@inproceedings{lin-etal-2017-reasoning,
title = "Reasoning with Heterogeneous Knowledge for Commonsense Machine Comprehension",
author = "Lin, Hongyu and
Sun, Le and
Han, Xianpei",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/D17-1216/",
doi = "10.18653/v1/D17-1216",
pages = "2032--2043",
abstract = "Reasoning with commonsense knowledge is critical for natural language understanding. Traditional methods for commonsense machine comprehension mostly only focus on one specific kind of knowledge, neglecting the fact that commonsense reasoning requires simultaneously considering different kinds of commonsense knowledge. In this paper, we propose a multi-knowledge reasoning method, which can exploit heterogeneous knowledge for commonsense machine comprehension. Specifically, we first mine different kinds of knowledge (including event narrative knowledge, entity semantic knowledge and sentiment coherent knowledge) and encode them as inference rules with costs. Then we propose a multi-knowledge reasoning model, which selects inference rules for a specific reasoning context using attention mechanism, and reasons by summarizing all valid inference rules. Experiments on RocStories show that our method outperforms traditional models significantly."
}
Markdown (Informal)
[Reasoning with Heterogeneous Knowledge for Commonsense Machine Comprehension](https://preview.aclanthology.org/jlcl-multiple-ingestion/D17-1216/) (Lin et al., EMNLP 2017)
ACL