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Abstract

Neural Machine Translation (NMT) lays
intensive burden on computation and
memory cost. It is a challenge to de-
ploy NMT models on the devices with
limited computation and memory budgets.
This paper presents a four stage pipeline to
compress model and speed up the decod-
ing for NMT. Our method first introduces
a compact architecture based on convo-
lutional encoder and weight shared em-
beddings. Then weight pruning is ap-
plied to obtain a sparse model. Next, we
propose a fast sequence interpolation ap-
proach which enables the greedy decod-
ing to achieve performance on par with the
beam search. Hence, the time-consuming
beam search can be replaced by simple
greedy decoding. Finally, vocabulary se-
lection is used to reduce the computation
of softmax layer. Our final model achieves
10× speedup, 17× parameters reduction,
<35MB storage size and comparable per-
formance compared to the baseline model.

1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015) has recently gained popu-
larity in solving the machine translation problem.
Although NMT has achieved state-of-the-art per-
formance for several language pairs (Jean et al.,
2015; Wu et al., 2016), like many other deep learn-
ing domains, it is both computationally intensive
and memory intensive. This leads to a challenge of
deploying NMT models on the devices with lim-
ited computation and memory budgets.
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Numerous approaches have been proposed for
compression and inference speedup of neural net-
works, including but not limited to low-rank ap-
proximation (Denton et al., 2014), hash function
(Chen et al., 2015), knowledge distillation (Hin-
ton et al., 2015), quantization (Courbariaux et al.,
2015; Han et al., 2016; Zhou et al., 2017) and spar-
sification (Han et al., 2015; Wen et al., 2016).

Weight pruning and knowledge distillation have
been proved to be able to compress NMT mod-
els (See et al., 2016; Kim and Rush, 2016; Fre-
itag et al., 2017). The above methods reduce the
parameters from a global perspective. However,
embeddings dominate the parameters in a rela-
tively compact NMT model even if subword (Sen-
nrich et al., 2016) (typical about 30K) is used.
Character-aware methods (Ling et al., 2015; Lee
et al., 2016) have fewer embeddings while suffer
from slower decoding speed (Wu et al., 2016). Re-
cent work by Li et al. (2016) has shown that weight
sharing can be adopted to compress embeddings
in language model. We are interested in applying
embeddings weight sharing to NMT.

As for decoding speedup, Gehring et al. (2016);
Kalchbrenner et al. (2016) tried to improve the
parallelism in NMT by substituting CNNs for
RNNs . Kim and Rush (2016) proposed sequence-
level knowledge distillation which allows us to
replace beam search with greedy decoding. Gu
et al. (2017) exploited trainable greedy decoding
by the actor-critic algorithm (Konda and Tsitsiklis,
2002). Wu et al. (2016) evaluated the quantized in-
ference of NMT. Vocabulary selection (Jean et al.,
2015; Mi et al., 2016; L’Hostis et al., 2016) was
commonly used to speed up the softmax layer.
Search pruning was also applied to speed up beam
search (Hu et al., 2015; Wu et al., 2016; Freitag
and Al-Onaizan, 2017). Compared to search prun-
ing, the speedup of greedy decoding is more at-
tractive. Knowledge distillation improves the per-
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Figure 1: Our network architecture. The 2-component word representation contains class embeddings and location embed-
dings. Position embeddings are concatenated to convey the absolute positional information of each source word.

formance of greedy decoding while the method
needs to run beam search over the training set, and
therefore results in inefficiency for tens of millions
of corpus. The trainable greedy decoding using
a relatively sophisticated training procedure. We
prefer a simple and fast approach that allows us to
replace beam search with the greedy search.

In this work, a novel approach is proposed to
improve the performance of greedy decoding di-
rectly and the embeddings weight sharing is intro-
duced into NMT. We investigate the model com-
pression and decoding speedup for NMT from
the views of network architecture, sparsification,
computation and search strategy, and test the per-
formance of their combination. Specifically, we
present a four stage pipeline for model compres-
sion and decoding speedup. Firstly, we train a
compact NMT model based on convolutional en-
coder and weight sharing. The convolutional en-
coder works well with smaller model size and is
robust for pruning. Weight sharing further reduces
the number of embeddings by several folds. Then
weight pruning is applied to get a sparse model.
Next, we propose fast sequence interpolation to
improve the performance of greedy decoding di-
rectly. This approach uses batched greedy decod-
ing to obtain samples and therefore is more effi-
cient than Kim and Rush (2016). Finally, we use
vocabulary selection to reduce the computation of
the softmax layer. Our final model achieves 10×
speedup, 17× parameters reduction, <35MB stor-
age size and comparable performance compared to
the baseline model.

2 Method

2.1 Compact Network Architecture

Our network architecture is illustrated in Figure 1.
This architecture works well with fewer parame-
ters, which allows us to match the performance of
the baseline model at lower capacity. The convo-
lutional encoder is similar to Gehring et al. (2016),
which consists of two convolutional neural net-
works: CNN-a for attention score computation and
CNN-c for the conditional input to be fed to the de-
coder. The CNNs are constructed by blocks with
residual connections (He et al., 2015). We use
the relu61 non-linear activation function instead of
tanh in Gehring et al. (2016) and achieve better
training stability.

To compress the embeddings, the cluster
based 2-component word representation is intro-
duced: we cluster the words into C classes by
word2vector2 (Mikolov et al., 2013), and each
class contains up to L words. Then the con-
ventional embedding lookup table is replaced by
C + L unique vectors. For each word, we first
do a lookup from C class embeddings according
to which cluster the word belongs, next we do
another lookup from L location embeddings ac-
cording to the location of the word. We concate-
nate the results of the two embedding lookup as
the 2-component word representation. As a result,
the number of embeddings is reduced from about
C×L to C+L. Referring to Gehring et al. (2016),
position embeddings are concatenated to convey
the absolute positional information of each source
word within a sentence.

1Computes relu6: min(max(features, 0), 6).
2https://code.google.com/archive/p/word2vec
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Reference (Y):

Sample (S):

Interpolated Sample:

replace

the official said the grenade explosion did not cause any casualties or damage .

the official said the grenade blast did not cause any casualties or damage .

the official said the grenade blast did not cause any death or injury nor any damage .

Boundary words

Figure 2: Editing operation. We search for subsequences with the same boundary words between S and Y . The words within
the boundary words can be different. Then we replace the subsequence in S by the subsequence in Y .

2.2 Weight Pruning

Then the iterative pruning (Han et al., 2015) is ap-
plied to obtain a sparse network, which allows us
to use sparse matrix storage. In order to further re-
duce the storage size, most sparse matrix index of
our pruned model is stored using uint8 and uint16
depend on the matrix dimension.

2.3 Fast Sequence Interpolation

Let (X,Y ) be a source-target sequence pair.
Given X as input, S is the corresponding greedy
decoding result using a well trained model. Then
we make two assumptions:
(1) Let S̃ be a sequence close to S. If training
with (X, S̃), S̃ will replace S to become the result
of greedy decoding with a probability P (S̃, S).
(2) The following relationship holds:{

P (S̃, S) ∝ sim(S̃, S)
sim(S̃, S) > sim(Y, S)

where sim is a function measuring closeness such
as edit-distance. If S̃ has higher evaluation metric3

(we write as E) than S, according to (2) we have:{
P (S̃, S) > P (Y, S)
E(S̃, Y ) > E(S, Y )

We note that using S̃ as a label is more attractive
than Y for improving the performance of greedy
decoding. The reason is that S and Y are often
quite different (Kim and Rush, 2016), resulting in
a relatively low P (Y, S). We bridge the gap be-
tween S and Y by interpolating inner sequence
between them. Specifically, we edit S toward Y ,
which can be seen as interpolation. Editing is a
heuristic operation as illustrated in Figure 2. Con-
cretely, let Ss be a subsequence of S and let Ys be

3We use smoothed sentence-level BLEU (Chen and
Cherry, 2014).

Algorithm 1 Editing algorithm of fast sequence
interpolation.

Input: (X,Y, S, k): (X, Y ) is a sequence pair in
training data. S is the result of the greedy
decoding using source sequence X . k is the
maximum number of tokens in replaced sub-
sequence of S or Y .

Output: S̃: the edited sample.
1: for si in S, yj in Y do
2: if (si == yj) then
3: for 1 ≤ p ≤ k + 1, 1 ≤ q ≤ k + 1 do
4: if (si+p == yj+q) then
5: Ss = (si, ..., sp)
6: Y s = (yj , ..., yq)
7: Break
8: end if
9: end for

10: end if
11: Replace subsequence of S: Ss ← Ys

12: Break
13: end for
14: S̃ ← S

a subsequence of Y . Given that:
S = (s0, ..., sp, Ss, sq, ..., sn)
Y = (y0, ..., sp, Ys, sq, ..., ym)
length(Ss) 6 k
length(Ys) 6 k

where k is the length limit of Ss and Ys. The in-
terpolated sample S̃ has the following form:

S̃ = (s0, ..., sp, Ys, sq, ..., sn)

To obtain the target sequence Ỹ for training, we
substitute S̃ for Y according to the following rule:

Ỹ =
{

S̃ E(S̃, Y )− E(S, Y ) > ε
Y otherwise

where ε aims to ensure the quality of S̃. We define
substitution rate as the ratio of S̃ substituting Y
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over the training set. In summary, the following
procedure is done iteratively: (1) get a new batch
of (X, Y ), (2) run batched greedy decoding on X ,
(3) edit S to obtain S̃, (4) get Ỹ according to the
substitution rule, (5) train on the batched (X, Ỹ ).

2.4 Vocabulary Selection

We use word alignment4 (Dyer et al., 2013) to
build a candidate dictionary. For each source
word, we build a list of candidate target words.
When decoding, top n candidates of each word are
merged to form a short-list for softmax layer. We
do not apply vocabulary selection in training.

3 Experiments

3.1 Setup

Datasets and Evaluation Metrics: We eval-
uate these approaches on two pairs of lan-
guages: English-German and Chinese-English.
Our English-German data comes from WMT’145.
The training set consists of 4.5M sentence pairs
with 116M English words and 110M German
words. We choose newstest2013 as the develop-
ment set and newstest2014 as the test set. The
Chinese-English training data consists of 1.6M
pairs with 34M Chinese words and 38M English
words. We choose NIST 2002 as the development
set and NIST 2005 as the test set.

For the two translation task, top 50K and 30k
most frequent words are kept respectively. The
rest words are replaced with UNK. We only use
sentences of length up to 50 symbols. We do not
use any UNK handling methods for fair compar-
ison. The evaluation metric is case-insensitive
BLEU (Papineni et al., 2002) as calculated by the
multi-bleu.perl script.

Hyper-parameters: For the baseline model, we
use a 2-layer bidirectional GRU encoder (1 layer
in each direction) and a 1-layer GRU decoder. In
BaselineL, the embedding size is 512 and the hid-
den size is 1024. In BaselineS, the embedding size
is 256 and the hidden size is 512. Our baseline
models are similar to the architecture in DL4MT6.
For the convolutional encoder model, 512 hidden
units are used for the 6-layer CNN-a, and 256 hid-
den units are used for the 8-layer CNN-c. The em-
bedding size is 256. The hidden size of the de-

4https://github.com/clab/fast align
5http://statmt.org/wmt14
6https://github.com/nyu-dl/dl4mt-tutorial
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Figure 3: The performance and the substitution rate of FSI
on English-German (newstest2013) development set with
varying threshold ε and subsequence length limit k.

coder is 512. The kernel width in CNNs is 3. The
number of clusters for both source and target vo-
cabulary is 6. The editing rule for fast sequence
interpolation is detailed in Algorithm 1. We use
the top 50 candidates for each source word in vo-
cabulary selection. The initial dropout rate is 0.3,
and gradually decreases to 0 as the pruning rate
increases. We use AdaDelta optimizer and clip
the norm of the gradient to be no more than 1.
Our methods are implemented with TensorFlow7

(Abadi et al., 2015). We run one sentence decod-
ing for all models under the same computing envi-
ronment8.

3.2 Results and Discussions

Our experimental results are summarized in Ta-
ble 1. The convolutional encoder model matches
the performance of the GRU encoder model with
about 2× fewer parameters. Combining with
embeddings weight sharing results in a compact
model that has about 3.5× fewer parameters than
the baseline model. After pruning 80% of the
weights, we reduce the parameters by about 17×
with only a decrease of 0.2 BLEU. The storage
size of the final models is about 30MB, which is
easily fit into the memory of a mobile device. We
find that the pruning rate of embeddings is highest
even if weight sharing is used. Furthermore, the
pruning rate of CNN layers is higher than GRU
layers. This reveals that the CNNs are more robust
for pruning than RNNs. The pruning rate of each

7https://github.com/zxw866/CFNMT
8We also test batched greedy decoding with a batch size

128. We find that batched greedy decoding is nearly ten times
faster than one sentence greedy decoding. We conjecture that
our current one sentence decoding implementation does not
fully make use of available hardware optimized for parallel
computations. We can obtain a higher speedup with well op-
timized one sentence decoding implementation.
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English→German Chinese→English
Approach Params Storage BLEUk:10/1 Tdec Params Storage BLEUk:10/1 Tdec

BaselineL 110m 423MB 17.84/16.23 5145 80m 305MB 32.47/28.89 1914
BaselineS 47m 179MB 15.81/14.02 4056 31m 121MB 30.95/26.68 1412
Conv-Enc 50m 193MB 18.17/16.35 4159 35m 135MB 32.72/29.13 1437
+EWS 31m 119MB 17.85/15.89 4096 23m 90MB 32.44/28.62 1413
+Prune 80% 6m 33MB 17.63/16.02 4112 5m 25MB 32.78/28.95 1484
+FSI 6m 33MB 17.63/17.21 776 5m 25MB 32.69/31.74 297
+VS 6m 33MB 17.61/17.18 512 5m 25MB 32.63/31.67 198

Table 1: Results on English-German (newstest2014) and Chinese-English (nist05) test sets. EWS: embeddings weights shar-
ing. VS: vocabulary selection. FSI: fast sequence interpolation. k: beam size. Tdec: decoding time on the test set in seconds.
Pruned models are saved as compressed sparse row (CSR) format with low bit index. Decoding runs on CPU in a preliminary
implementation with TensorFlow, sparse matrix multiplication is unused for pruned models. After applying FSI, beam search
with a beam size 10 is replaced by greedy decoding when recording Tdec.

Prune % EN→DE CN→EN
0% 17.85 32.44

50% 17.83 32.47
60% 17.91 32.55
70% 17.81 32.65
75% 17.78 32.81
80% 17.63 32.78
85% 17.36 32.84

Table 2: BLEU on test sets with varying pruning rate.
Model config: Conv Encoder+EWS.

class number EN→DE CN→EN
225 15.85 30.44
10 17.83 32.78

6 18.85 34.44
4 18.96 34.60
2 19.11 34.71

Table 3: BLEU on development sets with varying class
number. Model config: Conv Encoder.

layer and the performance with increasing pruning
rate are detailed in Figure 4. The compact archi-
tecture reduces the decoding time by only 20%.
The reason is that the decoding time is dominated
by the softmax layer. After applying fast sequence
interpolation, we replace beam search with greedy
decoding, which results in a speedup of over 5×
with little loss in performance. We find that the
details of the editing rules have little effect on FSI.
Because we only accept S̃ that BLEU improved
by more than the threshold ε, otherwise we choose
the gold target sequence. Figure 3 shows that ap-
propriate substitution rate is important for fast se-
quence interpolation. We conjecture that edited
samples are still worse than gold target sequences,
and therefore relatively high substitution rate may
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Figure 4: Pruning rate of different layers.

lead to instability in training. The speedup of vo-
cabulary selection is only about 30%. It shows that
the softmax layer no longer dominates the decod-
ing time when using greedy search.

4 Conclusion and Future Work

We investigate the model compression and de-
coding speedup for NMT from the views of net-
work architecture, sparsification, computation and
search strategy, and verify the performance on
their combination. A novel approach is proposed
to improve the performance of greedy decoding
and the embeddings weight sharing is introduced
into NMT. In the future, we plan to integrate
weight quantization into our method.
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