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Abstract

Several approaches have been proposed to
model either the explicit sequential struc-
ture of an argumentative text or its implicit
hierarchical structure. So far, the adequacy
of these models of overall argumentation
remains unclear. This paper asks what type
of structure is actually important to tackle
downstream tasks in computational argu-
mentation. We analyze patterns in the over-
all argumentation of texts from three cor-
pora. Then, we adapt the idea of positional
tree kernels in order to capture sequential
and hierarchical argumentative structure to-
gether for the first time. In systematic ex-
periments for three text classification tasks,
we find strong evidence for the impact of
both types of structure. Our results suggest
that either of them is necessary while their
combination may be beneficial.

1 Introduction
Argumentation theory has established a number
of major argument models focusing on different
aspects, such as the roles of an argument’s units
(Toulmin, 1958), the inference scheme of an argu-
ment (Walton et al., 2008), or the support and attack
relations between arguments (Freeman, 2011). The
common ground of these models is that they con-
ceptualize an argument as a conclusion (in terms of
a claim) inferred from a set of pro and con premises
(reasons), which in turn may be the conclusions of
other arguments. For the overall argumentation of
a monological argumentative text such as the one in
Figure 1(a), this results in an implicit hierarchical
structure with the text’s main claim at the lowest
depth. In addition, the text has an explicit linguistic
structure that can be seen as a regulated sequence of
speech acts (van Eemeren and Grootendorst, 2004).
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[1] The death penalty is a legal means that as such is not practicable 
in Germany. [2] For one thing, inviolable human dignity is anchored 
in our constitution, [3] and furthermore no one may have the right to 
adjudicate upon the death of another human being. [4] Even if many 
people think that a murderer has already decided on the life or death 
of another person, [5] this is precisely the crime that we should not 
repay with the same.

(b)

(a) monological argumentative text

Figure 1: (a) Example text with five argument units,
taken from the Arg-Microtexts corpus introduced in
Section 3. (b) Graph visualization of the sequential
and hierarchical overall argumentation of the text.

Figure 1(b) illustrates the interplay of the two types
of overall structure in form of a tree-like graph.

Natural language processing research has largely
adopted the outlined hierarchical models for min-
ing arguments from text (Stab and Gurevych, 2014;
Habernal and Gurevych, 2015; Peldszus and Stede,
2016). However, the adequacy of the resulting over-
all structure for downstream analysis tasks of com-
putational argumentation has rarely been evaluated
(see Section 2 for details). In fact, a computational
approach that can capture patterns in hierarchical
overall argumentation is missing so far. Even more,
our previous work indicates that a sequential model
of overall structure is preferable for analysis tasks
such as stance classification or quality assessment
(Wachsmuth and Stein, 2017).

In this paper, we ask and investigate what model
of (monological) overall argumentation is impor-
tant to tackle argumentation-related analysis tasks.
To this end, we consider three corpora with fully
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annotated argument structure (Section 3). Each
corpus allows studying one text classification task,
two of which we hypothesize to benefit from mod-
eling argumentation (myside bias, stance), the third
not (genre). An empirical analysis of the corpora
reveals class-specific patterns of how people argue
(Section 4). In order to combine the explicit se-
quential and the implicit hierarchical structure of
an argumentative text for the first time, we then
adapt the approach of route kernels (Aiolli et al.,
2009), modeling overall argumentation in form of
a positional tree (Section 5).

On this basis, we design an experiment to eval-
uate the impact of the different types of argumen-
tative structure (Section 6). In particular, we de-
compose our approach into four complementary
modeling steps, both for a general model of overall
argumentation and for the specific models of the
given corpora. Using the structure annotated in the
corpora, we systematically compare the effective-
ness of all eight resulting models and two standard
baselines in the three classification tasks.

Our results provide strong evidence that both
sequential and hierarchical structure are important.
As indicated by related work, sequential structure
nearly competes with hierarchical structure, at least
based on the specific argument models. Even more
impressively, modeling hierarchical structure prac-
tically solves the task of identifying argumentation
with myside bias, achieving an outstanding accu-
racy of 97.1%. For stance classification, the combi-
nation captured by positional trees works best. In
contrast, all types of structure fail in distinguishing
genres, suggesting that they indeed capture proper-
ties of argumentation. We conclude that the impact
of modeling overall structure on downstream analy-
sis tasks is high, while the required type may vary.

Contributions To summarize, the main contribu-
tions of this paper are the following:

1. Empirical insights into how people structure
argumentative texts in overall terms.

2. The first approach to model and analyze the
sequential and hierarchical overall structure
of argumentative texts in combination.

3. Evidence that modeling overall structure im-
pacts argumentation-related analysis tasks.

2 Related Work
The study of overall argumentation traces back to
Aristotle (2007) who outlined the impact of the

sequential arrangement of the different parts of a
speech. Conceptually, theory agrees that a mono-
logical argumentative text has an implicit tree-like
hierarchical structure: Toulmin (1958) defines an
argument as a claim supported by data that is rea-
soned by a warrant, which in turn may have a back-
ing. In addition, a rebuttal may be given showing
exceptions to the claim. The role of support and
attack relations is investigated by Freeman (2011)
who models dialectical arguments that discuss both
a proponent’s and an opponent’s view on the main
claim argued for. Walton et al. (2008) put the focus
on the inference scheme that describes how an argu-
ment’s conclusion follows from its premises, which
may themselves be conclusions of arguments.

In natural language processing, argumentation
research deals with the mining of argument units
and their relations from text (Mochales and Moens,
2011). Several corpora with annotated argument
structure have been published in the last years.
Many of the corpora adapt the hierarchical mod-
els from theory (Reed and Rowe, 2004; Habernal
and Gurevych, 2015; Peldszus and Stede, 2016) or
propose comparable models (Stab and Gurevych,
2014). Since we target monological overall argu-
mentation, we use those that capture the complete
structure of texts, as detailed in Section 3. Corpora
focusing on dialogical argumentation (Walker et al.,
2012), topic-related arguments (Rinott et al., 2015),
or sequential structure (Wachsmuth et al., 2014b;
Al Khatib et al., 2016) are out of scope.

We do not mine the structure of argumentative
texts, but we exploit the previously mined structure
to tackle downstream tasks of computational argu-
mentation, namely, to classify the myside bias and
stance of texts. For myside bias, Stab and Gurevych
(2016) use features derived from discourse struc-
ture, whereas Faulkner (2014) and Sobhani et al.
(2015) model arguments to classify stance. Ong
et al. (2014) and we ourselves (Wachsmuth et al.,
2016) do similar to assess the quality of persua-
sive essays, and Beigman Klebanov et al. (2016)
examine how an essay’s content and structure influ-
ence quality. Other works predict the outcome of
legal cases based on the applied types of reasoning
(Brüninghaus and Ashley, 2003) or analyze infer-
ence schemes for given arguments (Feng and Hirst,
2011). In contrast to the local structure of single
arguments employed by all these approaches, we
study the impact of the global overall structure of
complete monological argumentative texts.
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In (Wachsmuth et al., 2017), we point out that
the argumentation quality of a text is affected by
interactions of its content at different levels of gran-
ularity, from single argument units over arguments
to overall argumentation. Stede (2016) explores
how different depths of overall argumentation can
be identified, observing differences across genres.
Unlike in our experiments, however, the genres
considered there reflect diverging types of argu-
mentation. Related to argumentation, Feng et al.
(2014) build upon rhetorical structure theory (Mann
and Thompson, 1988) to assess the coherence of
texts, while Persing et al. (2010) score the organi-
zation of persuasive essays based on sequences of
sentence and paragraph functions.

We introduced the first explicit computational
model of overall argumentation in (Wachsmuth
et al., 2014a). There, we compared the flow of local
sentiment in a review to a set of learned flow pat-
terns in order to classify global sentiment. Recently,
we generalized the model in order to make flows
applicable to any type of information relevant for
argumentation-related analysis tasks (Wachsmuth
and Stein, 2017). However, flows capture only se-
quential structure, whereas here we also model the
hierarchical structure of overall argumentation. To
this end, we make use of kernel methods.

Kernel methods are a popular approach for learn-
ing on structured data, with several applications
in natural language processing (Moschitti, 2006b)
including argument mining (Rooney et al., 2012).
They employ a similarity function defined between
any two input objects that are represented in a task-
specific implicit feature space. The evaluation of
such a kernel function relies on the common fea-
tures of the input objects (Cristianini and Shawe-
Taylor, 2000). The kernel function encodes knowl-
edge of the task in the form of these features.

Several kernel functions have been defined for
structured data. To assess the impact of sequential
argumentation, we refer to the function of Mooney
and Bunescu (2006), which computes common sub-
sequences of two input sequences. For trees, most
existing approaches count common subtrees of a
certain type (Collins and Duffy, 2001; Moschitti,
2006a; Kimura and Kashima, 2012), but they do not
take the ordering of the nodes in the subtrees into
account. In contrast, Aiolli et al. (2009) developed
a kernel that combines the content of substructures
with the relative positions inside trees, called the
route kernel. Similarly, the tree kernel of Daumé III

and Marcu (2004) includes positional information
for document compression. For overall argumenta-
tion, we decided to use the route kernel in Section 5,
as it makes the modeling of the sequential positions
of an argument unit in a text straightforward. This
allows us to capture both the sequential and the
hierarchical structure at the same time. To our
knowledge, no work has done this before.1

Neural networks denote an alternative for learn-
ing on structured data. They become particularly
effective when few prior knowledge about what is
important to address a task at hand is available, be-
cause they can learn any feature representation in
principle (Goodfellow et al., 2016). Due to this flex-
ibility, however, large amounts of data are required
for training an effective model, making neural net-
works inadequate for the small datasets that allow
studying overall argumentation.

3 Tasks and Datasets
We seek to study the impact of modeling overall
argumentation on downstream tasks without the
noise from argument mining errors. To this end, we
rely on three ground-truth argument corpora. Each
corpus is suitable for evaluating one text classifica-
tion task and comes with a specific model of overall
argumentation, as detailed in the following.

Myside Bias on AAE-v2 The Argument Anno-
tated Essays corpus was originally been presented
by Stab and Gurevych (2014). We use version 2 of
the corpus (available on the website of the authors),
which consists of 402 persuasive student essays. In
each essay, all main claims, claims, and premises
are annotated as such. Each claim has a pro or
con stance towards each instance of the main claim,
whereas each premise supports or attacks a claim or
another premise. Thereby, argumentation is mod-
eled as one tree structure for each major claim.

Stab and Gurevych (2016) added a myside bias
class to each essay, reflecting whether its argumen-
tation is one-sided considering only arguments for
the own stance (251 cases) or not (151 cases).

Stance on Arg-Microtexts The Arg-Microtexts
corpus of Peldszus and Stede (2016) contains 112
short argumentative texts. They cover 18 different
controversial topics and are annotated according to
Freeman (2011): Each argument unit takes the role
of the proponent or opponent of a main claim. What

1While extensions of the route kernel idea have been pub-
lished later on (Aiolli et al., 2011, 2015), we resort to the
original version in this paper for simplicity.
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AAE-v2 Arg-Microtexts Web Discourse

Argument units 6089 576 1149
Avg. units/text 15.1 5.1 3.4
Min. units/text 7 3 0
Max. units/text 28 10 16

Arguments 5687 443 560
Avg. depth 2.8 2.0 0.6
Min. depth 2 1 0
Max. depth 5 4 1

Texts 402 112 340

Table 1: Statistics of the argument units and argu-
ments in the three corpora analyzed in this paper.

the main claim is follows from a tree-like overall
structure emerging from four types of relations:
normal or example support from one unit to another,
a rebuttal of units by other units, and undercutters
where a relation is attacked by another unit.

For 88 texts, the stance towards a specified topic
is labeled as pro (46) or con (42). We use these
labels for classification, but we do not access the
topic. This way, stance needs to be identified only
based on a text itself — a very challenging task.2

Genre on Web Discourse Finally, we consider
the Argument Annotated User-Generated Web Dis-
course corpus of Habernal and Gurevych (2015).
There, 340 texts are annotated according to a modi-
fied version of the specific model of Toulmin (1958)
where claims are supported by premises or attacked
by rebuttals. Rebuttals in turn may be attacked by
refutations. Besides, emotional units not participat-
ing in the actual arguments are marked as pathos.
The support and attack relations build up the overall
argumentation of a text.

The corpus composes argumentative texts of four
genres, namely, 5 articles, 216 comments to arti-
cles, 46 blog posts, and 73 forum posts. The genre
is specified in form of a label for each text. Due to
the low number, we ignore the articles below.

To give an idea of the sequential and hierarchical
overall structure in each corpus, Table 1 presents
statistics of the argument units, the arguments (in
terms of relations between two or more units), and
the depth of the resulting argumentation.

While the size of the given corpora and the va-
riety of tasks are limited, the only other available
corpus with fully annotated argument structure that
we are aware of is AraucariaDB (Reed and Rowe,

2We do not include the topic, in order not to conflate the
impact of modeling argumentation with the influence of the
topic. The corpus is too small to analyze topic differences.

2004). No downstream task can be tackled on Arau-
cariaDB besides inference scheme classification
(Feng and Hirst, 2011). As all schemes compose
a conclusion and a set of premises (without more
specific roles), analyzing overall structure hardly
makes sense, which is why we omit the corpus.

4 Insights into Overall Argumentation
Before we approach overall argumentation com-
putationally, this section analyzes the three given
corpora empirically to provide insights into how
people argue in overall terms. For this, we unify
the specific corpus models of overall argumentation
outlined above in one general model.

4.1 A Unified View of Overall Argumentation
The texts in all corpora are segmented into argu-
ment units, partly with non-argumentative spans in
between that we ignore here for lack of relevance.
To capture the sequential ordering of the segmenta-
tion, we assign a global index to each unit.

As described in Section 3, the specific models
of all three corpora in the end consider an argu-
ment as a composition of one unit serving as the
conclusion with one or more units that support or
attack the conclusion (the premises). This compo-
sition is defined through multiple relations from
one premise to one conclusion each. There is one
exception, namely, the undercutter relations in the
Arg-Microtexts corpus have a relation as their tar-
get. To obtain a unified form in the general model,
we modify the undercutters such that they target
the premise of the undercutted relation.

In all corpora, a premise may be the conclusion
of another argument, while no argument unit serves
as a premise in multiple arguments. This leads to a
tree structure for each main claim of the associated
text. A main claim corresponds to a unit that is not
a premise. In AAE-v2 and in Web Discourse, more
than one such unit may exist per text.

Depending on the corpus, the distinction of sup-
port and attack is encoded through a specified rela-
tion type, a unit’s stance, or both. We unify these
alternatives by modeling the stance of each unit to-
wards its parent in the associated tree. This stance
can be derived in all corpora.3 All other unit and
relation types from the specific models are ignored,
since there is no clear mapping between them.

3Alternatively, the stance towards the main claim could be
modeled. We decided against this alternative to avoid possibly
wrong reinterpretations, e.g., it is unclear whether a unit that
attacks its parent always supports a unit attacked by the parent.
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Figure 2: Visualization of the overall argumentation in the three considered corpora based on the introduced
general model, averaged over all texts as well over all those texts that belong to a particular class. Left to
right: Position in the text. Top to bottom: Depth in graph. Brightness: Inverse relative frequency of each
position/depth combination in the corpus. Light red to gray: Proportion of argument units with con stance.

General Model As a result, we model the overall
argumentation of an argumentative text as a forest
of trees. Each node in a tree corresponds to an argu-
ment unit. It has an assigned stance (pro or con) as
well as a global index that defines its position in the
text. Each edge defines a relation from a premise
(the child node) to a conclusion (the parent node).
Each main claim defines the root of a tree.

Figure 1(b) has already illustrated an instance of
the general model. The general model is slightly
less expressive than the specific models. We evalu-
ate in Section 6 to what extent this reduces its use
for tackling argumentation-related analysis tasks.
The advantage of the general model is that it allows
a comparison of patterns of overall argumentation
across corpora, as we do in the following.4

4.2 Visualization of Argumentation Patterns
Based on the general model, we empirically ana-
lyze class-specific patterns of overall argumenta-
tion on the three corpora. To this end, we compute
one “average graph” for all texts in each complete
corpus and one such graph for all texts with a par-
ticular class (e.g., for all “no myside bias” texts
in case of AAE-v2). In an average graph, each
node is labeled with the relative frequency of the
associated combination of position and depth in
all texts (edges accordingly). We align positions

4Besides, although not in the focus here, we also assume
stance to be easier to detect in practice than fine-grained roles.

of different texts based on their start node, due to
our observation that the first argument unit over-
proportionally often represents the main claim.5 In
addition the relative frequency, we determine the
proportion of con to pro stance for each node.

As we aim to provide intuitive insights into how
people argue in overall terms, we discuss the graphs
in an informal visual way instead of listing exact
numbers.6 In the visualizations in Figure 2, bright-
ness captures (inverse) frequency, so darker nodes
represent more frequent argument units. The di-
ameter of the inner light-red part of each node re-
flects its proportion of con stance. Nodes with a
relative frequency below 0.3% and/or an absolute
frequency below 3 are pruned, along with all their
associated edges.

AAE-v2 Figure 2(a) stresses that most students
state the main claim (depth 0, position 1) in a per-
suasive essay first. When the first argument unit is
a premise of the main claim instead, it often attacks
the main claim, as the large light-red proportion of
the node at depth 1 and position 1 conveys. While,
on average, texts with myside bias do not differ in
length from those without, the latter show more
con stance, especially at depth 1. Also, argumenta-

5We also considered using the main claim as the fix point,
but the resulting graphs would be much wider than the longest
argumentation, which may be misleading.

6We provide files with the exact frequencies of all nodes
and edges at: http://www.arguana.com/software.html
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tion without myside bias shows more variance, as
indicated, for instance, by the nodes at depth 0 and
position 12 and 13 respectively. In contrast, clear
patterns in the sequential ordering of pro and con
stance are not recognizable in AAE-v2.

Arg-Microtexts According to the graphs in Fig-
ure 2(b), the position of the main claim varies in
the microtexts. While the proportion of con stance
seems rather similar between pro and con texts, our
visualization reveals that their overall structure is
“mirror-inverted” to a limited extent: Most pro texts
start with the main claim (depth 0, position 1), dis-
cuss con stance later (red proportions increase to
the right), and deepen the argumentation in a top-
down fashion (most edges from top left to bottom
right). Vice versa, con texts more often present the
main claim later, attack it earlier, and seem to argue
more bottom-up. This suggests that both sequential
and hierarchical structure play a role here.

Web Discourse The web discourse texts, finally,
comprise rather shallow argumentation across all
genres. Slight structural differences can be seen,
especially, the comments appear a little shorter and
richer of pro stance on average. Besides, the blog
posts have more con stance later. Still, the darker
and thus more frequent nodes are at similar posi-
tions in all graphs. So, if at all, differences may be
reflected in a sequential model of argumentation,
which implicitly covers length. In terms of the hier-
archical structure of the frequent nodes, the graphs
of all genres are rather indistinguishable.

Altogether, the visualizations give first support
for the impact of modeling overall argumentation.
In particular, we hypothesize that hierarchical over-
all structure is decisive for myside bias, whereas
a combination of sequential and hierarchical struc-
ture helps to distinguish pro-stance from con-stance
texts. In contrast, we expect that the impact on clas-
sifying genres in the Web Discourse corpus is low.

5 Modeling Overall Argumentation
This section presents our kernel-based approaches
for argumentation-related analysis tasks. They rely
on a tree representation of overall argumentation.

5.1 Representation of Overall Argumentation
We model the overall structure of an argumentative
text in form of a positional tree T = (V,E) that, in
principle, equals those exemplified in Figure 1 and
analyzed above. Each node v ∈ V represents an
argument unit and each edge e = (v1, v2) ∈ E a

relation between two units. Technically, we there-
for map the forest of trees representing a text (see
Section 4) to a single tree by adding a “virtual” root
node v0 to V that is the parent of all tree roots.

In analysis tasks, we seek to compare sequential
and hierarchical structures irrespective of the actual
texts and the size of the associated trees. To this
end, we represent labels and positions as follows:

Labels The tree kernel approaches in natural lan-
guage processing discussed in Section 2 include
text (usually words) in the leaf nodes. In contrast,
we label each node v ∈ V with the type of the asso-
ciated argument unit only. Thereby, we almost fully
abstract from the content of texts, which benefits
the identification of common structures. In case of
the general model, the only two labels are pro and
con. In case of the specific models, we combine the
role of a unit with the type of the relation the unit
is the source of (if any). On Arg-Microtexts, for in-
stance, this creates labels such as opponent-support
or opponent-undercutter.

Positions As we adapt the route kernels of Aiolli
et al. (2009) below, we follow their representation
of sequential structure with one exception. In par-
ticular, the authors assigned an index to each edge
that numbers the child nodes of each node ascend-
ing from 1. Thereby, they encoded the relative
positions of sibling nodes to each other. To capture
the ordering of argument units in a text from left
to right, we also model positions as indices of the
edges in E. Unlike Aiolli et al. (2009), however,
we use indices decreasing from -1 in the left direc-
tion of the parent node and ascending from 1 to
the right (derived from the nodes’ global indices).
While such a simple relabeling allows us to reuse
their algorithm for computing kernels, it makes a
decisive difference, namely, it encodes the relative
positions of child nodes to their parent. This in turn
implies the sequential structure of the whole tree.

Figure 3(a) exemplifies the tree representation
for the argument unit types of the general model,
omitting the virtual root v0 for simplicity. Analo-
gously, the types of the specific models of the three
considered corpora could be used.

5.2 Kernel-based Modeling Approaches
Based on the tree representation, we now introduce
four approaches for modeling overall argumenta-
tion. Figure 3(b) illustrates the kernel representa-
tions of each approach. As discussed in Section 2,
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Figure 3: (a) Tree representation exemplified for
the general model; node labels are unit types, edge
indices relative positions of child nodes. (b) Kernel
representations of the tree for all four approaches.

the associated kernel function compares the repre-
sentations of the trees T, T ′ of any two texts.

Label Frequencies (a1) Our simplest model of
overall argumentation does not encode structure
at all. Instead, it compares only the frequencies
of each node label in T and T ′. We represent the
model with a linear kernel, which in the end corre-
sponds to a standard feature representation.

Label Sequences (a2) To encode sequential over-
all structure, we refer to the kernel of Mooney and
Bunescu (2006), representing the sequential order-
ing of node labels in a tree by all contiguous subse-
quences. The similarity of two trees T and T ′ fol-
lows from the proportion of common subsequences,
but longer subsequences are penalized by a decay
factor. This approach can be seen as an imitation of
our flow model (Wachsmuth and Stein, 2017).7

Label Tree Paths (a3) We capture hierarchical
overall structure adapting the non-positional part of
the route kernel of Aiolli et al. (2009), label paths.

7We use a sequence kernel instead of flows in order to
obtain a uniform setting. In Wachsmuth and Stein (2017), we
also analyze flow abstractions (e.g., collapsing sequences of
the same label). Here, we resort only to the original sequence.

A label path ξ(vi, vj) denotes the sequence of la-
bels of the nodes in the shortest path between vi, vj
in a tree (including vi, vj). Following Aiolli et al.
(2009), we consider only label paths starting at the
root vi = v0, abbreviated here as ξ(vj). Implicitly,
other paths may still be considered through the use
of polynomial kernels with degree d > 1. As the
authors, we compare any two paths with a function
δ whose values is 1 when the paths are identical
and 0 otherwise. Given two trees T = (V,E) and
T ′ = (V ′, E′), we then define a normalized poly-
nomial kernel Kξ(T, T ′) over all label paths as:(∑

v∈V

∑
v′∈V ′

δ(ξ(v), ξ(v′))
|V | · |V ′|

)d
Positional Tree Paths (a4) In addition to label
paths, Aiolli et al. (2009) define a route π(vi, vj)
as the sequence of edge indices on the shortest path
between any two nodes vi, vj in a tree, i.e., the se-
quence of local positions. As above, they restrict
their view to routes starting at the root, which we
denote as π(vj), and compare them using δ. To
combine positional information with label informa-
tion, the authors build the product of a kernel based
on the label paths and a kernel based on routes. As
a result, sequential and hierarchical overall struc-
ture are compared at the same time. For overall
argumentation, we define the resulting normalized
polynomial product kernel Kξπ(T, T ′) as:(∑

v∈V

∑
v′∈V ′

δ(ξ(v), ξ(v′)) · δ(π(v), π(v′))
(|V | · |V ′|)2

)d
Each approach, a1–a4, can be seen as represent-

ing one particular step of modeling overall argu-
mentation; a4 combines the complementary steps
of a2 and a3, both of which implicitly include a1.

6 Evaluation
Finally, we evaluate all four approaches to model
overall argumentation from Section 5 on the three
tasks associated to the corpora from Section 3.8

6.1 Experimental Set-up
Our goal is to assess the theoretical impact of each
introduced step of modeling overall argumentation
as far as possible. To this end, we conduct a sys-
tematic experiment where we use the ground-truth
argument structure in each corpus for the associated
downstream task based on the following set-up:

8The Java source code for reproducing the experiment
results is available at: http://www.arguana.com/software.html
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Myside Bias on AAE-v2 Stance on Arg-Microtexts Genre on Web Discourse

# Approach General model Specific model General model Specific model General model Specific model

b1 POS n-grams 63.3 63.3 58.8 58.8 74.0 (99.9% >a2) 74.0 (99.9% >a2)

b2 Token n-grams 70.5 (95% >b1) 70.5 (95% >b1) 65.2 (99% >a2) 65.2 75.6 (99.9% >a2) 75.6 (99.9% >a2)

a1 Label frequencies 83.4 (99.9% >b2) 85.7 (99.9% >b2) 49.7 54.4 62.6 (95% >a4) 61.4
a2 Label sequences 87.9 (99.9% >b2) 94.7 (99.9% >a1) 52.2 62.3 64.5 (95% >a3) 64.5 (99.9% >a3)

a3 Label tree paths 97.1 (99.9% >a2) 97.1 (95% >a2) 59.8 (95% >a1) 61.9 58.1 55.5
a4 Positional tree paths 95.8 (99.9% >a2) 95.6 (99.9% >a1) 66.7 (99% >a2) 67.8 (95% >a1) 53.4 55.2

ba Best bi + Best aj 97.1 (99.9% >a2) 97.1 (95% >a2) 69.8 (99.9% >a2) 71.0 (95% >a1) 75.7 (99.9% >a2) 75.9 (99.9% >a2)

Majority baseline 62.4 62.4 52.3 52.3 64.5 64.5

Table 2: Accuracy in 10-fold cross-validation (10 repetitions, fairness in training) of all evaluated
approaches on each of the three task/corpus combinations, both based on a general model of arguments
and based on the specific model of the respective corpus. The highest value on each corpus is marked in
bold; the best bi and aj in each column are italicized. In parenthesis: The confidence level in percent at
which the respective approach is significantly better than the specified approach and all worse approaches.

Approaches The modeling steps are reflected by
the approaches a1–a4 from Section 5. For each task,
we measure the accuracy of all four approaches.
We do this once for our general model of overall
argumentation from Section 4 and once for the
specific model annotated in the respective corpus,
in order to assess the loss of resorting to our always
applicable general model.

Baselines As a basic task-intrinsic measure, we
compare a1–a4 to the majority baseline that always
predicts the majority class in the given corpus. In
addition, we employ two standard feature types and
combine them with a1–a4, in order to roughly as-
sess the need for modeling argumentation:

b1 POS n-grams. The frequency of each part-
of-speech 1- to 3-gram found in ≥ 5% of all
texts. This style feature has been effective in
argumentation-related analysis tasks (Persing
and Ng, 2015; Wachsmuth et al., 2016).

b2 Token n-grams. The frequency of each token
1- to 3-gram found in ≥ 5% of all texts. This
content feature is strong in many text analysis
tasks (Joachims, 1998; Pang et al., 2002).

From the tackled tasks, only myside bias has been
approached on the given datasets in previous work.
While we mention the respective results for com-
pleteness below, a comparison is in fact unfair due
to our resort to ground-truth argument structure.

Experiments The evaluation of all approaches
and baselines was done using the kernel-based ma-
chine learning platform KeLP (Filice et al., 2015),
performing classification with the available imple-
mentation of LibSVM (Chang and Lin, 2011). As

we target the theoretically possible impact of mod-
eling overall argumentation, we tested a number
of hyperparameter configurations.9 We performed
10-fold cross-validation on the complete corpora
and repeated each experiment 10 times, with in-
stance shuffling in between. Then, we averaged the
accuracy of each configuration over all folds and
repetitions. To prevent the classifiers from using
knowledge about the class distributions, we used
fairness during training, i.e., each class was given
an equal weight (Filice et al., 2014). Thus, the
majority baseline is not a trivial competitor.

6.2 Results
Table 2 presents the best obtained results of each
evaluated approach for each task/corpus combina-
tion. To clarify the reliability of the differences be-
tween the results, the table includes the confidence
level (starting at 95%) at which each approach is
significantly better than all weaker approaches ac-
cording to a two-tailed paired student’s t-test.10

Myside Bias on AAE-v2 The highest accuracy
reported for classifying myside bias is 77.0 (Stab
and Gurevych, 2016). While the comparability is
limited (see above), we see that label frequencies
(a1) already achieve 83.4 and 85.7 for the general
and specific model respectively, outperforming all
baselines with 99.9% confidence. Matching the in-
sights from Section 4, the sole proportion of attacks
thus seems a good predictor of myside bias.

9SVM C parameter: 0.01, 0.1, 1, 10, 100; sequence kernel
decay factor: 0, 0.5, 1; polynomial tree kernel degree: 1, 2, 3.

10While selecting the best result a posteriori gives an upper
bound on the true effectiveness, we do this to assess to what
extent each approach captures task-relevant information.
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Label sequences (a2) further improve over a1,
which underlines that also the sequential position
of con stance and attack relations has an impact. a2

is particular strong under the specific model (94.7).
Unlike the general model, this model reflects some
hierarchical information via the roles of argument
units, such as premise. a2 performs only slightly
worse than the label tree paths (a3), indicating that
an adequate sequential model can compete with a
hierarchical model, as we hypothesized in previous
work (Wachsmuth and Stein, 2017).

Nevertheless, a3 turns out best on AAE-v2, most
likely due to its capability to capture the depth at
which con stance occurs. Considering that no cor-
pus annotation is perfect, the outstanding accuracy
of 97.1 conveys an important finding: Modeling the
tree structure of an argumentation basically solves
the myside bias task without requiring other fea-
tures. Neither the positional tree paths (a4) nor the
combination with token n-grams (ba) can add to
that. Also, there is no difference between the gen-
eral and the specific model, underlining that the
unit roles in AAE-v2 are implicitly covered by the
hierarchical structure in the general model.

Stance on Arg-Microtexts The accuracy results
for the given challenging variant of stance classi-
fication (see Section 3) are much lower. Under
the general model, the label frequencies (49.7) do
not even compete with the majority baseline (52.3).
Notable gains are achieved by the label sequences
under the specific model (62.3), slightly beating
the label tree paths (61.9). Putting them together
in the positional tree paths (a4) yields an accuracy
of 66.7 and 67.8 respectively; more than the token
n-grams (b2, 65.2). Combining a4 and b2 in ba
in turn results in the best observed accuracy value
(71.0 on the specific model).

We conclude that both sequential and hierarchi-
cal overall structure are important for the distinc-
tion of pro from con argumentation, supporting
our hypothesis from Section 4. They complement
content-oriented approaches, such as b2. More-
over, the fine-grained unit and relation types of the
specific model annotated in Arg-Microtexts seem
useful, consistently obtaining higher accuracy than
the general model. Notice, though, that due to the
small size of the corpus, only few reported gains
are statistically significant, as shown in Table 2.

Genre on Web Discourse Although Section 4
has made minor structural differences in Web Dis-
course visible, Table 2 shows that a1–a4 all fail in

genre classification: None of them beats the ma-
jority baseline (64.5), suggesting that no decisive
discriminative patterns are learned. Both POS and
token n-grams (b1–b2) significantly outperform a1–
a4 at 99.9% confidence. While combining b2 with
a2 (ba) minimally increases accuracy from 75.6 to
75.9, the results reveal that overall argumentation
hardly impacts genre — as hypothesized.

7 Conclusion
This paper provides answers to the question of how
the overall structure of a monological argumen-
tative text should be modeled in order to tackle
downstream tasks of computational argumentation.
We have adopted the idea of including positional in-
formation in tree kernels in order to capture the ex-
plicit sequential and the implicit hierarchical over-
all structure of the text at the same time. In system-
atic experiments, we have demonstrated the strong
impact of modeling overall argumentation. Most
impressively, we have found that hierarchical struc-
ture decides about myside bias alone, while the
combination of sequential and hierarchical struc-
ture has turned out beneficial for classifying stance.
The missing impact on genre supports that the pre-
sented approaches actually capture argumentation-
related properties of a text.

So far, however, we have restricted our view
to ground-truth argument structure, leaving the in-
tegration of computational argument mining ap-
proaches to future work. While the noise from
mining errors might qualify some of our findings,
we also expect that larger corpora will allow us
to discover more reliable and discriminative pat-
terns. After all, our results underline the general
importance of modeling overall argumentation.
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