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Abstract

Selectional preferences have long been
claimed to be essential for coreference res-
olution. However, they are mainly mod-
eled only implicitly by current corefer-
ence resolvers. We propose a dependency-
based embedding model of selectional
preferences which allows fine-grained
compatibility judgments with high cover-
age. We show that the incorporation of
our model improves coreference resolu-
tion performance on the CoNLL dataset,
matching the state-of-the-art results of a
more complex system. However, it comes
with a cost that makes it debatable how
worthwhile such improvements are.

1 Introduction

Selectional preferences have long been claimed to
be useful for coreference resolution. In his sem-
inal work on “Resolving Pronominal References”
Hobbs (1978) proposed a semantic approach that
requires reasoning about the “demands the pred-
icate makes on its arguments.” For example, se-
lectional preferences allow resolving the pronoun
it in the text “The Titanic hit an iceberg. It sank
quickly.” Here, the predicate sink ‘prefers’ certain
subject arguments over others: It is plausible that
a ship sinks, but implausible that an iceberg does.

Work on the automatic acquisition of selectional
preferences has shown considerable progress (Da-
gan and Itai, 1990; Resnik, 1993; Agirre and Mar-
tinez, 2001; Pantel et al., 2007; Erk, 2007; Ritter
et al., 2010; Van de Cruys, 2014). However, to-
day’s coreference resolvers (Martschat and Strube,
2015; Wiseman et al., 2016; Clark and Manning,
2016a, i.a.) capture selectional preferences only
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implicitly at best, e.g., via a given mention’s de-
pendency governor and other contextual features.

Since negative results do not often get reported,
there is no clear evidence in the literature re-
garding the non-utility of particular knowledge
sources. Consequently, an absence of the explicit
modeling of selectional preferences in the recent
literature is an indicator that incorporating this
knowledge source has not been very successful for
coreference resolution.

More than ten years ago, Kehler et al. (2004)
declared the “non-utility of predicate-argument
structures for pronoun resolution” and observed
that minor improvements on a small dataset were
due to fortuity rather than selectional preferences
having captured meaningful world knowledge re-
lations.

The claim by Kehler et al. (2004) is based on
selectional preferences extracted from a, by cur-
rent standards, small number of 2.8m predicate-
argument pairs. Furthermore, they employ a sim-
ple (linear) maximum entropy classifier, which re-
quires manual definition of feature combinations
and is unlikely to fully capture the complex inter-
action between selectional preferences and other
coreference features. Therefore, it is worth revis-
iting how a better selectional preference model af-
fects the performance of a more complex corefer-
ence resolver.

In this work, we propose a fine-grained, high-
coverage model of selectional preferences and
study its impact on a state-of-the-art, non-linear
coreference resolver. We show that the incorpora-
tion of our selectional preference model improves
the performance. However, it is debatable whether
such small improvements, that cost notable extra
time or resources, are advantageous.
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Figure 1: Dependency-based embedding model of selectional preferences.

2 Modeling Selectional Preferences

The main design choice when modeling selec-
tional preferences is the selection of a relation in-
ventory, i.e. the concepts and entities that can be
relation arguments, and the semantic relationships
that hold between them.

Prior work has studied many relation invento-
ries. Predicate-argument statistics for word-word
pairs (eat, food)1 are easy to obtain but do not
generalize to unseen pairs (Dagan and Itai, 1990).
Class-based approaches generalize via word-class
pairs (eat, /nutrient/food) (Resnik, 1993) or class-
class pairs (/ingest, /nutrient/food) (Agirre and
Martinez, 2001), but require disambiguation of
words to classes and are limited by the coverage
of the lexical resource providing such classes (e.g.
WordNet).

Other possible relation inventories include se-
mantic representations such as FrameNet frames
and roles, event types and arguments, or abstract
meaning representations. While these semantic
representations are arguably well-suited to model
meaningful world knowledge relationships, auto-
matic annotation is limited in speed and accu-
racy, making it difficult to obtain a large num-
ber of such “more semantic” predicate-argument
pairs. In comparison, syntactic parsing is both
fast and accurate, making it trivial to obtain a
large number of accurate, albeit “less semantic”
predicate-argument pairs. The drawback of a syn-
tactic model of selectional preferences is suscep-
tibility to lexical and syntactic variation. For ex-
ample, The Titanic sank and The ship went under
differ lexically and syntactically, but would have
the same or a very similar representation in a se-
mantic framework such as FrameNet.

Our model of selectional preferences (Figure 1)

1Examples due to Agirre and Martinez (2001).

overcomes this drawback via distributed represen-
tation of predicate-argument pairs, using (syntac-
tic) dependencies that were specifically designed
for semantic downstream tasks, and by resolving
named entities to their fine-grained entity types.

Distributed representation. Inspired by Struc-
tured Vector Space (Erk and Padó, 2008), we
embed predicates and arguments into a low-
dimensional space in which (representations of)
predicate slots are close to (representations of)
their plausible arguments, as should be arguments
that tend to fill the same slots of similar predi-
cates, and predicate slots that have similar argu-
ments. For example, captain should be close to
pilot, ship to airplane, the subject of steer close to
both captain and pilot, and also to, e.g., the subject
of drive. Such a space allows judging the plausi-
bility of unseen predicate-argument pairs.2

We construct this space via dependency-based
word embeddings (Levy and Goldberg, 2014). To
see why this choice is better-suited for modeling
selectional preferences than alternatives such as
word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014), consider the following ex-
ample:

captain
nsubj←−− steers

dobj−−→ ship
:: ::

pilot
nsubj←−− steers

dobj−−→ airplane

Here, captain and ship, have high syntagmatic
similarity, i.e., these words are semantically re-
lated and tend to occur close to each other. This
also holds for pilot and airplane. In contrast, cap-
tain and pilot, as well as ship and airplane have
high paradigmatic similarity, i.e., they are seman-

2Prior work generalizes to unseen predicate-argument
pairs via WordNet synsets (Resnik, 1993), a generalization
corpus (Erk, 2007), or tensor factorization (Van de Cruys,
2010). Closest to our approach is neural model by Van de
Cruys (2014), which, however, has much lower coverage
since it is limited to 7k verbs and 30k arguments.
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tically similar and occur in similar contexts. A
model of selectional preferences requires paradig-
matic similarity: The representations of captain
and pilot in such a model should be similar, since
they both can plausibly fill the subject slot of the
predicate steer. Due to their use of linear con-
text windows, word2vec and GloVe capture syn-
tagmatic similarity, while dependency-based em-
beddings capture paradigmatic similarity (cf. Levy
and Goldberg, 2014).

Enhanced++ dependencies. Due to distributed
representation, our model generalizes over syn-
tactic variation such as active/passive alternations:
For example, steer@dobj3 is highly similar to
steer@nsubjpass (see Appendix for more exam-
ples). To further mitigate the effect of employ-
ing syntax as a proxy for semantics, we use En-
hanced++ dependencies (Schuster and Manning,
2016). Enhanced++ dependencies aim to sup-
port semantic applications by modifying syntac-
tic parse trees to better reflect relations between
content words. For example, the plain syntactic
parse of the sentence Both of the girls laughed
identifies Both as subject of laughed. The En-
hanced++ representation introduces a subject re-
lation between girls and laughed, which allows
learning more meaningful selectional preferences:
Our model should learn that girls (and other hu-
mans) laugh, while learning that an unspecified
both laughs is not helpful.

Fine-grained entity types. A good model of
selectional preferences needs to generalize over
named entities. For example, having encountered
sentences like The Titanic sank, our model should
be able to judge the plausibility of an unseen sen-
tence like The RMS Lusitania sank. For popular
named entities, we can expect the learned repre-
sentations of Titanic and RMS Lusitania to be sim-
ilar, allowing our model to generalize, i.e., it can
judge the plausibility of The RMS Lusitania sank
by virtue of the similarity between Titanic and
RMS Lusitania. However, this will not work for
rare or emerging named entities, for which no, or
only low-quality, distributed representations have
been learned. To address this issue, we incorpo-
rate fine-grained entity typing (Ling and Weld).
For each named entity encountered during train-
ing, we generate an additional training instance
by replacing the named entity with its entity type,

3In this work, a predicate’s argument slots are denoted
predicate@slot.

e.g. (Titanic, sank@nsubj) yields (/product/ship,
sank@nsubj).

3 Implementation

We train our model by combining term-context
pairs from two sources. Noun phrases and their
dependency context are extracted from GigaWord
(Parker et al., 2011) and entity types in context
from Wikilinks (Singh et al., 2012). Term-context
pairs are obtained by parsing each corpus with
the Stanford CoreNLP dependency parser (Man-
ning et al., 2014). After filtering, this yields
ca. 1.4 billion phrase-context pairs such as (Ti-
tanic, sank@nsubj) from GigaWord and ca. 12.9
million entity type-context pairs such as (/prod-
uct/ship, sank@nsubj) from Wikilinks. Finally,
we train dependency-based embeddings using the
generalized word2vec version by Levy and Gold-
berg (2014), obtaining distributed representations
of selectional preferences. To identify fine-grained
types of named entities at test time, we first per-
form entity linking using the system by Heinzer-
ling et al. (2016), then query Freebase (Bollacker
et al., 2008) for entity types and apply the mapping
to fine-grained types by Ling and Weld.

The plausibility of an argument filling a partic-
ular predicate slot can now be computed via the
cosine similarity of their associated embeddings.
For example, in our trained model, the similarity
of (Titanic, sank@nsubj) is 0.11 while the similar-
ity of (iceberg, sank@nsubj) is -0.005, indicating
that an iceberg sinking is less plausible.

4 Do Selectional Preferences Benefit
Coreference Resolution?

We now investigate the effect of incorporating se-
lectional preferences, implicitly and explicitly, in
coreference resolution.

Figure 2 shows the selectional preference sim-
ilarity of 10.000 coreferent and 10.000 non-
coreferent mention pairs sampled randomly from
the CoNLL 2012 training set. As we can see,
while coreferent mention pairs are more similar
than non-coreferent mention pairs according to the
selectional preference similarity, there is not a di-
rect relation between the similarity values and the
coreferent relation. This indicates that coreference
does not have a linear relation to the selectional
preference similarities. However, it is worth in-
vestigating how these similarity values affect the
overall performance when they are combined with
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MUC B3 CEAFe CoNLL LEA
R P F1 R P F1 R P F1 Avg. F1 R P F1

baseline 70.09 80.01 74.72 57.64 70.09 63.26 54.47 63.92 58.82 65.60 54.02 66.45 59.59
−gov 70.10 79.96 74.71 57.51 70.31 63.27 54.41 64.08 58.85 65.61 53.93 66.76 59.66
+SP 70.85 79.31 74.85 58.93 69.16 63.64 55.25 63.78 59.21 65.90 55.29 65.53 59.98
Reinforce 70.98 78.81 74.69 58.97 69.05 63.61 55.66 63.28 59.23 65.84 55.31 65.32 59.90

Table 1: Results on the CoNLL 2012 test set.

Figure 2: Selectional preference similarities of
10k coreferent and 10k non-coreferent mention
pairs. Lines and boxes represent quartiles, di-
amonds outliers, points subsamples with jitter.
Coreferent mention pairs are more similar than
non-coreferent mention pairs with a Matthews cor-
relation coefficient of 0.30, indicating weak to
moderate correlation.

other knowledge sources in a non-linear way.

We select the ranking model of deep-coref
(Clark and Manning, 2016b) as our baseline.
deep-coref is a neural model that combines the in-
put features through several hidden layers. Base-
line in Table 1 reports our baseline results on the
CoNLL 2012 test set. The results are reported
using MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), CEAFe (Luo, 2005), the average
F1 score of these three metrics, i.e. CoNLL score,
and LEA (Moosavi and Strube, 2016b). deep-
coref includes the embeddings of the dependency
governor of mentions. Combined with the relative
position of a mention to its governor, deep-coref
may be able to implicitly capture selectional pref-
erences to some extent. −gov in Table 1 repre-
sents deep-coref performance when governors are
not incorporated. As we can see, the exclusion of
the governor information does not affect the per-
formance. This result shows that the implicit mod-

MUC B3 CEAFe CoNLL LEA
development

baseline 74.10 63.95 59.73 65.93 60.16
+embedding 74.38 64.42 60.45 66.42 60.65
+binned sim. 74.36 64.54 60.21 66.37 60.77

test
baseline 74.72 63.26 58.82 65.60 59.59
+embedding 74.53 63.41 59.03 65.66 59.69
+binned sim. 74.85 63.64 59.21 65.90 59.98

Table 2: Incorporating the selectional preference
model as new embeddings (+embedding) vs. as
new pairwise features (+binned sim.).

eling of selectional preferences does not provide
any additional information to the coreference re-
solver.

For each mention, we consider (1) the whole
mention string, (2) the whole mention string with-
out articles, (3) mention head, (4) context rep-
resentation, i.e. governor@dependency-relation,
and (5) entity types if the mention is a named en-
tity. We obtain an embedding for each of the above
properties if they exist in the selectional prefer-
ence model, otherwise we set them to unknown.

For each (antecedent, anaphor) pair, we con-
sider all the acquired embeddings of anaphor and
antecedent. We try two different ways of incor-
porating this knowledge into deep-coref includ-
ing: (1) incorporating the computed embeddings
directly as a new set of inputs, i.e. +embedding in
Table 2. We add a new hidden layer on top of the
new embeddings and combine its output with out-
puts of the hidden layers associated with other sets
of inputs; and (2) computing a similarity value be-
tween all possible combinations of the antecedent-
anaphor acquired embeddings and then binarizing
all similarity values, i.e. +binned sim. in Table 2.

Providing selectional preference embeddings
directly to deep-coref adds more complexity to the
baseline coreference resolver. Yet, it performs on-
par with +binned sim. on the development set and
generalizes worse on the test set. +SP in Table 1
is the performance of +binned sim. on the test set.
As we can see from the results, adding selectional
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does [that]ante really impact the case ... [it]ana just shows (impact@nsubj,shows@nsubj)
[it]ante will ask a U.S. bankruptcy court to allow [it]ana (ask@nsubj,allow@dobj)
[a strain that has n’t even presented [itself]ana]ante (presented@nsubj,presented@dobj)

Table 3: Examples of +SP correct links on the development set that do not exist in the baseline output.

Error type Mention type
Proper Common Pronoun

Recall -28 -29 -53
Precision +18 +74 +61

Table 4: Differences in the number of recall and
precision errors on the CoNLL’12 test set in com-
parison to the baseline.

preferences as binary features improves over the
baseline.

Reinforce in Table 1 presents the results of
the reward-rescaling model of Clark and Manning
(2016a) that are so far the highest reported results
on the official test set. The reward rescaling model
of Clark and Manning (2016a) casts the ranking
model of Clark and Manning (2016b) in the rein-
forcement learning framework which considerably
increases the training time, from two days to six
days in our experiments.

We analyze how our selectional preference
model affects the resolution of various types of
mentions. We use Martschat and Strube (2014)’s
toolkit 4 to perform recall and error analyses. The
differences in the number of recall and precision
errors in +SP compared to baseline on the test set
are reported in Table 4.

By using our selectional preference features,
the number of recall errors decreases for all types
of mentions. The recall error reduction is more
prominent for pronouns. On the other hand, the
number of precision errors increases for all types
of mentions. The increase in the precision error is
the highest for common nouns. Overall, +SP cre-
ates about 260 more links than baseline.

Table 3 lists a few examples from the de-
velopment set in which +SP creates a link that
baseline does not. It also includes the similar-
ity that has a high value for the linked mentions
and probably is the reason for creating the link.
For instance, in the first example, based on our
model, similarity(impact@nsubj,shows@nsubj) is
known and it is also higher than similar-
ity(impact@dobj,shows@nsubj).

4https://github.com/smartschat/cort

In order to estimate a higher bound on the ex-
pected performance boost, we run the baseline and
+SP models only on anaphoric mentions. By using
anaphoric mentions, the performance improves by
one percent, based on both the CoNLL score and
LEA. This result indicates that the incorporation of
selectional preferences creates many links for non-
anaphoric mentions, which in turn decreases pre-
cision. Therefore, the overall performance does
not improve substantially when system mentions
are used. deep-coref incorporates anaphoricity
scores at resolution time. One possible way to
further improve the results of +SP is to incorpo-
rate anaphoricity scores at the input level. In this
way, the coreference resolver could learn to use se-
lectional preferences mainly for mentions that are
more likely to be anaphoric. However, given that
the F1 score of current anaphoricity determiners
or singleton detectors is only around 85 percent
(Moosavi and Strube, 2016a, 2017), the effect of
using system anaphoricity scores might be small.

5 Conclusions

We introduce a new model of selectional prefer-
ences, which combines dependency-based word
embeddings and fine-grained entity types. In or-
der to be effective, a selectional preference model
should (1) have a high coverage so it can be used
for large datasets like CoNLL, and (2) be com-
bined with other knowledge sources in a non-
linear way. Our selectional preference model
slightly improves coreference resolution perfor-
mance, but considering the extra resources that are
required to train the model, it is debatable whether
such small improvements are advantageous for
solving coreference.
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Appendix

Query Most sim. predicate slots Most sim. entity types Most sim. phrases

sink@nsubj sink@nsubj:xsubj /product/ship Sea Diamond
sink@nsubjpass /event/natural disaster Prestige oil tanker
sinking@nmod:of /finance/stock exchange Samina
slide@nsubj /astral body Estonia ferry
capsizing@nmod:of /person/religious leader k-159
plunge@nsubj /finance/currency Navy gunboat
sink@nmod:along with /military Dona Paz
sinking@nsubj /geography/glacier ferry Estonia
tumble@nsubj /product/airplane add-fisk-independent-nytsf
slip@nsubj /transit Al-Salam Boccaccio

ship capsize@nmod:of /product/ship vessel
some@nmod:aboard /train cargo ship
experience@nmod:aboard /product/airplane cruise ship
afternoon@nmod:aboard /transit boat
pier@nmod:for /product/spacecraft freighter
escort@nmod:including /location/bridge container ship
lift-off@nmod:of /broadcast/tv channel cargo vessel
disassemble@nsubjpass:xsubj /location Navy ship
near-collision@nmod:with /living thing warship
Conger@compound /chemistry tanker

steer@dobj guide@dobj /broadcast/tv channel business way
steer@nsubjpass /product/car newr nbkg nwer ndjn
shepherd@dobj /organization/sports team BahrainDinar
steering@nmod:of /product/ship reynard-honda
nudge@dobj /product/spacecraft zigzag course
pilot@dobj /event/election team home
propel@dobj /medicine/medical treatment U.S. energy policy
maneuver@dobj /building/theater williams-bmw
divert@dobj /education/department interest-rate policy
lurch@nsubj /product/airplane trimaran

/product/ship Repulse@conj:and /product/airplane battleship Bismarck
destroyer@amod /train pt boat
capsize@nmod:of /product/car battleship
experience@nmod:aboard /park USS Nashville
near-collision@nmod:with /military USS Indianapolis
line@cc /event/natural disaster k-159
brig@conj:and /award frigate
-lrb-@nmod:on /geography/island warship
Umberto@conj:and /person/soldier Oriskany
rumour@xcomp /location/body of water sister ship

Figure 3: Most similar terms for the queries sink@nsubj, ship, steer, and /product/ship.
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