composite model: in this case,
there are two LSTMs, decoding the representation
to the input sentence itself and a future sentence.
This composite model aims to learn a sentence en-
coder that captures both intra- and inter-sentence
information.

The proposed CNN-LSTM future predictor
model only considers the immediately subsequent
sentence as context. In order to capture longer-
term dependencies between sentences, we further
introduce a hierarchical encoder-decoder model.
This model abstracts the RNN language model
of Mikolov et al. (2010) to the sentence level. That
is, instead of using the current word in a sentence
to predict future words (sentence continuation), we
encode a sentence to predict multiple future sen-
tences (paragraph continuation). This model is
termed hierarchical CNN-LSTM model.

As in Kiros et al. (2015), we first train our
proposed models on a large collection of novels.
We then evaluate the CNN sentence encoder as
a generic feature extractor for 8 tasks: semantic
relatedness, paraphrase detection, image-sentence
ranking and 5 standard classification benchmarks.
In these experiments, we train a linear classifier
on top of the extracted sentence features, without
additional fine-tuning of the CNN. We show that
our trained sentence encoder yields generic repre-

sentations that perform as well as, or better, than
those of Kiros et al. (2015); Hill et al. (2016), in all
the tasks considered.

Summarizing, the main contribution of this pa-
per is a new class of CNN-LSTM encoder-decoder
models that is able to leverage the vast quan-
tity of unlabeled text for learning generic sen-
tence representations. Inspired by the skip-thought
model (Kiros et al., 2015), we have further explored
different variants: (i) CNN is used as the sentence
encoder rather than RNN; (ii) larger context win-
dows are considered: we propose the hierarchical
CNN-LSTM model to encode a sentence for pre-
dicting multiple future sentences.

2 Model description

2.1 CNN-LSTM model

Consider the sentence pair (sx, sy). The encoder,
a CNN, encodes the first sentence sx into a fea-
ture vector z, which is then fed into an LSTM
decoder that predicts the second sentence sy. Let
wt

x ∈ {1, . . . , V } represent the t-th word in sen-
tences sx, where wt

x indexes one element in a V -
dimensional set (vocabulary); wt

y is defined simi-
larly w.r.t. sy. Each word wt

x is embedded into
a k-dimensional vector xt = We[wt

x], where
We ∈ Rk×V is a word embedding matrix (learned),
and notation We[v] denotes the v-th column of ma-
trix We. Similarly, we let yt = We[wt

y].
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CNN encoder The CNN architecture in Kim
(2014); Collobert et al. (2011) is used for sentence
encoding, which consists of a convolution layer
and a max-pooling operation over the entire sen-
tence for each feature map. A sentence of length T
(padded where necessary) is represented as a matrix
X ∈ Rk×T , by concatenating its word embeddings
as columns, i.e., the t-th column of X is xt.

A convolution operation involves a filter Wc ∈
Rk×h, applied to a window of h words to produce
a new feature. According to Collobert et al. (2011),
we can induce one feature map c = f(X ∗Wc +
b) ∈ RT−h+1, where f(·) is a nonlinear activation
function such as the hyperbolic tangent used in our
experiments, b ∈ RT−h+1 is a bias vector, and ∗
denotes the convolutional operator. Convolving
the same filter with the h-gram at every position
in the sentence allows the features to be extracted
independently of their position in the sentence. We
then apply a max-over-time pooling operation (Col-
lobert et al., 2011) to the feature map and take its
maximum value, i.e., ĉ = max{c}, as the feature
corresponding to this particular filter. This pooling
scheme tries to capture the most important feature,
i.e., the one with the highest value, for each fea-
ture map, effectively filtering out less informative
compositions of words. Further, pooling also guar-
antees that the extracted features are independent
of the length of the input sentence.

The above process describes how one feature
is extracted from one filter. In practice, the
model uses multiple filters with varying window
sizes (Kim, 2014). Each filter can be considered
as a linguistic feature detector that learns to rec-
ognize a specific class of n-grams (or h-grams, in
the above notation). However, since the h-grams
are computed in the embedding space, the model
naturally handles similar h-grams composed of syn-
onyms. Assume we have m window sizes, and for
each window size, we use d filters; then we obtain
a md-dimensional vector to represent a sentence.

Compared with the LSTM encoders used
in Kiros et al. (2015); Dai and Le (2015); Hill et al.
(2016), a CNN encoder may have the following ad-
vantages. First, the sparse connectivity of a CNN,
which indicates fewer parameters are required, typ-
ically improves its statistical efficiency as well as
reduces memory requirements (Goodfellow et al.,
2016). For example, excluding the number of pa-
rameters used in the word embeddings, our trained
CNN sentence encoder has 3 million parameters,

while the skip-thought vector of Kiros et al. (2015)
contains 40 million parameters. Second, a CNN
is easy to implement in parallel over the whole
sentence, while an LSTM needs sequential compu-
tation.

LSTM decoder The CNN encoder maps sen-
tence sx into a vector z. The probability of a
length-T sentence sy given the encoded feature
vector z is defined as

p(sy|z) =
T∏

t=1

p(wt
y|w0

y, . . . , w
t−1
y , z) (1)

where w0
y is defined as a special start-of-the-

sentence token. All the words in the sentence are
sequentially generated using the RNN, until the
end-of-the-sentence symbol is generated. Specif-
ically, each conditional p(wt

y|w<t
y , z), where <

t = {0, . . . , t− 1}, is specified as softmax(Vht),
where ht, the hidden units, are recursively updated
through ht = H(yt−1,ht−1, z), and h0 is defined
as a zero vector (h0 is not updated during training).
V is a weight matrix used for computing a distribu-
tion over words. Bias terms are omitted for simplic-
ity throughout the paper. The transition function
H(·) is implemented with an LSTM (Hochreiter
and Schmidhuber, 1997).

Given the sentence pair (sx, sy), the objective
function is the sum of the log-probabilities of the
target sentence conditioned on the encoder repre-
sentation in (1):

∑T
t=1 log p(wt

y|w<t
y , z). The total

objective is the above objective summed over all
the sentence pairs.

Applications Inspired by Srivastava et al. (2015),
we propose three models: (i) an autoencoder, (ii)
a future predictor, and (iii) the composite model.
These models share the same CNN-LSTM model
architecture, but are different in terms of the
choices of the target sentence. An illustration of
the proposed encoder-decoder models is shown in
Figure 1(left).

The autoencoder (i) aims to reconstruct the same
sentence as the input. The intuition behind this is
that an autoencoder learns to represent the data us-
ing features that explain its own important factors
of variation, and hence model the internal struc-
ture of sentences, effectively capturing the intra-
sentence information. Another natural task is en-
coding an input sentence to predict the subsequent
sentence. The future predictor (ii) achieves this, ef-
fectively capturing the inter-sentence information,
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which has been shown to be useful to learn the se-
mantics of a sentence (Kiros et al., 2015). These
two tasks can be combined to create a composite
model (iii), where the CNN encoder is asked to
learn a feature vector that is useful to simultane-
ously reconstruct the input sentence and predict
a future sentence. This composite model encour-
ages the sentence encoder to incorporate contextual
information both within and beyond the sentence.

2.2 Hierarchical CNN-LSTM model
The future predictor described in Section 2.1 only
considers the immediately subsequent sentence as
context. By utilizing a larger surrounding context,
it is likely that we can learn even higher-quality
sentence representations. Inspired by the standard
RNN-based language model (Mikolov et al., 2010)
that uses the current word to predict future words,
we propose a hierarchical encoder-decoder model
that encodes the current sentence to predict mul-
tiple future sentences. An illustration of the hier-
archical model is shown in Figure 1(right), with
details provided in Figure 2.

Our proposed hierarchical model characterizes
the hierarchy word-sentence-paragraph. A para-
graph is modeled as a sequence of sentences, and
each sentence is modeled as a sequence of words.
Specifically, assume we are given a paragraph
D = (s1, . . . , sL), that consists of L sentences.
The probability for paragraph D is then defined as

p(D) =
L∏

`=1

p(s`|s<`) (2)

where s0 is defined as a special start-of-the-
paragraph token. As shown in Figure 2(left), each
p(s`|s<`) in (2) is calculated as

p(s`|s<`) = p(s`|h(p)
` ) (3)

h
(p)
` = LSTMp(h

(p)
`−1, z`−1) (4)

z`−1 = CNN(s`−1) (5)

where h
(p)
` denotes the `-th hidden state of the

LSTM paragraph generator, and h
(p)
0 is fixed as

a zero vector. The CNN in (5) is as described
in Section 2.1, encoding the sentence s`−1 into a
vector representation z`−1.

Equation (4) serves as the paragraph-level lan-
guage model (Mikolov et al., 2010), which encodes
all the previous sentence representations z<` into a
vector representation h

(p)
` . This hidden state h

(p)
`

LSTMS LSTMS

CNN CNN w2v w2v

(Left) LSTMP                                                                        (Right) LSTMS

Figure 2: Detailed illustration of the hierarchical
CNN-LSTM model. (Left) LSTM paragraph gen-
erator. (Right) LSTM sentence decoder.

is used to guide the generation of the `-th sentence
through the decoder (3), which is defined as

p(s`|h(p)
` ) =

T∏̀
t=1

p(w`,t|w`,<t,h
(p)
` ) (6)

where w`,0 is defined as a special start-of-the-
sentence token. T` is the length of sentence `, and
w`,t denotes the t-th word in sentence `. As shown
in Figure 2(right), each p(w`,t|w`,<t,h

(p)
` ) in (6) is

calculated as

p(w`,t|w`,<t,h
(p)
` ) = softmax(Vh

(s)
`,t ) (7)

h
(s)
`,t = LSTMs(h

(s)
`,t−1,x`,t−1,h

(p)
` ) (8)

where h
(s)
`,t denotes the t-th hidden state of the

LSTM decoder for sentence `, x`,t−1 denotes the
word embedding for w`,t−1, and h

(s)
`,0 is fixed as

a zero vector for all ` = 1, . . . , L. V is a weight
matrix used for computing distribution over words.

3 Related work

Various methods have been proposed for sentence
modeling, which generally fall into two categories.
The first consists of models trained specifically for
a certain task, typically combined with downstream
applications. Several models have been proposed
along this line, ranging from simple additional com-
position of the word vectors (Mitchell and Lapata,
2010; Yu and Dredze, 2015; Iyyer et al., 2015) to
those based on complex nonlinear functions like re-
cursive neural networks (Socher et al., 2011, 2013),
convolutional neural networks (Kalchbrenner et al.,
2014; Hu et al., 2014; Johnson and Zhang, 2015;
Zhang et al., 2015; Gan et al., 2017), and recurrent
neural networks (Tai et al., 2015; Lin et al., 2017).
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The other category consists of methods aiming
to learn generic sentence representations that can
be used across domains. This includes the para-
graph vector (Le and Mikolov, 2014), skip-thought
vector (Kiros et al., 2015), and the sequential de-
noising autoencoders (Hill et al., 2016). Hill et al.
(2016) also proposed a sentence-level log-linear
bag-of-words (BoW) model, where a BoW repre-
sentation of an input sentence is used to predict ad-
jacent sentences that are also represented as BoW.
Most recently, Wieting et al. (2016); Arora et al.
(2017); Pagliardini et al. (2017) proposed methods
in which sentences are represented as a weighted
average of fixed (pre-trained) word vectors. Our
model falls into this category, and is most related
to Kiros et al. (2015).

However, there are two key aspects that make our
model different from Kiros et al. (2015). First, we
use CNN as the sentence encoder. The combination
of CNN and LSTM has been considered in image
captioning (Karpathy and Fei-Fei, 2015), and in
some recent work on machine translation (Kalch-
brenner and Blunsom, 2013; Meng et al., 2015;
Gehring et al., 2016). Our utilization of a CNN is
different, and more importantly, the ultimate goal
of our model is different. Our work aims to use a
CNN to learn generic sentence embeddings.

Second, we use the hierarchical CNN-LSTM
model to predict multiple future sentences, rather
than the surrounding two sentences as in Kiros
et al. (2015). Utilizing a larger context window
aids our model to learn better sentence representa-
tions, capturing longer-term dependencies between
sentences. Similar work to this hierarchical lan-
guage modeling can be found in Li et al. (2015);
Sordoni et al. (2015); Lin et al. (2015); Wang and
Cho (2016). Specifically, Li et al. (2015); Sordoni
et al. (2015) uses an LSTM for the sentence en-
coder, while Lin et al. (2015) uses a bag-of-words
to represent sentences.

4 Experiments

We first provide qualitative analysis of our CNN
encoder, and then present experimental results on 8
tasks: 5 classification benchmarks, paraphrase de-
tection, semantic relatedness and image-sentence
ranking. As in Kiros et al. (2015), we evaluate the
capabilities of our encoder as a generic feature ex-
tractor. To further demonstrate the advantage of our
learned generic sentence representations, we also
fine-tune our trained sentence encoder on the 5 clas-

sification benchmarks. All the CNN-LSTM mod-
els are trained using the BookCorpus dataset (Zhu
et al., 2015), which consists of 70 million sentences
from over 7000 books.

We train four models in total: (i) an autoen-
coder, (ii) a future predictor, (iii) the composite
model, and (iv) the hierarchical model. For the
CNN encoder, we employ filter windows (h) of
sizes {3,4,5} with 800 feature maps each, hence
each sentence is represented as a 2400-dimensional
vector. For both, the LSTM sentence decoder and
paragraph generator, we use one hidden layer of
600 units.

The CNN-LSTM models are trained with a vo-
cabulary size of 22,154 words. In order to learn a
generic sentence encoder that can encode a large
number of possible words, we use two methods
of considering words not in the training set. Sup-
pose we have a large pretrained word embedding
matrix, such as the publicly available word2vec
vectors (Mikolov et al., 2013), in which all test
words are assumed to reside.

The first method learns a linear mapping be-
tween the word2vec embedding space Vw2v and
the learned word embedding space Vcnn by solv-
ing a linear regression problem (Kiros et al., 2015).
Thus, any word from Vw2v can be mapped into
Vcnn for encoding sentences. The second method
fixes the word vectors in Vcnn as the corresponding
word vectors in Vw2v , and we do not update the
word embedding parameters during training. Thus,
any word vector from Vw2v can be naturally used
to encode sentences. By doing this, our trained
sentence encoder can successfully encode 931,331
words.

For training, all weights in the CNN and non-
recurrent weights in the LSTM are initialized from
a uniform distribution in [-0.01,0.01]. Orthogonal
initialization is employed on the recurrent matrices
in the LSTM. All bias terms are initialized to zero.
The initial forget gate bias for LSTM is set to 3.
Gradients are clipped if the norm of the parame-
ter vector exceeds 5 (Sutskever et al., 2014). The
Adam algorithm (Kingma and Ba, 2015) with learn-
ing rate 2× 10−4 is utilized for optimization. For
all the CNN-LSTM models, we use mini-batches
of size 64. For the hierarchical CNN-LSTM model,
we use mini-batches of size 8, and each paragraph
is composed of 8 sentences. We do not perform
any regularization other than dropout (Srivastava
et al., 2014). All experiments are implemented
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A you needed me? this is great. its lovely to see you. he had thought he was going crazy.
B you got me? this is awesome. its great to meet you. i felt like i was going crazy.
C i got you. you are awesome. its great to meet him. i felt like to say the right thing.

D i needed you. you are great. its lovely to see him. he had thought to say the right thing.

Table 1: Vector “compositionality” using element-wise addition and subtraction. Let z(s) denote the
vector representation z of a given sentence s. We first calculate z?=z(A)-z(B)+z(C). The resulting vector
is then sent to the LSTM to generate sentence D.

Query and nearest sentence

johnny nodded his curly head , and then his breath eased into an even rhythm .
aiden looked at my face for a second , and then his eyes trailed to my extended hand .

i yelled in frustration , throwing my hands in the air .
i stand up , holding my hands in the air .

i loved sydney , but i was feeling all sorts of homesickness .
i loved timmy , but i thought i was a self-sufficient person .

“ i brought sad news to mistress betty , ” he said quickly , taking back his hand .
“ i really appreciate you taking care of lilly for me , ” he said sincerely , handing me the money .

“ i am going to tell you a secret , ” she said quietly , and he leaned closer .
“ you are very beautiful , ” he said , and he leaned in .

she kept glancing out the window at every sound , hoping it was jackson coming back .
i kept checking the time every few minutes , hoping it would be five oclock .

leaning forward , he rested his elbows on his knees and let his hands dangle between his legs .
stepping forward , i slid my arms around his neck and then pressed my body flush against his .

i take tris ’s hand and lead her to the other side of the car , so we can watch the city disappear behind us .
i take emma ’s hand and lead her to the first taxi , everyone else taking the two remaining cars .

Table 2: Query-retrieval examples. In each case (block of rows), the first sentence is a query, while the
second sentence is the retrieved result from a random subset of 1 million sentences from the BookCorpus
dataset.

in Theano (Bastien et al., 2012), using a NVIDIA
GeForce GTX TITAN X GPU with 12GB memory.

4.1 Qualitative analysis
We first demonstrate that the sentence representa-
tion learned by our model exhibits a structure that
makes it possible to perform analogical reasoning
using simple vector arithmetics, as illustrated in Ta-
ble 1. It demonstrates that the arithmetic operations
on the sentence representations correspond to word-
level addition and subtractions. For instance, in the
3rd example, our encoder captures that the differ-
ence between sentence B and C is “you" and “him",
so that the former word in sentence A is replaced
by the latter (i.e., “you”-“you”+“him”=“him”),
resulting in sentence D.

Table 2 shows nearest neighbors of sentences
from a CNN-LSTM autoencoder trained on the
BookCorpus dataset. Nearest neighbors are scored
by cosine similarity from a random sample of 1
million sentences from the BookCorpus dataset.
As can be seen, our encoder learns to accurately

capture semantic and syntax of the sentences.

4.2 Quantitative evaluations
Classification benchmarks We first study the
task of sentence classification on 5 datasets:
MR (Pang and Lee, 2005), CR (Hu and Liu, 2004),
SUBJ (Pang and Lee, 2004), MPQA (Wiebe et al.,
2005) and TREC (Li and Roth, 2002). On all the
datasets, we separately train a logistic regression
model on top of the extracted sentence features. We
restrict our comparison to methods that also aims to
learn generic sentence embeddings for fair compar-
ison. We also provide the state-of-the-art results us-
ing task-dependent learning methods for reference.
Results are summarized in Table 3. Our CNN en-
coder provides better results than the combine-skip
model of Kiros et al. (2015) on all the 5 datasets.

We highlight some observations. First, the au-
toencoder performs better than the future predic-
tor, indicating that the intra-sentence information
may be more important for classification than the
inter-sentence information. Second, the hierarchi-
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Method MR CR SUBJ MPQA TREC MSRP(Acc/F1)

ParagraphVec DM (Hill et al., 2016) 61.5 68.6 76.4 78.1 55.8 73.6 / 81.9
SDAE (Hill et al., 2016) 67.6 74.0 89.3 81.3 77.6 76.4 / 83.4
SDAE+emb. (Hill et al., 2016) 74.6 78.0 90.8 86.9 78.4 73.7 / 80.7
FastSent (Hill et al., 2016) 70.8 78.4 88.7 80.6 76.8 72.2 / 80.3

uni-skip (Kiros et al., 2015) 75.5 79.3 92.1 86.9 91.4 73.0 / 81.9
bi-skip (Kiros et al., 2015) 73.9 77.9 92.5 83.3 89.4 71.2 / 81.2
combine-skip (Kiros et al., 2015) 76.5 80.1 93.6 87.1 92.2 73.0 / 82.0

Our Results†

autoencoder 75.53 78.97 91.97 87.96 89.8 73.61 / 82.14
future predictor 72.56 78.44 90.72 87.48 86.6 71.87 / 81.68
hierarchical model 75.20 77.99 91.66 88.21 90.0 73.96 / 82.54
composite model 76.34 79.93 92.45 88.77 91.4 74.65 / 82.21
combine‡ 77.21 80.85 93.11 89.09 91.8 75.52 / 82.62

hierarchical model+emb. 75.30 79.37 91.94 88.48 90.4 74.25 / 82.70
composite model+emb. 77.16 80.64 92.14 88.67 91.2 74.88 / 82.28
combine+emb.‡ 77.77 82.05 93.63 89.36 92.6 76.45 / 83.76

Task-dependent methods

CNN (Kim, 2014) 81.5 85.0 93.4 89.6 93.6 −
AdaSent (Zhao et al., 2015) 83.1 86.3 95.5 93.3 92.4 −
Bi-CNN-MI (Yin and Schütze, 2015) − − − − − 78.1/84.4
MPSSM-CNN (He et al., 2015) − − − − − 78.6/84.7

Table 3: Classification accuracies on several standard benchmarks. The last column shows results on the
task of paraphrase detection, where the evaluation metrics are classification accuracy and F1 score. †The
first and second block in our results were obtained using the first and second method of considering words
not in the training set, respectively. ‡“combine” means concatenating the feature vectors learned from
both the hierarchical model and the composite model.

cal model performs better than the future predictor,
demonstrating the importance of capturing long-
term dependencies across multiple sentences. Our
combined model, which concatenates the feature
vectors learned from both the hierarchical model
and the composite model, performs the best. This
may be due to that: (i) both intra- and long-term
inter-sentence information are leveraged; (ii) it is
easier to linearly separate the feature vectors in
higher dimensional spaces. Further, using (fixed)
pre-trained word embeddings consistently provides
better performance than using the learned word
embeddings. This may be due to that word2vec
provides more generic word representations, since
it is trained on the large Google News dataset (con-
taining 100 billion words) (Mikolov et al., 2013).

To further demonstrate the advantage of the
learned generic representations, we train a CNN
classifier (i.e., a CNN encoder with a logistic regres-
sion model on top) with two different initialization
strategies: random initialization and initialization
with trained parameters from the CNN-LSTM com-
posite model. Results are shown in Figure 3(left).
The pretraining provides substantial improvements

MR CR SUBJ MPQA TREC

Dataset

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

Pretrain

Random

10 20 30 40 50 60 70 80 90

Proportion (%) of labelled sentences

78

80

82

84

86

88

90

92

94

A
cc

u
ra

cy
 (

%
)

Pretrain

Random

Figure 3: (Left) Effect of pretraining on the 5 clas-
sification benchmarks. The error bars are over 10
different runs. (Right) Effect of pretraining on ac-
curacy for the TREC dataset, in terms of change
in the size of the labeled training set. The error
bars are over 10 different samples of training sets.
Pretraining means initializing the CNN parameters
from the trained CNN-LSTM composite model.

(3.52% on average) over random initialization of
CNN parameters. Figure 3(right) shows the effect
of pretraining as the number of labeled sentences
is varied. For the TREC dataset, the performance
improves from 79.7% to 84.1% when only 10%
sentences are labeled. As the size of the set of la-
beled sentences grows, the improvement becomes
smaller, as expected. For future work, our CNN-
LSTM model can be also used for semi-supervised
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Image Annotation Image Search
Method R@1 Med r R@1 Med r

uni-skip† 30.6 3 22.7 4
bi-skip† 32.7 3 24.2 4
combine-skip† 33.8 3 25.9 4

Our Results

hierarchical model+emb. 32.7 3 25.3 4
composite model+emb. 33.8 3 25.7 4
combine+emb. 34.4 3 26.6 4

Task-dependent methods

DVSA∗ 38.4 1 27.4 3
m-RNN‡ 41.0 2 29.0 3

Table 4: Results for image-sentence ranking ex-
periments on the COCO dataset. R@K denotes
Recall@K (higher is better) and Med r is the me-
dian rank (lower is better). (†) taken from Kiros
et al. (2015). (∗) taken from Karpathy and Fei-Fei
(2015). (‡) taken from Mao et al. (2015).

learning, with the autoencoder on all the data (la-
beled and unlabled), and the classifier only on the
labeled data.

Paraphrase detection Now we consider para-
phrase detection on the MSRP dataset (Dolan et al.,
2004). On this task, one needs to predict whether
or not two sentences are paraphrases. The training
set consists of 4076 sentence pairs, and the test set
has 1725 pairs. As in Tai et al. (2015), given two
sentence representations zx and zy, we first com-
pute their element-wise product zx � zy and their
absolute difference |zx − zy|, and then concate-
nate them together. A logistic regression model
is trained on top of the concatenated features to
predict whether two sentences are paraphrases. We
present our results on the last column of Table 3.
Our best result is better than the other results that
use task-independent methods.

Image-sentence ranking We consider the task
of image-sentence ranking, which aims to retrieve
items in one modality given a query from the other.
We use the COCO dataset (Lin et al., 2014), which
contains 123,287 images each with 5 captions. For
development and testing we use the same splits
as Karpathy and Fei-Fei (2015). The development
and test sets each contain 5000 images. We further
split them into 5 random sets of 1000 images, and
report the average performance over the 5 splits.
Performance is evaluated using Recall@K, which
measures the average times a correct item is found
within the top-K retrieved results. We also report
the median rank of the closest ground truth result

Method r ρ MSE

uni-skip† 0.8477 0.7780 0.2872
bi-skip† 0.8405 0.7696 0.2995
combine-skip† 0.8584 0.7916 0.2687

Our Results

autoencoder 0.8284 0.7577 0.3258
future predictor 0.8132 0.7342 0.3450
hierarchical model 0.8333 0.7646 0.3135
composite model 0.8434 0.7767 0.2972
combine 0.8533 0.7891 0.2791

hierarchical model+emb. 0.8352 0.7588 0.3152
composite model+emb. 0.8500 0.7867 0.2872
combine+emb. 0.8618 0.7983 0.2668

Task-dependent methods

Bi-LSTM‡ 0.8567 0.7966 0.2736
Tree-LSTM‡ 0.8676 0.8083 0.2532

Table 5: Results on the SICK semantic relatedness
task. The evaluation metrics are Pearson’s r, Spear-
man’s ρ and mean squared error (MSE). (†) taken
from Kiros et al. (2015). (‡) taken from Tai et al.
(2015).

in the ranked list.
We represent images using 4096-dimensional

feature vectors from VggNet (Simonyan and Zis-
serman, 2015). Each caption is encoded using
our trained CNN encoder. The training objec-
tive is the same pairwise ranking loss as used
in Kiros et al. (2015), which takes the form of
max(0, α− f(xn, yn) + f(xn, ym)), where f(·, ·)
is the image-sentence score. (xn, yn) denotes the
related image-sentence pair, and (xn, ym) is the
randomly sampled unrelated image-sentence pair
with n 6= m. For image retrieval from sentences, x
denotes the caption, y denotes the image, and vice
versa. The objective is to force the matching score
of the related pair (xn, yn) to be greater than the
unrelated pair (xn, ym) by a margin α, which is set
to 0.1 in our experiments.

Table 4 shows our results. Consistent with pre-
vious experiments, we empirically found that the
encoder trained using the fixed word embedding
performed better on this task, hence only results
using this method are reported. As can be seen,
we obtain the same median rank as in Kiros et al.
(2015), indicating that our encoder is as competi-
tive as the skip-thought vectors (Kiros et al., 2015).
The performance gain between our encoder and
the combine-skip model of Kiros et al. (2015) on
the R@1 score is significant, which shows that the
CNN encoder has more discriminative power on re-
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trieving the most correct item than the skip-thought
vector.

Semantic relatedness For our final experiment,
we consider the task of semantic relatedness on the
SICK dataset (Marelli et al., 2014), consisting of
9927 sentence pairs. Given two sentences, our goal
is to produce a real-valued score between [1, 5]
to indicate how semantically related two sentences
are, based on human generated scores. We compute
a feature vector representing the pair of sentences
in the same way as on the MSRP dataset. We follow
the method in Tai et al. (2015), and use the cross-
entropy loss for training. Results are summarized
in Table 5. Our result is better than the combine-
skip model of Kiros et al. (2015). This suggests
that CNN also provides competitive performance
at matching human relatedness judgements.

5 Conclusion

We presented a new class of CNN-LSTM encoder-
decoder models to learn sentence representations
from unlabeled text. Our trained convolutional
encoder is highly generic, and can be an alternative
to the skip-thought vectors of Kiros et al. (2015).
Compelling experimental results on several tasks
demonstrated the advantages of our approach. In
future work, we aim to use more advanced CNN
architectures (Conneau et al., 2016) for learning
generic sentence embeddings.
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