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Abstract

Detection of lexico-semantic relations is
one of the central tasks of computational
semantics. Although some fundamental re-
lations (e.g., hypernymy) are asymmetric,
most existing models account for asym-
metry only implicitly and use the same
concept representations to support detec-
tion of symmetric and asymmetric rela-
tions alike. In this work, we propose the
Dual Tensor model, a neural architecture
with which we explicitly model the asym-
metry and capture the translation between
unspecialized and specialized word embed-
dings via a pair of tensors. Although our
Dual Tensor model needs only unspecial-
ized embeddings as input, our experiments
on hypernymy and meronymy detection
suggest that it can outperform more com-
plex and resource-intensive models. We
further demonstrate that the model can ac-
count for polysemy and that it exhibits sta-
ble performance across languages.

1 Introduction

Detection of semantic relations that hold between
words is the central task of lexical semantics,
tightly coupled with obtaining representations that
capture meaning of words (Mikolov et al., 2013;
Wieting et al., 2015; Mrkšić et al., 2016, inter alia).
As such, robust detection of lexico-semantic rela-
tions may benefit virtually any natural language
processing application.

Because lexico-semantic knowledge bases (KBs)
like WordNet (Fellbaum, 1998) are general and of
limited coverage, numerous methods for detect-
ing lexico-semantic relations rely on distributional
word representations obtained from large corpora.
Although distributional models have evolved over

time, from count-based (Landauer et al., 1998) and
generative (Blei et al., 2003) to prediction-based
(Mikolov et al., 2013), the similarity between dis-
tributional vectors still indicates only the abstract
semantic association and not a precise semantic re-
lation (e.g., vectors of antonyms may be as similar
as vectors of synonyms).

Consequently, a number of approaches have
been proposed for specializing distributional spaces
for specific lexico-semantic relations, either by (1)
modifying the learning objective or regularization
of the original embedding model by incorporat-
ing linguistic constraints (Yu and Dredze, 2014;
Kiela et al., 2015) or (2) retroactively fitting the
pre-trained unspecialized embeddings to linguis-
tic constraints (Faruqui et al., 2015; Mrkšić et al.,
2016). However, these methods specialize distribu-
tional vector spaces primarily for detecting the sym-
metric relation of semantic similarity (i.e., graded
synonymy) and not for asymmetric lexico-semantic
relations such as hypernymy and meronymy. On the
other hand, models for embedding KBs (Bordes
et al., 2013; Socher et al., 2013; Yang et al., 2015)
uniformly model both symmetric and asymmetric
relations. They learn a single vector representation
(i.e., embedding) for each KB concept, assuming
implicitly that the same concept representation is
equally useful for predicting symmetric and asym-
metric relations alike.

Relation-specific learning-based models have,
to the largest extent, targeted hypernymy. Distri-
butional models predict the hypernymy relations
by combining raw distributional vectors of con-
cepts in a pair (Baroni et al., 2012; Roller et al.,
2014; Santus et al., 2014), whereas path-based mod-
els base predictions on lexico-syntactic paths from
co-occurrence contexts obtained from a large cor-
pus (Snow et al., 2004; Nakashole et al., 2012;
Shwartz et al., 2016). Shwartz et al. (2016) com-
bine the path-based and distributional models to
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reach state-of-the-art performance in hypernymy
detection. Both distributional and path-based meth-
ods, however, model asymmetry only implicitly
(e.g., via the order of embeddings in the concate-
nation). Besides, path-based models are language-
dependent since they require syntactically prepro-
cessed data as input.

In this work, we propose the Dual Tensor model,
a neural architecture that (1) models asymmetry
more explicitly than existing models and (2) ex-
plicitly captures the translation of unspecialized
distributional vectors into specialized embeddings
better suited to detect the asymmetric relation of
interest. The Dual Tensor model can be considered
distributional as it requires only distributional vec-
tors of words as input. Consequently, in contrast
to path-based methods, it is language-independent
and more widely applicable. Experimental results
on hypernymy and meronymy detection show that
the Dual Tensor model outperforms both distri-
butional and path-based models. We additionally
demonstrate that our approach exhibits stable per-
formance across languages and can, to some extent,
diminish the negative effects of polysemy.

2 Related Work

Specializing Word Embeddings. Unspecialized
word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) capture general semantic proper-
ties of words, but are unable to differentiate be-
tween different types of semantic relations (e.g.,
vectors of car and driver might be as similar as
vectors of car and vehicle). However, we often
need embeddings to be similar only if an exact
lexico-semantic relation holds between the words.
Numerous methods for specializing word embed-
dings for particular relations have been proposed
(Yu and Dredze, 2014; Faruqui et al., 2015; Kiela
et al., 2015; Mrkšić et al., 2016, inter alia), pri-
marily aiming to differentiate synonymic similarity
from other types of semantic relatedness.

Some methods modify the objective or regu-
larization of general embedding algorithms like
CBOW or skip-gram (Mikolov et al., 2013) in or-
der to directly train relation-specific embeddings
from large corpora. Yu and Dredze (2014) extend
the CBOW objective with synonymy constraints
from WordNet and Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013). Similarly, Kiela et al.
(2015) add synonyms as additional contexts for the
skip-gram objective.

Other models update the whole unspecialized
embedding space by moving closer together vec-
tors of words standing in a particular relation. Start-
ing with unspecialized embeddings of concepts,
Faruqui et al. (2015) run a belief propagation algo-
rithm on a graph induced from WordNet or PPDB.
Wieting et al. (2015) couple an objective maximiz-
ing the similarity of PPDB pairs with the smart
selection of the negative examples. Mrkšić et al.
(2016) take this idea further by using antonym pairs
from WordNet as negative examples.

All aforementioned models either directly train
specialized embeddings or derive them by updat-
ing the unspecialized embeddings. In contrast, via
dual tensors, we explicitly capture the function that
transforms unspecialized embeddings to special-
ized embeddings that are better suited to detect the
asymmetric relation of interest.

Embedding Knowledge Graphs. Recently, vari-
ous models for embedding KB concepts and re-
lations have been proposed (Bordes et al., 2013;
Socher et al., 2013; Yang et al., 2015; Nickel et al.,
2016, inter alia). These models predict existence of
relations between entities by arithmetically combin-
ing concept vectors and relation matrices or tensors.
The scoring functions of KG embedding models
combine the concept embeddings via linear prod-
uct (i.e., relation tensor multiplies the concatena-
tion of concept vectors of the two entities) (Bordes
et al., 2011), bilinear product (i.e., relation tensor
first multiplies the left concept embedding and the
result multiplies the embedding of the second con-
cept) (Yang et al., 2015), or the combination of the
two (Socher et al., 2013). Both linear and bilinear
scoring functions implicitly model asymmetry as
they are not commutative with respect to concept
embeddings. In this work, we choose to leverage
the bilinear product in our model, following the
findings of Yang et al. (2015) who report bilinear
product outperforming other scoring combinations.

KG embedding models employ the same concept
embeddings for predicting all relations, symmetric
and asymmetric alike. By directly updating concept
embeddings in training, they cannot make relation
predictions for concepts outside of the training set.

Hypernymy and Meronymy Detection. Hyper-
nymy and meronymy are arguably the two most
prominent asymmetric lexico-semantic relations.
Methods for their detection can roughly be clas-
sified as either distributional or path-based. Path-
based methods consider lexico-syntactic paths con-
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necting pairs of words in their co-occurrence con-
texts in large corpus. Early approaches, e.g., Hearst
(1992) for hypernymy and Berland and Charniak
(1999) for meronymy, exploited a small set of man-
ually created lexico-syntactic patterns that imply a
relation of interest (e.g., a such as b). Subsequent
approaches looked at ways to eliminate the need
for manual compilation of extraction patterns. Pan-
tel and Pennacchiotti (2006) and Girju et al. (2006)
proposed bootstrapping approaches to meronymy
detection, starting from a seed set of part-whole
pairs. Snow et al. (2004) provided all dependency
paths connecting the concepts in corpus to a logis-
tic regression classifier for hypernymy detection.

Distributional methods detect asymmetric rela-
tions using only distributional vectors of words as
input. Distributional models come in both unsuper-
vised and supervised flavors. Unsupervised metrics
for hypernymy detection assume either that the hy-
ponym’s contexts are included in the hypernym’s
contexts (Weeds and Weir, 2003; Kotlerman et al.,
2010) or that the linguistics contexts of a hyponym
are more informative than the contexts of its hyper-
nyms (Rimell, 2014; Santus et al., 2014). Super-
vised hypernymy classifiers represent the pair of
words by combining their distributional vectors in
different ways – concatenating them (Baroni et al.,
2012) or subtracting them (Roller et al., 2014) –
and feeding the resulting vector to a supervised
classifier like logistic regression. Most recently,
Shwartz et al. (2016) coupled path-based and dis-
tributional information with a recurrent neural net-
work (RNN), yielding state-of-the-art hypernymy
detection performance. Although our Dual Tensor
model is purely distributional, we show that it may
outperform such a hybrid model which additionally
exploits syntactic information.

Distributional and path-based models have been
used to discriminate between multiple lexico-
semantic relations, including hypernymy and
meronymy, at once (Santus et al., 2016; Shwartz
and Dagan, 2016). However, as pointed out by
(Chersoni et al., 2016), distributional vectors and
scores based on their comparison fail to discrimi-
nate between multiple relation types at once. In this
work, we focus on binary classification for a single
relation (hypernymy and meronymy) at a time.

3 Dual Tensor Model

The following assumptions and desirable properties
guided the design of the Dual Tensor model for

detection of asymmetric lexico-semantic relations:

(1) Unspecialized distributional vectors are not
good signals for detecting specific lexico-semantic
relations. We thus need to derive specialized rep-
resentations that are better suited for detecting the
specific asymmetric relation of interest.

(2) The transformation from unspecialized distribu-
tional vectors of words to their relation-specialized
embeddings should be captured explicitly, via a
well-defined transformation function. Having an
explicit embedding specialization function allevi-
ates the need to specialize the entire unspecialized
embedding space at once, like existing models do
(Faruqui et al., 2015; Mrkšić et al., 2016).

(3) Each concept should have two different relation-
specialized embeddings – one for each end of an
asymmetric relation. For instance, for hypernymy,
the concept’s specialized embedding for pairs in
which it is considered to be a hyponym (e.g., dog
in dog–animal) should differ from its embedding
in pairs in which it is tested as a hypernym (e.g.,
dog in maltese–dog).

(4) An unspecialized distributional vector of the
word might – for each end of the asymmetric re-
lation – be transformed into several specialized
vectors instead of only one. This way the model
may implicitly account for polysemy – i.e., differ-
ent specialized vectors might capture asymmetric
properties of different senses of polysemous words.
E.g., the hyponym properties of bank in the pair
bank vs. building may be different from those in
the pair bank vs. company).

Figure 1 depicts the overall architecture of the
Dual Tensor model, incorporating all four of above-
mentioned design guidelines.

3.1 Dual Tensors

For a given pair of concepts (c1, c2), Dual Ten-
sor model computes the score s(c1, c2) indicating
the likelihood that an asymmetric lexico-semantic
relation holds between the concepts (e.g., for
meronymy, how likely it is that c1 is a part of
c2). The model takes as input the unspecialized
embeddings of the two concepts, e1 and e2. For
single-word concepts these are simply pre-trained
word embeddings, whereas for multi-word con-
cepts, similar to (Socher et al., 2013), we average
the pre-trained embeddings of constituent words.

The unspecialized input embeddings are next
translated into specialized embeddings, meant to
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Figure 1: The architecture of the Dual Tensor model.

better capture the existence of the asymmetric rela-
tion between the concepts, via specialization ten-
sors. By introducing dedicated tensors we – unlike
existing models, which directly propagate updates
to unspecialized embeddings (Faruqui et al., 2015;
Mrkšić et al., 2016) – explicitly learn the special-
ization function. With an explicit specialization
function, we do not have to specialize the whole
embedding space at once. Also, unlike KG com-
pletion models (Bordes et al., 2013; Socher et al.,
2013), we can make predictions for pairs involving
concepts unseen in the training data.

We explicitly model asymmetry by introducing
two specialization tensors (hence the model name)
that differently specialize the unspecialized input
embeddings of concepts. The left tensor, W[1:k]

L

(with the corresponding set of bias vectors b[1:k]
L ),

specializes the concept embedding if the concept
is the first element of the pair, whereas the right
tensor, W[1:k]

R (with bias vectors b[1:k]
R ), special-

izes the concept embedding when the concept is
the second element of the pair:

e[1:k]
L = tanh

(
e1W

[1:k]
L + b[1:k]

L

)
e[1:k]
R = tanh

(
e2W

[1:k]
R + b[1:k]

R

)
When predicting hypernymy, for example, dual ten-
sors ensure that the specialized representation for
concept cat in pairs like cat–animal differs from its
specialized representation in pairs like birman–cat.

Specialization tensors map an unspecialized em-
bedding into a set of k specialized embeddings –
each slice of the tensor, W i

L (W i
R), together with

the corresponding bias vector biL (biR), produces
one specialized vector eiL (eiR). By using special-

ization tensors with k slices instead of specializa-
tion matrices we make the model more general.
The tensor-based model trivially degrades to the
matrix-based model by setting k = 1. We obtain
the final specialized representation of a concept by
non-linearly transforming (hyperbolic tangent) the
product of an unspecialized input embedding and
the specialization tensor.1

3.2 Bilinear Product and Scoring
Using dual tensors, we transform unspecialized
embeddings into asymmetrically specialized repre-
sentations – sets of specialized vectors – which we
next use to predict whether the asymmetric relation
holds between the concepts. Our scoring function
is based on bilinear products between (1) special-
ized vectors e[1:k]

L of the first concept, (2) relation
tensor W[1:k]

B , and (3) specialized vectors e[1:k]
R of

the second concept. For each pair of specialized
vectors eiL and eiR, i ∈ {1, . . . , k}, we compute
the bilinear product score, using the corresponding
slice W i

B of the relation tensor W[1:k]
B :

bi = eiLW
i
B(eiR)T .

The final relation score s(c1, c2) for a given pair
of concepts is computed by reducing the vector of
bilinear product scores b to the mean value (func-
tion g in Figure 1)2 and non-linearly bounding the
resulting score to the [−1, 1] range:

s(c1, c2) = tanh

(
1
k

k∑
i=1

bi

)
.

1Preliminary experiments without applying a non-linear
transformation yielded consistently poorer performance.

2We also experimented with min- and max-reduction, but
the reduction to the mean yielded best preliminary results.
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3.3 Optimization
Dual Tensor model is parametrized by the spe-
cialization tensors, their corresponding bias vec-
tors, and the relation tensor, namely, Ω =
{W[1:k]

L ,W[1:k]
R ,b[1:k]

L ,b[1:k]
R ,W[1:k]

B }. Let A be
the set of concept pairs in the training set, A =
{pi = (ci1, c

i
2)}Ni=1. We learn model’s parameters

by minimizing the margin-based objective:

J(Ω) = λ‖Ω‖2 +
∑
pi∈A

max
(
0, 1− s(pi) · y(pi)

)
where s(pi) is model’s prediction for the pair
(ci1, c

i
2), y(p

i) ∈ {−1, 1} is the true label of that
pair, and λ is the regularization coefficient. In all
our experiments, we trained the model in mini-
batches, optimizing the parameters with the RM-
SProp algorithm (Tieleman and Hinton, 2012).

The model has three hyperparameters: the length
of the unspecialized input embeddings l, the num-
ber of tensor slices k, and the regularization fac-
tor λ. We optimize the hyperparameters (together
with the starting learning rate value) via grid-
search, by maximizing performance on the vali-
dation portion of each dataset. In all our experi-
ments, except the multilingual comparison (Sec-
tion 5.3), we evaluated variants of the Dual Tensor
model using pre-trained English GloVe word em-
beddings (Pennington et al., 2014) with varying
length, l ∈ {50, 100, 200, 300} and tensors with
k ∈ {1, . . . , 5} slices. In most experiments, the
optimal configuration was l = 300 and k = 3.

4 Evaluation

We evaluate the Dual Tensor model on several
datasets for detecting hypernymy and meronymy,
two arguably most prominent asymmetric lexico-
semantic relations. In all experiments, we compare
the model’s performance with state-of-the-art re-
sults on respective datasets. Additionally, aiming
to quantify the effects that different components of
the Dual Tensor model have on prediction perfor-
mance, we evaluate two reduced models variants.

4.1 Datasets
We evaluate the Dual Tensor model on the follow-
ing hypernymy and meronymy detection datasets:

HypeNet dataset. Arguing that existing datasets
were too small for training their recurrent network,
Shwartz et al. (2016) compiled this dataset for hy-
pernymy detection from several external KBs, tak-

ing only pairs of concepts in direct relation (i.e., no
transitive closure).

Other hypernymy detection datasets. We ad-
ditionally evaluate the Dual Tensor model on
four smaller datasets for hypernymy detection:
(1) BLESS dataset (Baroni and Lenci, 2011) and
EVALuation dataset (Santus et al., 2015) contain
instances of hypernymy and four other relations.
BLESS additionally contains random word pairs;
(2) Weeds dataset (Weeds et al., 2014) contains
hypernymy and co-hyponymy pairs; (3) Benotto
dataset (Benotto, 2015) couples hypernymy pairs
with synonymy and antonymy pairs. Because these
datasets contain at most several thousand pairs, we
only use them to evaluate the performance of mod-
els trained on larger datasets;

WN-Hy and WN-Me datasets. We create these
datasets by taking concept pairs from WordNet.
We take all instances from the transitive closure
of hypernymy (all parts of speech) and meronymy
(nouns) relations and couple them with all synonym
and antonym relations (all parts of speech), as well
as lexical entailment relations (verbs).

For the WN-Hy dataset we designate all hy-
pernymy relations (i.e., both direct and indirect)
as positive instances and their inverses (i.e., hy-
ponymy relations) together with all other rela-
tions as negative instances. Finally, we balance the
dataset by randomly sampling negative instances
to match the number of positive instances. Anal-
ogously, we create the WN-Me dataset by taking
meronymy relations as positive instances. We com-
pile three different WN-Hy datasets: WN-Hy-EN
using English WordNet (Fellbaum, 1998), WN-
Hy-ES using Spanish WordNet (Gonzalez-Agirre
et al., 2012), and WN-Hy-FR using French Word-
Net (Sagot and Fišer, 2008). To allow for fair com-
parison of model’s performance across languages,
we randomly sample two larger dataset (English
and French) to match in size the smallest (Spanish).

Lexical and Random Splits. Levy et al. (2015)
showed that supervised distributional models for
classifying lexico-semantic relations suffer from
overfitting in settings with significant lexical over-
lap between the training and test set. In such set-
tings models tend to learn properties of individual
words (e.g., that a word is a prototypical hypernym)
instead of relations between words. The reported
results on such datasets are thus overly optimistic
estimates of models’ true performance.
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Dataset Train Val. Test

HypeNet (rand) 49.5K (20%) 3.5K (19%) 17.7K (20%)
HypeNet (lex) 20.3K (20%) 1.4K (20%) 6.6K (20%)

BLESS – 2.7K (5%) 23.9K (5%)
EVALuation – 1.4K (24%) 12.3K (27%)
Weeds – 293 (50%) 2.6K (50%)
Benotto – 501 (41%) 4.5K (38%)

WN-Hy-EN 103K (50%) 15K (50%) 30K (50%)
WN-Hy-EN 103K (50%) 15K (50%) 30K (50%)
WN-Hy-FR 103K (50%) 15K (50%) 30K (50%)

WN-Me (rand) 13.9K (50%) 2K (50%) 4K (50%)
WN-Me (lex) 7.9K (50%) 208 (50%) 318 (50%)

Table 1: Datasets used in evaluation.

To eliminate the effect of lexical memorization,
Levy et al. (2015) propose dataset splits with no
lexical overlap between the train and test portions.
However, model’s performance in a lexically-split
setting is an overly pessimistic estimate of mod-
els’ true performance – in a realistic scenario, the
model will occasionally make predictions for pairs
involving some of the concepts from the training
set. Because the true model performance is likely
between the performance on a randomly-split and
performance on a lexically-split dataset, we report
models’ performance in both of these settings.

We show the sizes of all dataset variants used in
our experiments in Table 1. We additionally report
the proportion of positive instances (in brackets),
as this percentage directly affects some evaluation
metrics (precision, F1-score, average precision).

4.2 Baselines

In addition to specific models yielding best perfor-
mance on particular datasets, we compare the Dual
Tensor model (DUAL-T) with these baselines:

Supervised distributional baseline (CONCAT-
SVM). We train SVM model with RBF kernel
on concatenation of unspecialized concept embed-
dings (Baroni et al., 2012), following Levy et al.
(2015), who report this model outperforming other
types of embedding composition;

Bilinear product (BILIN-PROD). This model is
the simple bilinear product between the unspecial-
ized concept embeddings, parametrized only by the
relation matrixWB . That is, the prediction score for
a pair of concepts is given as s(c1, c2) = e1WBe

T
2 .

The bilinear model implicitly captures asymmetry
by learning a non-symmetric relation matrix WB .
By comparing the performances of BILIN-PROD

Lex. split Rand. split

Model P R F1 P R F1

HypeNet path-based 69.1 63.2 66.0 81.1 71.6 76.1
HypeNet hybrid 80.9 61.7 70.0 91.3 89.0 90.1

CONCAT-SVM 75.4 55.1 63.7 90.1 63.7 74.6
BILIN-PROD 53.1 53.3 53.2 74.0 79.4 76.6
SINGLE-T 68.4 70.0 69.2 84.8 86.7 85.7

DUAL-T 70.5 78.5 74.3 93.3 82.6 87.6

Table 2: Hypernymy classification performance.

and DUAL-T, we jointly quantify the effects of (1)
explicit modeling of asymmetry and (2) relation-
specific embedding specialization;

Single tensor model (SINGLE-T). This is the
reduction of the Dual Tensor model in which we
use only one specialization tensor, i.e., W[1:k]

L =
W[1:k]

R . In other words, SINGLE-T model always
specializes the unspecialized embedding of a con-
cept the same way, regardless of the concept’s po-
sition in a candidate pair. By comparing the perfor-
mance of the DUAL-T model with that of SINGLE-
T, we measure the effect of asymmetrically special-
izing unspecialized embeddings.

Same as for the DUAL-T model, we optimize the
hyperparameters of the baselines on the validation
portions of the datasets used for evaluation.

4.3 Classification Experiments

Binary classification is the most straightforward
evaluation setting for relation detection models. For
a pair of concepts, we make the binary asymmetric
relation prediction ra(c1, c2) simply by threshold-
ing the model’s prediction scores, i.e., ra(c1, c2) =
I{s(c1, c2) > 0}, where I is the indicator function.

Hypernymy classification. We first evaluate the
DUAL-T model and the baselines on the HypeNet
dataset (Shwartz et al., 2016). We show the perfor-
mance of the DUAL-T model in Table 2, together
with the path-based and hybrid (combination of
path-based and distributional signal) variants of the
the state-of-the-art RNN model of Shwartz et al.
(2016). On the more challenging, lexically-split
dataset DUAL-T model significantly3 outperforms
the more complex hybrid HypeNet model (Shwartz
et al., 2016), an RNN model coupling representa-
tions of syntactic paths from a large corpus with

3All performance differences were tested using the non-
parametric stratified shuffling test (Yeh, 2000) with α = 0.05.
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Lex. split Rand. split

Model P R F1 P R F1

CONCAT-SVM 78.6 44.6 56.9 79.9 75.9 77.9
BILIN-PROD 73.3 50.0 59.4 81.0 79.8 80.5
SINGLE-T 77.7 55.5 64.8 85.7 82.6 84.1

DUAL-T 76.5 61.1 67.9 87.7 85.3 86.5

Table 3: Meronymy classification performance.

unspecialized concept embeddings. In both settings
DUAL-T outperforms SINGLE-T which, in turn,
outperforms BILIN-PROD. This empirically justi-
fies both our explicit modeling of asymmetry and
relation-specific embedding specialization.

Meronymy classification. We next evaluate the
meronymy classification performance of the mod-
els on the WN-Me dataset. The results are shown
in Table 3. Same as in the case of hypernymy
classification, DUAL-T significantly outperforms
all three baselines, with SINGLE-T outperforming
BILIN-PROD. All distributional models we evalu-
ate achieve poorer performance on meronymy than
hypernymy detection, especially considering that
WN-Me is a balanced dataset, whereas HypeNet is
heavily skewed towards negative instances.

4.4 Ranking Experiments
Shwartz et al. (2017) propose ranking as an alter-
native evaluation setting for hypernymy detection.
The goal is to rank positive relation pairs higher
than negative ones. Our DUAL-T model (and as-
sociated baselines) rank the concept pairs in de-
creasing order of assigned relations scores s(c1, c2).
Following Shwartz et al. (2017), we report perfor-
mance in terms of overall average precision (AP)
and average precision at rank 100 (AP@100).

Hypernymy ranking. We evaluate the ranking
performance on four small hypernymy test sets:
BLESS, EVALuation, Benotto, and Weeds (cf. Ta-
ble 1). As these datasets are not big enough to train
neural models, we train all models on the HypeNet
dataset. For each test set we eliminate the lexical
overlap by removing from the HypeNet dataset
pairs containing any concept from that test set.

Table 4 displays ranking performance for DUAL-
T model, the supervised baselines, and the best-
performing unsupervised hypernymy detection
score (BEST-UNSUP, performance taken from
(Shwartz et al., 2017)). Hypernymy ranking results
depict the effectiveness of the DUAL-T model with

respect to supervised baselines even more clearly
than hypernymy classification results. All super-
vised models outperform the best unsupervised
model in terms of AP, but only DUAL-T is consis-
tently better when considering only 100 top-ranked
pairs (AP@100). This adds to the conclusion that
explicit modeling of asymmetry using dual tensors
yields crucial performance boost.

Meronymy ranking. We measure the ranking
performance for meronymy detection on the WN-
Me dataset, reporting the results for both randomly-
and lexically-split variants of the dataset in Table
5. Meronymy ranking results are in line with per-
formance figures for hypernymy ranking. Again,
DUAL-T consistently outperforms all three base-
lines. Absolute AP scores for meronymy are higher
than those we report for hypernymy, but this is
merely because WN-Me is a balanced dataset,
whereas the hypernymy ranking test sets (with the
exception of the Weeds dataset) are substantially
skewed in favor of negative concept pairs.

5 Analysis

We perform additional analyses, providing further
insights into DUAL-T model’s performance. We
analyze how model’s performance depends on con-
cept distance in WordNet and on number of concept
senses. We also examine the stability of DUAL-T
model’s performance across different languages.

5.1 WordNet Distance
Unlike the HypeNet dataset (Shwartz et al., 2016),
which contains only pairs of concepts that exist in
a direct relation in some external knowledge base,
our WN-Hy and WN-Me datasets (cf. Section 4.1)
contain pairs of concepts of varying distance in
WordNet, allowing for a more fine-grained analysis
of the Dual Tensor model’s performance.

We divide the test sets of WN-Hy-EN and WN-
Me into five buckets according to the shortest path
distance between concepts in WordNet.4 We show
hypernymy and meronymy prediction accuracies
for all buckets in Figure 2. For hypernymy, we
observe significantly lower accuracy for pairs of
concepts appearing close in WordNet hierarchy.
Close hyponym-hypernym pairs (e.g., car–vehicle)
tend to occur in similar contexts and consequently
have similar unspecialized embeddings. Such hy-
pernymy instances are difficult to discern from syn-

4For any concept with multiple senses, we considered the
WordNet synset of its dominant sense.
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Dataset BLESS EVALuation Benotto Weeds

Model AP AP@100 AP AP@100 AP AP@100 AP AP@100

BEST-UNSUP (Shwartz et al., 2017) .051 .540 .353 .661 .382 .617 .441 .911

CONCAT-SVM .097 .235 .321 .329 .523 .586 .644 .793
BILIN-PROD .277 .627 .355 .457 .477 .678 .712 .948
SINGLE-T .463 .777 .433 .668 .501 .605 .771 .958

DUAL-T .487 .823 .446 .866 .557 .847 .774 .985

Table 4: Hypernymy detection, ranking results.
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Figure 2: Hypernymy and meronymy performance with respect to WordNet shortest path distance.

Lex. split Rand. split

Model AP AP@100 AP AP@100

CONCAT-SVM .686 .775 .796 .865
BILIN-PROD .682 .832 .878 .947
SINGLE-T .772 .900 .909 .979

DUAL-T .840 .967 .936 1.00

Table 5: Meronymy detection, ranking results.

onymous pairs (e.g., car–automobile). The same
effect is, however, not observed for meronymy –
part-whole relations between close concepts are as
detectable as between more distant concepts. This
is probably because part concepts appear in differ-
ent contexts than whole concepts (e.g., wheel-car),
resulting in distinct unspecialized embeddings in
the first place. For both relations we observe a drop
in performance for pairs of very distant concepts.
Such pairs typically contain one very abstract con-
cept (e.g., object), but embeddings of abstract con-
cepts are not superpositions of embeddings of their
hyponyms (Rimell, 2014) nor their meronyms.

5.2 Effects of Polysemy

Given that our Dual Tensor model takes unspecial-
ized concept embeddings as input and that unspe-
cialized embeddings do not discern between differ-

ent senses of words, our Dual Tensor model treats
monosemous and polysemous concepts equally. In-
tuitively, predicting asymmetric relations for pairs
involving polysemous concepts should be more dif-
ficult than for pairs of monosemous concepts, be-
cause the models in such cases additionally need to
learn to discern between different concept senses.

While designing the Dual Tensor model, we hy-
pothesized that different tensor slices might be able
to accommodate for asymmetric relations involv-
ing different senses of polysemous words. In order
to closer examine the effects of polysemy on the
performance of the Dual Tensor model, we parti-
tioned the test portions of the WN-Hy and WN-
Me datasets according to number of senses of the
concept pair (we average the number of senses of
the two concepts in a candidate pair). We show the
Dual Tensor model’s performance (k = 3, l = 300)
on different number-of-senses buckets, both for hy-
pernymy and meronymy prediction, in Figure 3.

For hypernymy, the general trend is as expected:
the larger the average number of senses of concepts
in the candidate pair, the lower the prediction accu-
racy. The exception is the bucket (3, 5] for which
the performance is higher than for the previous
bucket (1, 3]. The drop in performance is not dras-
tic as long as the model is not dealing with highly

1764



1.0 (1.0, 3.0] (3.0, 5.0] (5.0, 10.0] > 10.0
70

80

90

100

88.7
84.8 85.9

79
74.1

83 85.2
81.4 80.9 80

Number of senses (average of the two concepts)

A
cc

ur
ac

y
(%

)

Hypernymy Meronymy

Figure 3: Hypernymy and meronymy performance with respect to concept polysemy.

polysemous concepts (with more than five senses).
These performance figures suggest that, via the mul-
tiple tensor slices, the DUAL-T model can, to some
extent, alleviate the effects that polysemy has on
predicting asymmetric lexico-semantic relations.

Somewhat surprisingly, the polysemy seems not
to have a clear negative effect for meronymy. Pre-
diction accuracy on pairs of highly polysemous
concepts seems to be similar to that on monose-
mous concept pairs. An instance-level inspection
reveals that meronymy detection is more sensitive
to the number of senses of the part candidate con-
cept than of the whole concept. In other words, if
we partition the test set only according to the num-
ber of senses of the part concept, then the trends
are similar to those observed for hypernymy.

5.3 Multilingual Comparison

To examine how the Dual Tensor model performs
across languages, we evaluate its performance on
equally-sized hypernymy detection datasets in En-
glish, Spanish, and French (cf. Section 4.1 and
Table 1). To increase the comparability of results,
for each of the three languages we trained word
embeddings using the CBOW algorithm (Mikolov
et al., 2013) on the Wikipedia dump of respective
language. Also, for all three models we select the
hyperparameter configuration that turned out to
be optimal most often in previous experiments –
we set the length of unspecialized embeddings to
l = 300 and number of tensor slices to k = 3. Hy-
pernymy classification performance for different
languages is shown in Table 6. The results sug-
gest that Dual Tensor model exhibits stable perfor-
mance across languages. The small performance
differences between languages may be attributed to
different sizes of respective Wikipedia dumps (on
which we train unspecialized embeddings) as well
as to inherent differences in language complexity
(e.g., English being morpho-syntactically simpler).

Language Dataset P R F1

English WN-Hy-EN 89.9 86.1 87.9
Spanish WN-Hy-ES 88.7 82.1 85.3
French WN-Hy-FR 86.2 82.7 84.4

Table 6: Hypernymy classification performance for
different languages.

6 Conclusion

We have presented a neural model for detecting
asymmetric semantic relations. Unlike existing
models, which uniformly treat asymmetric and
symmetric relations, our Dual Tensor model cap-
tures asymmetry explicitly using a pair of special-
ization tensors that produce two different embed-
ding specializations, depending on the concept’s
role in the relation. Instead of just updating unspe-
cialized embeddings, with specialization tensors
we also explicitly capture the mapping function.

The results from a battery of hypernymy and
meronymy experiments show that via asymmetric
specialization of concept embeddings the Dual Ten-
sor model is able to outperform (1) the supervised
model directly using unspecialized embeddings as
well as (2) the more complex neural architecture
that additionally exploits syntactic information. We
have additionally shown that our model can dimin-
ish the negative effects of polysemy and that it
exhibits stable performance across languages.

As future work, we plan to develop similar
models based on explicit specialization tensors
for detecting symmetric relations (e.g., synonymy,
antonymy). We will also seek to exploit the Dual
Tensor model in different downstream tasks, e.g.,
hypernymy detection for taxonomy induction (Far-
alli et al., 2017) or recognizing textual entailment.

Downloads. We make the code of the models and
all datasets available at https://bitbucket.
org/gg42554/dual-tensors/.
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son, Milica Gašić, Lina M. Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vectors to
linguistic constraints. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. pages 142–148.

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. Patty: a taxonomy of relational pat-
terns with semantic types. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning. pages 1135–1145.

1766



Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. pages 1955–
1961.

Patrick Pantel and Marco Pennacchiotti. 2006.
Espresso: Leveraging generic patterns for automati-
cally harvesting semantic relations. In Proceedings
of the 21st International Conference on Compu-
tational Linguistics and the 44th Annual Meeting
of the Association for Computational Linguistics.
pages 113–120.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing. pages 1532–1543.

Laura Rimell. 2014. Distributional lexical entailment
by topic coherence. In Proceedings of the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics. pages 511–519.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of the 25th Inter-
national Conference on Computational Linguistics.
pages 1025–1036.

Benoı̂t Sagot and Darja Fišer. 2008. Building a free
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