
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1340–1344
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Learning to Rank Semantic Coherence for Topic Segmentation

Liang Wang1 Sujian Li1,2 Yajuan Lyu3 Houfeng Wang1,2

1Key Laboratory of Computational Linguistics, Peking University, MOE, China
2Collaborative Innovation Center for Language Ability, Xuzhou, Jiangsu, China

3Baidu Inc., Beijing, China
{intfloat,lisujian,wanghf}@pku.edu.cn lvyajuan@baidu.com

Abstract

Topic segmentation plays an important
role for discourse parsing and information
retrieval. Due to the absence of train-
ing data, previous work mainly adopts un-
supervised methods to rank semantic co-
herence between paragraphs for topic seg-
mentation. In this paper, we present an
intuitive and simple idea to automatically
create a “quasi” training dataset, which in-
cludes a large amount of text pairs from
the same or different documents with dif-
ferent semantic coherence. With the train-
ing corpus, we design a symmetric CNN
neural network to model text pairs and
rank the semantic coherence within the
learning to rank framework. Experiments
show that our algorithm is able to achieve
competitive performance over strong base-
lines on several real-world datasets.

1 Introduction

The goal of topic segmentation is to segment a
document into several topically coherent parts,
with different parts corresponding to different top-
ics. Topic segmentation enables better understand-
ing of document structure, and makes long doc-
ument much easier to navigate. It also provides
helpful information for tasks such as information
retrieval, topic tracking etc (Purver, 2011).

Due to the lack of large scale annotated topic
segmentation dataset, previous work mainly focus
on unsupervised models to measure the coherence
between two textual segments. The intuition be-
hind unsupervised models is that two adjacent seg-
ments from the same topic are more coherent than
those from different topics. Under this intuition,
one direction of research attempts to measure co-
herence by computing text similarity. The typi-

cal methods include TextTiling (Hearst, 1997) and
its variants, such as C99 (Choi, 2000), TopicTil-
ing (Riedl and Biemann, 2012b) etc. The other di-
rection of research develops topic modeling tech-
niques to explore topic representation of text and
topic change between textual segments (Yam-
ron et al., 1998; Eisenstein and Barzilay, 2008;
Riedl and Biemann, 2012a; Du et al., 2013; Jameel
and Lam, 2013). With carefully designed gen-
erative process and efficient inference algorithm,
topic models are able to model coherence as latent
variables and outperform lexical similarity based
models.

Though unsupervised models make progress in
modeling text coherence, they mostly suffer from
one of the following two limitations. First, it is
not precise to measure coherence with text sim-
ilarity, since text similarity is just one aspect to
influence coherence. Second, many assumptions
and manually set parameters are usually involved
in the complex modeling techniques, due to the
absence of supervised information. To overcome
aforementioned limitations, we prefer to directly
model the text coherence by exploring possible su-
pervised information. Then, we can learn a func-
tion f(s1, s2) which takes two textual segments
s1 and s2 as input, and directly measure their se-
mantic coherence.

As we know, it is hard to directly compile and
collect a large number of samples with coher-
ence scores labeling. Here we propose an intu-
itive and simple strategy to automatically create
a “quasi” training corpus for supervision. It is a
common sense that the original documents writ-
ten by human are generally more coherent than
a patchwork of sentences or paragraphs randomly
extracted from different documents. In such cases,
two textual segments from the same document
are more coherent than those from different docu-
ments, and two segments from the same paragraph

1340

are more coherent than those from different para-
graphs. Then, we can get a large set of text pairs
with partial ordering relations, which denote some
text pairs are more coherent than other text pairs.
With these ordering information, we propose to
apply the learning to rank framework to model the
semantic coherence function f(s1, s2), based on
which topic boundaries are identified.

The next key problem is how to model and rep-
resent text pairs. It is fortunate that neural net-
works have emerged as a powerful tool for model-
ing text pairs (Lu and Li, 2013; Severyn and Mos-
chitti, 2015; Yin et al., 2015; Hu et al., 2014), free-
ing us from feature engineering. In this paper, we
develop a symmetric convolutional neural network
(CNN) framework, whose main idea is to jointly
model text representation and interaction between
texts. With our acquired large amount of training
data, our CNN-based method is capable of reason-
ably rank semantic coherence and further conduct
topic segmentation.

2 Model

2.1 Coherence Ordering between Text Pairs
In our work, we define f(s1, s2) as a function,
which returns a real number as semantic coherence
score of the text pair<s1,s2>. To model f(s1, s2)
of any text pair, we aim to explore the partial
ordering relations of coherence between different
text pairs, since it is hard to get a corpus with la-
beled coherence scores.

Next, we exploit the two types of ordering rela-
tions stated in Section 1. To formalize, we notate
a collection of documents as D. Each document
di ∈ D consists of several paragraphs, and each
paragraph pj ∈ di consists of several sentences.
We use T s:(s+k)

ij to represent a text segment cover-
ing k sentences starting from the s-th sentence in
document di’s j-th paragraph. To make symbols
less cluttered, we omit k and simply use T s

ij for
the same meaning. A text pair < T s

ij , T
s′
i′j′ > is a

tuple of two text segments.
The first one ordering relation is: coherence

score of a text pair from different documents is
lower than that from the same document. For-
mally, its mathematical expression is shown be-
low:

f(< T ·i·, T
·
i′· >) < f(< T ·jm, T

·
jm′ >),

i 6= i′,m 6= m′
(1)

where dot · means arbitrary value.

The second one is: coherence score of text pair
from different paragraphs is lower than those from
the same paragraph, as represented below.

f(< T ·ip, T
·
ip′ >) < f(< Tn

jq, T
n+k
jq >), p 6= p′

(2)
As our defined relations are partially ordering,

they have the properties of reflexivity, transitivity,
and antisymmetry, Then we can easily infer that
coherence score of a text pair from different docu-
ments is also lower than that from the same para-
graph.

2.2 Learning to Rank Semantic Coherence
Learning to rank is a widely used learning frame-
work in the field of information retrieval (Liu
et al., 2009). There are generally three formu-
lations (Li, 2011): pointwise ranking, pairwise
ranking, and listwise ranking. The goal is to learn
a ranking function f(w, tpi) → yi where tpi de-
notes a text pair <s1,s2>. f maps tpi to a real
value yi which is semantic coherence score in this
paper, w is weight vector. We examine both point-
wise ranking and pairwise ranking methods, list-
wise ranking is not naturally fit for our task, so it
is not discussed here.

2.2.1 Pointwise Ranking
For pointwise formulation, yi = f(w, tpi) ∈
[0, 1] computes inner product between weight vec-
tor w and text pair tpi’s representation vector hi.
Here we apply a sigmoid non-linearity function.

yi = σ(w · hi) (3)

Representation vectors hi of the text pair can
be jointly learned through a neural network, which
will be introduced in next subsection.

To conform to the partial ordering relations, we
score each training instance tpi as follows.

y∗i =

0, If tpi comes from different documents.
1, If tpi comes from same paragraph.
α, If tpi comes from different paragraphs.

where 0 < α < 1 and α is a hyper-parameter
chosen to maximize performance on validation
dataset.

WithN training instances, we formulate the co-
herence scoring as a regression problem and use
cross entropy as loss function:

min − 1
N

N∑
i=1

(yi log y∗i +(1−yi) log(1−y∗i)) (4)

1341

Generally speaking, pointwise ranking is sim-
ple, scalable and efficient to train.

2.2.2 Pairwise Ranking with Sampling
Pairwise formulation explicitly compares each
pair of training instance and requires a minimal
margin ε between their ranking score.

f(w, tpi) > f(w, tpj) + ε (5)

Here, the text pair tpi has a higher ranking score
than tpj , and yi = f(w, tpi) ∈ (−∞,+∞).
Without loss of generality, we set ε = 1 and use
squared hinge loss as optimization function.

min − 1
M

∑
i,j

max(0, 1 + yj − yi)2 (6)

where M is the number of pairs we need to com-
pare. As we can see, in our problem setting,
M ≈ N2, which makes M an extremely large
number when N ≈ 105.

To make training feasible, we adopt a straight-
forward sampling mechanism, which randomly
samples pairs from different groups to construct
a mini-batch on the fly during training.

Pairwise ranking is reported to have better per-
formance than pointwise ranking, but it is less ef-
ficient to train.

2.3 Semantic Coherence Neural Network

fully connected

max pooling

convolution

merge

embedding

score

fully connected

Figure 1: Semantic Coherence Neural Network

To model the text pair instances, we develop
a symmetric convolutional neural network (CNN)
architecture, as shown in Figure 1. Our model
consists of two symmetric CNN models, and the
two CNNs share their network configuration and

parameters. Each CNN converts one text into a
low-dimensional representation, and two gener-
ated text representation vectors are finally concate-
nated and fed into the scoring layer to get a real
value as the coherence score.

2.4 Inference
At test time, coherence scores between any two
adjacent paragraphs are computed. T − 1 para-
graph boundaries with lowest semantic coherence
score are chosen as topic boundaries, where T is
ground-truth number of topics.

This inference procedure is computationally ef-
ficient. Unlike TextTiling, it doesn’t need to calcu-
late a so-called “depth score”.

3 Experiments

3.1 Experimental Setup
Data In order to train our ranking neural net-
work, we use full English Wikipedia dump, which
consists of more than 5 million documents, to au-
tomatically construct text pairs.

For performance evaluation, we use topic seg-
mentation dataset from (Jeong and Titov, 2010)1.
This dataset consists of 864 manually labeled doc-
uments from four different areas, as shown in Ta-
ble 1.

News Lecture Report Biography
#documents 184 120 160 400

Table 1: Overview of four datasets.

Baselines To compare with our method,
TextTiling (Hearst, 1997), TopicTiling (Riedl and
Biemann, 2012b) and BayesSeg (Eisenstein and
Barzilay, 2008) are adopted as three baselines. We
use open source implementations of TextTiling2

and TopicTiling3, and results of BayesSeg are from
(Jeong and Titov, 2010).
Hyperparameters Our neural network imple-
mentation is based on Tensorflow (Abadi et al.,
2015). We use pre-trained 50 dimensional Glove
vectors (Pennington et al., 2014)4 for word em-
beddings initialization. Each text pair consists of
2 text segments, and each text segment consists of

1We do not compare with MultiSeg model proposed by
(Jeong and Titov, 2010), since our model is for single-
document topic segmentation while MultiSeg is for multi-
document topic segmentation.

2https://github.com/nltk/nltk/tree/develop/nltk/tokenize
3https://github.com/ldulcic/text-segmentation
4http://nlp.stanford.edu/projects/glove/

1342

News Lecture Report Biography
Pk WD F1 Pk WD F1 Pk WD F1 Pk WD F1

TextTiling 0.340 0.344 0.447 0.204 0.206 0.231 0.466 0.469 0.365 0.335 0.403 0.361
TopicTiling 0.415 0.436 0.338 0.359 0.379 0.571 0.288 0.296 0.383 0.381 0.423 0.390
BayesSeg 0.318 0.326 0.537 0.173 0.190 0.526 0.254 0.255 0.526 0.186 0.208 0.470
Ours-pair-finetune 0.180 0.181 0.570 0.200 0.202 0.560 0.263 0.263 0.492 0.223 0.228 0.448
Ours-point-finetune 0.182 0.183 0.572 0.197 0.200 0.569 0.245 0.247 0.511 0.229 0.232 0.442
Ours-pair-static 0.176 0.178 0.580 0.177 0.180 0.600 0.252 0.253 0.518 0.220 0.224 0.472
Ours-point-static 0.173 0.175 0.587 0.176 0.179 0.608 0.240 0.241 0.529 0.216 0.219 0.479

Table 2: Experimental results. (a) Ours-pair-finetune is pairwise ranking model with word embedding
fine-tuning. (b) Ours-point-static is pointwise ranking model without word embedding fine-tuning, etc.

no more than 3 sentences. Stop words and dig-
its are removed from input text, and all words are
converted to lowercase. We pad input sequence
to 40 tokens. In order to capture information of
different granularity, convolution window size of
both 2 and 3 are used, with 64 filters for each win-
dow size. L2 regularization coefficient is set to
0.001. Adam algorithm (Kingma and Ba, 2014) is
used for loss function minimization. We set α to
0.7 for pointwise ranking.
Evaluation System performance is evaluated
according to three metrics: Pk (Beeferman et al.,
1999), WindowDiff(WD) (Pevzner and Hearst,
2002) and F1 score. Pk and WD are calculated
based on sliding windows, and can assign partial
score to incorrect segmentation. Note that Pk and
WD are penalty metrics, smaller value means bet-
ter performance.

3.2 Results and Analysis

Experimental results are shown in Table 2. Our
proposed model is examined in 4 different set-
tings, including whether to use pointwise ranking
or pairwise ranking algorithm, and whether to
fine-tune word embeddings or not. The best
model Ours-pointwise-static is able to achieve
better or competitive performance compared to
BayesSeg and TopicTiling according to all three
metrics, especially on News dataset. TopicTiling
is reported to perform well on heuristically
constructed dataset (Riedl and Biemann, 2012b),
but behave mediocre on manually labeled dataset
in our experiments.

One interesting phenomenon is that fine-tuned
word embeddings has negative impact on over-
all performance, which is generally not the case
in many NLP tasks. The reason may be that our
task involves domain adaptation, and word embed-

dings should generalize well across different do-
mains rather than adapt to Wikipedia text. Though
our proposed sampling mechanism enables easier
training of pairwise ranking model, it inevitably
loses some ordering information, which makes
pairwise ranking model perform slightly worse
than pointwise ranking model.

Text Pair Score
A: A variety of techniques have been directed toward the

study of blood group antibodies.
B: If I’d work on my place-kicking he thought he could use me.

0.022

A: A second miracle is required for her to proceed to canonization.
B: Mother Teresa inspired a variety of commemorations.

0.587

A: Plants have an amazing ability to respond to stimuli
from their environment.

B: These responses to environmental factors are known as tropisms.
0.861

Table 3: Coherence Score between Text Pairs.

To illustrate what the model has learned, we
show some typical examples of coherence score
for text pair <A,B> in Table 3. There is almost no
lexical overlap for all the three text pairs, cosine
similarity between one-hot vectors would surely
fail to rank them, even though “canonization” and
“commemorations”, “respond” and “responses”,
“environment” and “environmental” are closely
related semantically. As we expect, our proposed
model is able to capture such semantic related-
ness and assign reasonable score to each text pair,
which is a key to topic boundary detection.

4 Conclusion

This paper proposes a novel approach for topic
segmentation by learning to rank semantic coher-
ence. Symmetric convolutional neural network is
used for text pair modeling. Training data can be
automatically constructed from unlabeled docu-
ments, and no labeled data is needed. Experiments
show promising performance on dataset from var-
ious domains.

1343

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments on this paper. This work was
partially supported by National Natural Science
Foundation of China (61572049 and 61333018)
and Baidu-Peking University Joint Project. The
correspondence author of this paper is Sujian Li.

References
Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2015. Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available
from tensorflow. org 1.

Doug Beeferman, Adam Berger, and John Lafferty.
1999. Statistical models for text segmentation. Ma-
chine learning 34(1-3):177–210.

Freddy YY Choi. 2000. Advances in domain indepen-
dent linear text segmentation. In Proceedings of the
1st North American chapter of the Association for
Computational Linguistics conference. Association
for Computational Linguistics, pages 26–33.

Lan Du, Wray L Buntine, and Mark Johnson. 2013.
Topic segmentation with a structured topic model.
In HLT-NAACL. pages 190–200.

Jacob Eisenstein and Regina Barzilay. 2008. Bayesian
unsupervised topic segmentation. In Proceedings
of the Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, pages 334–343.

Marti A Hearst. 1997. Texttiling: Segmenting text into
multi-paragraph subtopic passages. Computational
linguistics 23(1):33–64.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network architec-
tures for matching natural language sentences. In
Advances in neural information processing systems.
pages 2042–2050.

Shoaib Jameel and Wai Lam. 2013. An unsupervised
topic segmentation model incorporating word order.
In Proceedings of the 36th international ACM SIGIR
conference on Research and development in infor-
mation retrieval. ACM, pages 203–212.

Minwoo Jeong and Ivan Titov. 2010. Multi-document
topic segmentation. In Proceedings of the 19th ACM
international conference on Information and knowl-
edge management. ACM, pages 1119–1128.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Hang Li. 2011. A short introduction to learning to
rank. IEICE TRANSACTIONS on Information and
Systems 94(10):1854–1862.

Tie-Yan Liu et al. 2009. Learning to rank for informa-
tion retrieval. Foundations and Trends in Informa-
tion Retrieval 3(3):225–331.

Zhengdong Lu and Hang Li. 2013. A deep architec-
ture for matching short texts. In Advances in Neural
Information Processing Systems. pages 1367–1375.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543.

Lev Pevzner and Marti A Hearst. 2002. A critique and
improvement of an evaluation metric for text seg-
mentation. Computational Linguistics 28(1):19–36.

Matthew Purver. 2011. Topic segmentation. Spoken
language understanding: systems for extracting se-
mantic information from speech pages 291–317.

Martin Riedl and Chris Biemann. 2012a. Text seg-
mentation with topic models. Journal for Lan-
guage Technology and Computational Linguistics
27(1):47–69.

Martin Riedl and Chris Biemann. 2012b. Topictiling:
a text segmentation algorithm based on lda. In Pro-
ceedings of ACL 2012 Student Research Workshop.
Association for Computational Linguistics, pages
37–42.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
pages 373–382.

Jonathan P Yamron, Ira Carp, Larry Gillick, Steve
Lowe, and Paul van Mulbregt. 1998. A hidden
markov model approach to text segmentation and
event tracking. In Acoustics, Speech and Signal Pro-
cessing, 1998. Proceedings of the 1998 IEEE In-
ternational Conference on. IEEE, volume 1, pages
333–336.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2015. Abcnn: Attention-based convo-
lutional neural network for modeling sentence pairs.
arXiv preprint arXiv:1512.05193 .

1344

