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Abstract

Recent neural models have shown signif-
icant progress on the problem of generat-
ing short descriptive texts conditioned on
a small number of database records. In
this work, we suggest a slightly more dif-
ficult data-to-text generation task, and in-
vestigate how effective current approaches
are on this task. In particular, we introduce
a new, large-scale corpus of data records
paired with descriptive documents, pro-
pose a series of extractive evaluation meth-
ods for analyzing performance, and ob-
tain baseline results using current neural
generation methods. Experiments show
that these models produce fluent text, but
fail to convincingly approximate human-
generated documents. Moreover, even
templated baselines exceed the perfor-
mance of these neural models on some
metrics, though copy- and reconstruction-
based extensions lead to noticeable im-
provements.

1 Introduction

Over the past several years, neural text genera-
tion systems have shown impressive performance
on tasks such as machine translation and summa-
rization. As neural systems begin to move toward
generating longer outputs in response to longer
and more complicated inputs, however, the gener-
ated texts begin to display reference errors, inter-
sentence incoherence, and a lack of fidelity to
the source material. The goal of this paper is to
suggest a particular, long-form generation task in
which these challenges may be fruitfully explored,
to provide a publically available dataset for this
task, to suggest some automatic evaluation met-
rics, and finally to establish how current, neural

text generation methods perform on this task.
A classic problem in natural-language genera-

tion (NLG) (Kukich, 1983; McKeown, 1992; Re-
iter and Dale, 1997) involves taking structured
data, such as a table, as input, and producing text
that adequately and fluently describes this data as
output. Unlike machine translation, which aims
for a complete transduction of the sentence to be
translated, this form of NLG is typically taken
to require addressing (at least) two separate chal-
lenges: what to say, the selection of an appropriate
subset of the input data to discuss, and how to say
it, the surface realization of a generation (Reiter
and Dale, 1997; Jurafsky and Martin, 2014). Tra-
ditionally, these two challenges have been modu-
larized and handled separately by generation sys-
tems. However, neural generation systems, which
are typically trained end-to-end as conditional lan-
guage models (Mikolov et al., 2010; Sutskever
et al., 2011, 2014), blur this distinction.

In this context, we believe the problem of
generating multi-sentence summaries of tables or
database records to be a reasonable next-problem
for neural techniques to tackle as they begin to
consider more difficult NLG tasks. In particu-
lar, we would like this generation task to have the
following two properties: (1) it is relatively easy
to obtain fairly clean summaries and their corre-
sponding databases for dataset construction, and
(2) the summaries should be primarily focused on
conveying the information in the database. This
latter property ensures that the task is somewhat
congenial to a standard encoder-decoder approach,
and, more importantly, that it is reasonable to eval-
uate generations in terms of their fidelity to the
database.

One task that meets these criteria is that of gen-
erating summaries of sports games from associ-
ated box-score data, and there is indeed a long
history of NLG work that generates sports game
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summaries (Robin, 1994; Tanaka-Ishii et al., 1998;
Barzilay and Lapata, 2005). To this end, we make
the following contributions:

• We introduce a new large-scale corpus con-
sisting of textual descriptions of basketball
games paired with extensive statistical tables.
This dataset is sufficiently large that fully
data-driven approaches might be sufficient.

• We introduce a series of extractive evalua-
tion models to automatically evaluate output
generation performance, exploiting the fact
that post-hoc information extraction is signif-
icantly easier than generation itself.

• We apply a series of state-of-the-art neural
methods, as well as a simple templated gener-
ation system, to our data-to-document gener-
ation task in order to establish baselines and
study their generations.

Our experiments indicate that neural systems
are quite good at producing fluent outputs and
generally score well on standard word-match met-
rics, but perform quite poorly at content selection
and at capturing long-term structure. While the
use of copy-based models and additional recon-
struction terms in the training loss can lead to im-
provements in BLEU and in our proposed extrac-
tive evaluations, current models are still quite far
from producing human-level output, and are sig-
nificantly worse than templated systems in terms
of content selection and realization. Overall, we
believe this problem of data-to-document genera-
tion highlights important remaining challenges in
neural generation systems, and the use of extrac-
tive evaluation reveals significant issues hidden by
standard automatic metrics.

2 Data-to-Text Datasets

We consider the problem of generating descriptive
text from database records. Following the notation
in Liang et al. (2009), let s = {rj}Jj=1 be a set of
records, where for each r∈ s we define r.t∈T to
be the type of r, and we assume each r to be a bi-
narized relation, where r.e and r.m are a record’s
entity and value, respectively. For example, a
database recording statistics for a basketball game
might have a record r such that r.t = POINTS, r.e
= RUSSELL WESTBROOK, and r.m = 50. In
this case, r.e gives the player in question, and r.m
gives the number of points the player scored. From

these records, we are interested in generating de-
scriptive text, ŷ1:T = ŷ1, . . . , ŷT of T words such
that ŷ1:T is an adequate and fluent summary of s.
A dataset for training data-to-document systems
typically consists of (s, y1:T ) pairs, where y1:T is
a document consisting of a gold (i.e., human gen-
erated) summary for database s.

Several benchmark datasets have been used in
recent years for the text generation task, the most
popular of these being WEATHERGOV (Liang
et al., 2009) and ROBOCUP (Chen and Mooney,
2008). Recently, neural generation systems have
show strong results on these datasets, with the sys-
tem of Mei et al. (2016) achieving BLEU scores
in the 60s and 70s on WEATHERGOV, and BLEU
scores of almost 30 even on the smaller ROBOCUP

dataset. These results are quite promising, and
suggest that neural models are a good fit for
text generation. However, the statistics of these
datasets, shown in Table 1, indicate that these
datasets use relatively simple language and record
structure. Furthermore, there is reason to believe
that WEATHERGOV is at least partially machine-
generated (Reiter, 2017). More recently, Lebret
et al. (2016) introduced the WIKIBIO dataset,
which is at least an order of magnitude larger in
terms of number of tokens and record types. How-
ever, as shown in Table 1, this dataset too only
contains short (single-sentence) generations, and
relatively few records per generation. As such, we
believe that early success on these datasets is not
yet sufficient for testing the desired linguistic ca-
pabilities of text generation at a document-scale.

With this challenge in mind, we introduce
a new dataset for data-to-document text gen-
eration, available at https://github.com/
harvardnlp/boxscore-data. The dataset
is intended to be comparable to WEATHERGOV

in terms of token count, but to have significantly
longer target texts, a larger vocabulary space, and
to require more difficult content selection.

The dataset consists of two sources of arti-
cles summarizing NBA basketball games, paired
with their corresponding box- and line-score ta-
bles. The data statistics of these two sources, RO-
TOWIRE and SBNATION, are also shown in Ta-
ble 1. The first dataset, ROTOWIRE, uses profes-
sionally written, medium length game summaries
targeted at fantasy basketball fans. The writing
is colloquial, but relatively well structured, and
targets an audience primarily interested in game
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WIN LOSS PTS FG PCT RB AS . . .
TEAM

Heat 11 12 103 49 47 27
Hawks 7 15 95 43 33 20

AS RB PT FG FGA CITY . . .
PLAYER

Tyler Johnson 5 2 27 8 16 Miami
Dwight Howard 4 17 23 9 11 Atlanta
Paul Millsap 2 9 21 8 12 Atlanta
Goran Dragic 4 2 21 8 17 Miami
Wayne Ellington 2 3 19 7 15 Miami
Dennis Schroder 7 4 17 8 15 Atlanta
Rodney McGruder 5 5 11 3 8 Miami
Thabo Sefolosha 5 5 10 5 11 Atlanta
Kyle Korver 5 3 9 3 9 Atlanta
. . .

The Atlanta Hawks defeated the Miami Heat
, 103 - 95 , at Philips Arena on Wednesday
. Atlanta was in desperate need of a win and
they were able to take care of a shorthanded
Miami team here . Defense was key for
the Hawks , as they held the Heat to 42
percent shooting and forced them to commit
16 turnovers . Atlanta also dominated in the
paint , winning the rebounding battle , 47
- 34 , and outscoring them in the paint 58
- 26.The Hawks shot 49 percent from the
field and assisted on 27 of their 43 made
baskets . This was a near wire - to - wire
win for the Hawks , as Miami held just one
lead in the first five minutes . Miami ( 7 -
15 ) are as beat - up as anyone right now
and it ’s taking a toll on the heavily used
starters . Hassan Whiteside really struggled
in this game , as he amassed eight points ,
12 rebounds and one blocks on 4 - of - 12
shooting ...

Figure 1: An example data-record and document pair from the ROTOWIRE dataset. We show a subset of the game’s records
(there are 628 in total), and a selection from the gold document. The document mentions only a select subset of the records, but
may express them in a complicated manner. In addition to capturing the writing style, a generation system should select similar
record content, express it clearly, and order it appropriately.

RC WG WB RW SBN

Vocab 409 394 400K 11.3K 68.6K
Tokens 11K 0.9M 19M 1.6M 8.8M
Examples 1.9K 22.1K 728K 4.9K 10.9K
Avg Len 5.7 28.7 26.1 337.1 805.4
Rec. Types 4 10 1.7K 39 39
Avg Records 2.2 191 19.7 628 628

Table 1: Vocabulary size, number of total tokens, number of
distinct examples, average generation length, total number of
record types, and average number of records per example for
the ROBOCUP (RC), WEATHERGOV (WG), WIKIBIO (WB),
ROTOWIRE (RW), and SBNATION (SBN) datasets.

statistics. The second dataset, SBNATION, uses
fan-written summaries targeted at other fans. This
dataset is significantly larger, but also much more
challenging, as the language is very informal, and
often tangential to the statistics themselves. We
show some sample text from ROTOWIRE in Fig-
ure 1. Our primary focus will be on the RO-
TOWIRE data.

3 Evaluating Document Generation

We begin by discussing the evaluation of gener-
ated documents, since both the task we introduce
and the evaluation methods we propose are moti-
vated by some of the shortcomings of current ap-
proaches to evaluation. Text generation systems
are typically evaluated using a combination of au-
tomatic measures, such as BLEU (Papineni et al.,
2002), and human evaluation. While BLEU is

perhaps a reasonably effective way of evaluating
short-form text generation, we found it to be un-
satisfactory for document generation. In particu-
lar, we note that it primarily rewards fluent text
generation, rather than generations that capture the
most important information in the database, or that
report the information in a particularly coherent
way. While human evaluation, on the other hand,
is likely ultimately necessary for evaluating gener-
ations (Liu et al., 2016; Wu et al., 2016), it is much
less convenient than using automatic metrics. Fur-
thermore, we believe that current text generations
are sufficiently bad in sufficiently obvious ways
that automatic metrics can still be of use in evalu-
ation, and we are not yet at the point of needing to
rely solely on human evaluators.

3.1 Extractive Evaluation

To address this evaluation challenge, we begin
with the intuition that assessing document quality
is easier than document generation. In particular,
it is much easier to automatically extract informa-
tion from documents than to generate documents
that accurately convey desired information. As
such, simple, high-precision information extrac-
tion models can serve as the basis for assessing
and better understanding the quality of automatic
generations. We emphasize that such an evalua-
tion scheme is most appropriate when evaluating
generations (such as basketball game summaries)
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that are primarily intended to summarize informa-
tion. While many generation problems do not fall
into this category, we believe this to be an interest-
ing category, and one worth focusing on because
it is amenable to this sort of evaluation.

To see how a simple information extraction sys-
tem might work, consider the document in Fig-
ure 1. We may first extract candidate entity
(player, team, and city) and value (number and cer-
tain string) pairs r.e, r.m that appear in the text,
and then predict the type r.t (or none) of each can-
didate pair. For example, we might extract the
entity-value pair (“Miami Heat”, “95”) from the
first sentence in Figure 1, and then predict that the
type of this pair is POINTS, giving us an extracted
record r such that (r.e, r.m, r.t) = (MIAMI HEAT,
95, POINTS). Indeed, many relation extraction
systems reduce relation extraction to multi-class
classification precisely in this way (Zhang, 2004;
Zhou et al., 2008; Zeng et al., 2014; dos Santos
et al., 2015).

More concretely, given a document ŷ1:T , we
consider all pairs of word-spans in each sentence
that represent possible entities e and values m.
We then model p(r.t | e,m;θ) for each pair, us-
ing r.t = ε to indicate unrelated pairs. We use ar-
chitectures similar to those discussed in Collobert
et al. (2011) and dos Santos et al. (2015) to param-
eterize this probability; full details are given in the
Appendix.

Importantly, we note that the (s, y1:T ) pairs
typically used for training data-to-document sys-
tems are also sufficient for training the informa-
tion extraction model presented above, since we
can obtain (partial) supervision by simply check-
ing whether a candidate record lexically matches
a record in s.1 However, since there may be mul-
tiple records r∈ s with the same e and m but with
different types r.t, we will not always be able to
determine the type of a given entity-value pair
found in the text. We therefore train our clas-
sifier to minimize a latent-variable loss: for all
document spans e and m, with observed types
t(e,m) = {r.t : r∈ s, r.e= e, r.m=m} (possi-
bly {ε}), we minimize

L(θ) = −
∑
e,m

log
∑

t′∈t(e,m)

p(r.t = t′ | e,m;θ).

We find that this simple system trained in this way
is quite accurate at predicting relations. On the

1Alternative approaches explicitly align the document
with the table for this task (Liang et al., 2009).

ROTOWIRE data it achieves over 90% accuracy on
held-out data, and recalls approximately 60% of
the relations licensed by the records.

3.2 Comparing Generations
With a sufficiently precise relation extraction sys-
tem, we can begin to evaluate how well an auto-
matic generation ŷ1:T has captured the information
in a set of records s. In particular, since the pre-
dictions of a precise information extraction system
serve to align entity-mention pairs in the text with
database records, this alignment can be used both
to evaluate a generation’s content selection (“what
the generation says”), as well as content placement
(“how the generation says it”).

We consider in particular three induced metrics:

• Content Selection (CS): precision and re-
call of unique relations r extracted from
ŷ1:T that are also extracted from y1:T . This
measures how well the generated document
matches the gold document in terms of se-
lecting which records to generate.

• Relation Generation (RG): precision and
number of unique relations r extracted from
ŷ1:T that also appear in s. This measures how
well the system is able to generate text con-
taining factual (i.e., correct) records.

• Content Ordering (CO): normalized
Damerau-Levenshtein Distance (Brill
and Moore, 2000)2 between the sequences
of records extracted from y1:T and that
extracted from ŷ1:T . This measures how well
the system orders the records it chooses to
discuss.

We note that CS primarily targets the “what to say”
aspect of evaluation, CO targets the “how to say it”
aspect, and RG targets both.

We conclude this section by contrasting the
automatic evaluation we have proposed with
recently proposed adversarial evaluation ap-
proaches, which also advocate automatic metrics
backed by classification (Bowman et al., 2016;
Kannan and Vinyals, 2016; Li et al., 2017). Un-
like adversarial evaluation, which uses a black-
box classifier to determine the quality of a gener-
ation, our metrics are defined with respect to the

2DLD is a variant of Levenshtein distance that allows
transpositions of elements; it is useful in comparing the or-
dering of sequences that may not be permutations of the same
set (which is a requirement for measures like Kendall’s Tau).
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predictions of an information extraction system.
Accordingly, our metrics are quite interpretable,
since by construction it is always possible to deter-
mine which fact (i.e., entity-value pair) in the gen-
eration is determined by the extractor to not match
the database or the gold generation.

4 Neural Data-to-Document Models

In this section we briefly describe the neural gener-
ation methods we apply to the proposed task. As a
base model we utilize the now standard attention-
based encoder-decoder model (Sutskever et al.,
2014; Cho et al., 2014; Bahdanau et al., 2015). We
also experiment with several recent extensions to
this model, including copy-based generation, and
training with a source reconstruction term in the
loss (in addition to the standard per-target-word
loss).

Base Model For our base model, we map each
record r∈ s into a vector r̃ by first embedding r.t
(e.g., POINTS), r.e (e.g., RUSSELL WESTBROOK),
and r.m (e.g., 50), and then applying a 1-layer
MLP (similar to Yang et al. (2016)).3 Our source
data-records are then represented as s̃ = {r̃j}Jj=1.
Given s̃, we use an LSTM decoder with atten-
tion and input-feeding, in the style of Luong et al.
(2015), to compute the probability of each target
word, conditioned on the previous words and on
s. The model is trained end-to-end to minimize
the negative log-likelihood of the words in the gold
text y1:T given corresponding source material s.

Copying There has been a surge of recent work
involving augmenting encoder-decoder models to
copy words directly from the source material on
which they condition (Gu et al., 2016; Gülçehre
et al., 2016; Merity et al., 2016; Jia and Liang,
2016; Yang et al., 2016). These models typically
introduce an additional binary variable zt into the
per-timestep target word distribution, which indi-
cates whether the target word ŷt is copied from the
source or generated:

p(ŷt | ŷ1:t−1, s) =
∑

z∈{0,1}
p(ŷt, zt = z | ŷ1:t−1, s).

In our case, we assume that target words are
copied from the value portion of a record r; that
is, a copy implies ŷt = r.m for some r and t.

3We also include an additional feature for whether the
player is on the home- or away-team.

Joint Copy Model The models of Gu et al.
(2016) and Yang et al. (2016) parameterize the
joint distribution table over ŷt and zt directly:

p(ŷt, zt | ŷ1:t−1, s) ∝
copy(ŷt, ŷ1:t−1, s) zt = 1, ŷt ∈ s
0 zt = 1, ŷt 6∈ s
gen(ŷt, ŷ1:t−1, s) zt = 0,

where copy and gen are functions parameterized
in terms of the decoder RNN’s hidden state that as-
sign scores to words, and where the notation ŷt ∈ s
indicates that ŷt is equal to r.m for some r∈ s.

Conditional Copy Model Gülçehre et al.
(2016), on the other hand, decompose the joint
probability as:

p(ŷt, zt | ŷ1:t−1, s) ={
pcopy(ŷt | zt, ŷ1:t−1, s) p(zt | ŷ1:t−1, s) zt=1
pgen(ŷt | zt, ŷ1:t−1, s) p(zt | ŷ1:t−1, s) zt=0,

where an MLP is used to model p(zt | ŷ1:t−1, s).
Models with copy-decoders may be trained to

minimize the negative log marginal probability,
marginalizing out the latent-variable zt (Gu et al.,
2016; Yang et al., 2016; Merity et al., 2016). How-
ever, if it is known which target words yt are
copied, it is possible to train with a loss that does
not marginalize out the latent zt. Gülçehre et al.
(2016), for instance, assume that any target word
yt that also appears in the source is copied, and
train to minimize the negative joint log-likelihood
of the yt and zt.

In applying such a loss in our case, we again
note that there may be multiple records r such
that r.m appears in ŷ1:T . Accordingly, we
slightly modify the pcopy portion of the loss of
Gülçehre et al. (2016) to sum over all matched
records. In particular, we model the probability
of relations r ∈ s such that r.m = yt and r.e
is in the same sentence as r.m. Letting r(yt) =
{r ∈ s : r.m = yt, same−sentence(r.e, r.m)},
we have:

pcopy(yt | zt, y1:t−1, s) =
∑

r∈r(yt)

p(r | zt, y1:t−1, s).

We note here that the key distinction for our pur-
poses between the Joint Copy model and the Con-
ditional Copy model is that the latter conditions on
whether there is a copy or not, and so in pcopy the
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source records compete only with each other. In
the Joint Copy model, however, the source records
also compete with words that cannot be copied. As
a result, training the Conditional Copy model with
the supervised loss of Gülçehre et al. (2016) can
be seen as training with a word-level reconstruc-
tion loss, where the decoder is trained to choose
the record in s that gives rise to yt.

Reconstruction Losses Reconstruction-based
techniques can also be applied at the document-
or sentence-level during training. One simple
approach to this problem is to utilize the hidden
states of the decoder to try to reconstruct the
database. A fully differentiable approach using
the decoder hidden states has recently been
successfully applied to neural machine translation
by Tu et al. (2017). Unlike copying, this method
is applied only at training, and attempts to learn
decoder hidden states with broader coverage of
the input data.

In adopting this reconstruction approach we
segment the decoder hidden states ht into d T

B e
contiguous blocks of size at most B. Denoting a
single one of these hidden state blocks as bi, we
attempt to predict each field value in some record
r ∈ s from bi. We define p(r.e, r.m | bi), the prob-
ability of the entity and value in record r given bi,
to be softmax(f(bi)), where f is a parameterized
function of bi, which in our experiments utilize a
convolutional layer followed by an MLP; full de-
tails are given in the Appendix. We further extend
this idea and predictK records in s from bi, rather
than one. We can train with the following recon-
struction loss for a particular bi:

L(θ) = −
K∑

k=1

min
r∈s log pk(r | bi;θ)

= −
K∑

k=1

min
r∈s

∑
x∈{e,m,t}

log pk(r.x | bi;θ),

where pk is the k’th predicted distribution over
records, and where we have modeled each com-
ponent of r independently. This loss attempts to
make the most probable record in s given bi more
probable. We found that augmenting the above
loss with a term that penalizes the total variation
distance (TVD) between the pk to be helpful.4

4Penalizing the TVD between the pk might be useful if,
for instance, K is too large, and only a smaller number of
records can be predicted from bi. We also experimented with

Both L(θ) and the TVD term are simply added
to the standard negative log-likelihood objective at
training time.

5 Experimental Methods

In this section we highlight a few important de-
tails of our models and methods; full details are
in the Appendix. For our ROTOWIRE models, the
record encoder produces r̃j in R600, and we use
a 2-layer LSTM decoder with hidden states of the
same size as the r̃j , and dot-product attention and
input-feeding in the style of Luong et al. (2015).
Unlike past work, we use two identically struc-
tured attention layers, one to compute the standard
generation probabilities (gen or pgen), and one to
produce the scores used in copy or pcopy.

We train the generation models using SGD and
truncated BPTT (Elman, 1990; Mikolov et al.,
2010), as in language modeling. That is, we split
each y1:T into contiguous blocks of length 100,
and backprop both the gradients with respect to
the current block as well as with respect to the en-
coder parameters for each block.

Our extractive evaluator consists of an ensem-
ble of 3 single-layer convolutional and 3 single-
layer bidirectional LSTM models. The convolu-
tional models concatenate convolutions with ker-
nel widths 2, 3, and 5, and 200 feature maps in the
style of (Kim, 2014). Both models are trained with
SGD.

Templatized Generator In addition to neu-
ral baselines, we also use a problem-specific,
template-based generator. The template-based
generator first emits a sentence about the teams
playing in the game, using a templatized sentence
taken from the training set:

The <team1> (<wins1>-<losses1>) de-

feated the <team2> (<wins2>-<losses2>)

<pts1>-<pts2>.

Then, 6 player-specific sentences of the following
form are emitted (again adapting a simple sentence
from the training set):

<player> scored <pts> points (<fgm>-

<fga> FG, <tpm>-<tpa> 3PT, <ftm>-

<fta> FT) to go with <reb> rebounds.

encouraging, rather than penalizing the TVD between the pk,
which might make sense if we were worried about ensuring
the pk captured different records.
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The 6 highest-scoring players in the game are used
to fill in the above template. Finally, a typical end
sentence is emitted:

The <team1>’ next game will be at home

against the Dallas Mavericks, while the

<team2> will travel to play the Bulls.

Code implementing all models can be found
at https://github.com/harvardnlp/
data2text. Our encoder-decoder models are
based on OpenNMT (Klein et al., 2017).

6 Results

We found that all models performed quite poorly
on the SBNATION data, with the best model
achieving a validation perplexity of 33.34 and a
BLEU score of 1.78. This poor performance is
presumably attributable to the noisy quality of the
SBNATION data, and the fact that many docu-
ments in the dataset focus on information not in
the box- and line-scores. Accordingly, we focus
on ROTOWIRE in what follows.

The main results for the ROTOWIRE dataset are
shown in Table 2, which shows the performance
of the models in Section 4 in terms of the metrics
defined in Section 3.2, as well as in terms of per-
plexity and BLEU.

6.1 Discussion
There are several interesting relationships in the
development portion of Table 2. First we note that
the Template model scores very poorly on BLEU,
but does quite well on the extractive metrics, pro-
viding an upper-bound for how domain knowledge
could help content selection and generation. All
the neural models make significant improvements
terms of BLEU score, with the conditional copy-
ing with beam search performing the best, even
though all the neural models achieve roughly the
same perplexity.

The extractive metrics provide further insight
into the behavior of the models. We first note
that on the gold documents y1:T , the extractive
model reaches 92% precision. Using the Joint
Copy model, generation only has a record gen-
eration (RG) precision of 47% indicating that re-
lationships are often generated incorrectly. The
best Conditional Copy system improves this value
to 71%, a significant improvement and potentially
the cause of the improved BLEU score, but still far
below gold.

The Utah Jazz ( 38 - 26 ) defeated the Houston Rockets ( 38
- 26 ) 117 - 91 on Wednesday at Energy Solutions Arena in
Salt Lake City . The Jazz got out to a quick start in this one
, out - scoring the Rockets 31 - 15 in the first quarter alone
. Along with the quick start , the Rockets were the superior
shooters in this game , going 54 percent from the field and
43 percent from the three - point line , while the Jazz went
38 percent from the floor and a meager 19 percent from deep
. The Rockets were able to out - rebound the Rockets 49 -
49 , giving them just enough of an advantage to secure the
victory in front of their home crowd . The Jazz were led
by the duo of Derrick Favors and James Harden . Favors
went 2 - for - 6 from the field and 0 - for - 1 from the three
- point line to score a game - high of 15 points , while also
adding four rebounds and four assists ....

Figure 2: Example document generated by the Conditional
Copy system with a beam of size 5. Text that accurately re-
flects a record in the associated box- or line-score is high-
lighted in blue, and erroneous text is highlighted in red.

Notably, content selection (CS) and content or-
dering (CO) seem to have no correlation at all
with BLEU. There is some improvement with CS
for the conditional model or reconstruction loss,
but not much change as we move to beam search.
CO actually gets worse as beam search is utilized,
possibly a side effect of generating more records
(RG#). The fact that these scores are much worse
than the simple templated model indicates that fur-
ther research is needed into better copying alone
for content selection and better long term content
ordering models.

Test results are consistent with development re-
sults, indicating that the Conditional Copy model
is most effective at BLEU, RG, and CS, and that
reconstruction is quite helpful for improving the
joint model.

6.2 Human Evaluation

We also undertook two human evaluation studies,
using Amazon Mechanical Turk. The first study
attempted to determine whether generations con-
sidered to be more precise by our metrics were
also considered more precise by human raters. To
accomplish this, raters were presented with a par-
ticular NBA game’s box score and line score, as
well as with (randomly selected) sentences from
summaries generated by our different models for
those games. Raters were then asked to count how
many facts in each sentence were supported by
records in the box or line scores, and how many
were contradicted. We randomly selected 20 dis-
tinct games to present to raters, and a total of 20
generated sentences per game were evaluated by
raters. The left two columns of Table 3 contain the
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Development

RG CS CO PPL BLEU
Beam Model P% # P% R% DLD%

Gold 91.77 12.84 100 100 100 1.00 100
Template 99.35 49.7 18.28 65.52 12.2 N/A 6.87

B=1

Joint Copy 47.55 7.53 20.53 22.49 8.28 7.46 10.41
Joint Copy + Rec 57.81 8.31 23.65 23.30 9.02 7.25 10.00
Joint Copy + Rec + TVD 60.69 8.95 23.63 24.10 8.84 7.22 12.78
Conditional Copy 68.94 9.09 25.15 22.94 9.00 7.44 13.31

B=5

Joint Copy 47.00 10.67 16.52 26.08 7.28 7.46 10.23
Joint Copy + Rec 62.11 10.90 21.36 26.26 9.07 7.25 10.85
Joint Copy + Rec + TVD 57.51 11.41 18.28 25.27 8.05 7.22 12.04
Conditional Copy 71.07 12.61 21.90 27.27 8.70 7.44 14.46

Test

Template 99.30 49.61 18.50 64.70 8.04 N/A 6.78
Joint Copy + Rec (B=5) 61.23 11.02 21.56 26.45 9.06 7.47 10.88
Joint Copy + Rec + TVD (B=1) 60.27 9.18 23.11 23.69 8.48 7.42 12.96
Conditional Copy (B=5) 71.82 12.82 22.17 27.16 8.68 7.67 14.49

Table 2: Performance of induced metrics on gold and system outputs of RotoWire development and test data. Columns indicate
Record Generation (RG) precision and count, Content Selection (CS) precision and recall, Count Ordering (CO) in normalized
Damerau-Levenshtein distance, perplexity, and BLEU. These first three metrics are described in Section 3.2. Models com-
pare Joint and Conditional Copy also with addition Reconstruction loss and Total Variation Distance extensions (described in
Section 4).

average numbers of supporting and contradicting
facts per sentence as determined by the raters, for
each model. We see that these results are generally
in line with the RG and CS metrics, with the Con-
ditional Copy model having the highest number of
supporting facts, and the reconstruction terms sig-
nificantly improving the Joint Copy models.

Using a Tukey HSD post-hoc analysis of an
ANOVA with the number of contradicting facts as
the dependent variable and the generating model
and rater id as independent variables, we found
significant (p < 0.01) pairwise differences in con-
tradictory facts between the gold generations and
all models except “Copy+Rec+TVD,” as well as a
significant difference between “Copy+Rec+TVD”
and “Copy”. We similarly found a significant pair-
wise difference between “Copy+Rec+TVD” and
“Copy” for number of supporting facts.

Our second study attempted to determine
whether generated summaries differed in terms of
how natural their ordering of records (as captured,
for instance, by the DLD metric) is. To test this,
we presented raters with random summaries gen-
erated by our models and asked them to rate the
naturalness of the ordering of facts in the sum-
maries on a 1-7 Likert scale. 30 random sum-
maries were used in this experiment, each rated
3 times by distinct raters. The average Likert rat-
ings are shown in the rightmost column of Table 3.

# Supp. # Cont. Order Rat.

Gold 2.04 0.70 5.19
Joint Copy 1.65 2.31 3.90
Joint Copy + Rec 2.33 1.83 4.43
Joint Copy + Rec +TVD 2.43 1.16 4.18
Conditional Copy 3.05 1.48 4.03

Table 3: Average rater judgment of number of box score
fields supporting (left column) or contradicting (middle col-
umn) a generated sentence, and average rater Likert rating for
the naturalness of a summary’s ordering (right column). All
generations use B=1.

While it is encouraging that the gold summaries
received a higher average score than the gener-
ated summaries (and that the reconstruction term
again improved the Joint Copy model), a Tukey
HSD analysis similar to the one presented above
revealed no significant pairwise differences.

6.3 Qualitative Example

Figure 2 shows a document generated by the Con-
ditional Copy model, using a beam of size 5. This
particular generation evidently has several nice
properties: it nicely learns the colloquial style of
the text, correctly using idioms such as “19 per-
cent from deep.” It is also partially accurate in its
use of the records; we highlight in blue when it
generates text that is licensed by a record in the
associated box- and line-scores.

At the same time, the generation also contains
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major logical errors. First, there are basic copy-
ing mistakes, such as flipping the teams’ win/loss
records. The system also makes obvious seman-
tic errors; for instance, it generates the phrase
“the Rockets were able to out-rebound the Rock-
ets.” Finally, we see the model hallucinates fac-
tual statements, such as “in front of their home
crowd,” which is presumably likely according to
the language model, but ultimately incorrect (and
not supported by anything in the box- or line-
scores). In practice, our proposed extractive eval-
uation will pick up on many errors in this pas-
sage. For instance, “four assists” is an RG error,
repeating the Rockets’ rebounds could manifest in
a lower CO score, and incorrectly indicating the
win/loss records is a CS error.

7 Related Work

In this section we note additional related work not
noted throughout. Natural language generation
has been studied for decades (Kukich, 1983; McK-
eown, 1992; Reiter and Dale, 1997), and generat-
ing summaries of sports games has been a topic of
interest for almost as long (Robin, 1994; Tanaka-
Ishii et al., 1998; Barzilay and Lapata, 2005).

Historically, research has focused on both con-
tent selection (“what to say”) (Kukich, 1983;
McKeown, 1992; Reiter and Dale, 1997; Duboue
and McKeown, 2003; Barzilay and Lapata, 2005),
and surface realization (“how to say it”) (Gold-
berg et al., 1994; Reiter et al., 2005) with earlier
work using (hand-built) grammars, and later work
using SMT-like approaches (Wong and Mooney,
2007) or generating from PCFGs (Belz, 2008)
or other formalisms (Soricut and Marcu, 2006;
White et al., 2007). In the late 2000s and early
2010s, a number of systems were proposed that
did both (Liang et al., 2009; Angeli et al., 2010;
Kim and Mooney, 2010; Lu and Ng, 2011; Kon-
stas and Lapata, 2013).

Within the world of neural text generation,
some recent work has focused on conditioning
language models on tables (Yang et al., 2016),
and generating short biographies from Wikipedia
Tables (Lebret et al., 2016; Chisholm et al.,
2017). Mei et al. (2016) use a neural encoder-
decoder approach on standard record-based gen-
eration datasets, obtaining impressive results, and
motivating the need for more challenging NLG
problems.

8 Conclusion and Future Work

This work explores the challenges facing neural
data-to-document generation by introducing a new
dataset, and proposing various metrics for auto-
matically evaluating content selection, generation,
and ordering. We see that recent ideas in copying
and reconstruction lead to improvements on this
task, but that there is a significant gap even be-
tween these neural models and templated systems.
We hope to motivate researchers to focus further
on generation problems that are relevant both to
content selection and surface realization, but may
not be reflected clearly in the model’s perplexity.

Future work on this task might include ap-
proaches that process or attend to the source
records in a more sophisticated way, generation
models that attempt to incorporate semantic or
reference-related constraints, and approaches to
conditioning on facts or records that are not as ex-
plicit in the box- and line-scores.
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