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Abstract

To learn a semantic parser from denota-
tions, a learning algorithm must search
over a combinatorially large space of log-
ical forms for ones consistent with the an-
notated denotations. We propose a new
online learning algorithm that searches
faster as training progresses. The two
key ideas are using macro grammars to
cache the abstract patterns of useful log-
ical forms found thus far, and holistic trig-
gering to efficiently retrieve the most rele-
vant patterns based on sentence similarity.
On the WIKITABLEQUESTIONS dataset,
we first expand the search space of an ex-
isting model to improve the state-of-the-
art accuracy from 38.7% to 42.7%, and
then use macro grammars and holistic trig-
gering to achieve an 11x speedup and an
accuracy of 43.7%.

1 Introduction

We consider the task of learning a semantic
parser for question answering from question-
answer pairs (Clarke et al., 2010; Liang et al.,
2011; Berant et al., 2013; Artzi and Zettlemoyer,
2013; Pasupat and Liang, 2015). To train such
a parser, the learning algorithm must somehow
search for consistent logical forms (i.e., logical
forms that execute to the correct answer denota-
tion). Typically, the search space is defined by a
compositional grammar over logical forms (e.g., a
context-free grammar), which we will refer to as
the base grammar.

To cover logical forms that answer complex
questions, the base grammar must be quite general
and compositional, leading to a huge search space
that contains many useless logical forms. For ex-
ample, the parser of Pasupat and Liang (2015) on

Rank Nation Gold Silver Bronze
r1 : 1 France 3 1 1
r2 : 2 Ukraine 2 1 2
r3 : 3 Turkey 2 0 1
r4 : 4 Sweden 2 0 0
r5 : 5 Iran 1 2 1

Table 1: A knowledge base for the question x =
“Who ranked right after Turkey?”. The target de-
notation is y = {Sweden}.

Wikipedia table questions (with beam size 100)
generates and featurizes an average of 8,400 par-
tial logical forms per example. Searching for con-
sistent logical forms is thus a major computational
bottleneck.

In this paper, we propose macro grammars to
bias the search towards structurally sensible logi-
cal forms. To illustrate the key idea, suppose we
managed to parse the utterance “Who ranked right
after Turkey?” in the context of Table 1 into the
following consistent logical form (in lambda DCS)
(Section 2.1):

R[Nation].R[Next].Nation.Turkey,

which identifies the cell under the Nation column
in the row after Turkey. From this logical form,
we can abstract out all relations and entities to pro-
duce the following macro:

R[{Rel#1}].R[Next].{Rel#1}.{Ent#2},
which represents the abstract computation: “iden-
tify the cell under the {Rel#1} column in the row
after {Ent#2}.” More generally, macros capture
the overall shape of computations in a way that
generalizes across different utterances and knowl-
edge bases. Given the consistent logical forms of
utterances parsed so far, we extract a set of macro
rules. The resulting macro grammar consisting of
these rules generates only logical forms conform-
ing to these macros, which is a much smaller and
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higher precision set compared to the base gram-
mar.

Though the space of logical forms defined by
the macro grammar is smaller, it is still expensive
to parse with them as the number of macro rules
grows with the number of training examples. To
address this, we introduce holistic triggering: for
a new utterance, we find the K most similar utter-
ances and only use the macro rules induced from
any of their consistent logical forms. Parsing now
becomes efficient as only a small subset of macro
rules are triggered for any utterance. Holistic trig-
gering can be contrasted with the norm in semantic
parsing, in which logical forms are either triggered
by specific phrases (anchored) or can be triggered
in any context (floating).

Based on the two ideas above, we propose
an online algorithm for jointly inducing a macro
grammar and learning the parameters of a se-
mantic parser. For each training example, the
algorithm first attempts to find consistent logi-
cal forms using holistic triggering on the current
macro grammar. If it succeeds, the algorithm uses
the consistent logical forms found to update model
parameters. Otherwise, it applies the base gram-
mar for a more exhaustive search to enrich the
macro grammar. At test time, we only use the
learned macro grammar.

We evaluate our approach on the WIKITABLE-
QUESTIONS dataset (Pasupat and Liang, 2015),
which features a semantic parsing task with open-
domain knowledge bases and complex questions.
We first extend the model in Pasupat and Liang
(2015) to achieve a new state-of-the-art test ac-
curacy of 42.7%, representing a 10% relative im-
provement over the best reported result (Haug
et al., 2017). We then show that training with
macro grammars yields an 11x speedup compared
to training with only the base grammar. At test
time, using the learned macro grammar achieves a
slightly better accuracy of 43.7% with a 16x run
time speedup over using the base grammar.

2 Background

We base our exposition on the task of question an-
swering on a knowledge base. Given a natural lan-
guage utterance x, a semantic parser maps the ut-
terance to a logical form z. The logical form is
executed on a knowledge base w to produce deno-
tation JzKw. The goal is to train a semantic parser
from a training set of utterance-denotation pairs.

2.1 Knowledge base and logical forms
A knowledge base refers to a collection of enti-
ties and relations. For the running example “Who
ranked right after Turkey?”, we use Table 1 from
Wikipedia as the knowledge base. Table cells
(e.g., Turkey) and rows (e.g., r3 = the 3rd row)
are treated as entities. Relations connect enti-
ties: for example, the relation Nation maps r3 to
Turkey, and a special relation Next maps r3 to r4.

A logical form z is a small program that can be
executed on the knowledge base. We use lambda
DCS (Liang, 2013) as the language of logical
forms. The smallest units of lambda DCS are en-
tities (e.g., Turkey) and relations (e.g., Nation).
Larger logical forms are composed from smaller
ones, and the denotation of the new logical form
can be computed from denotations of its con-
stituents. For example, applying the join operation
on Nation and Turkey gives Nation.Turkey,
whose denotation is JNation.TurkeyKw = {r3},
which corresponds to the 3rd row of the table. The
partial logical form Nation.Turkey can then be
used to construct a larger logical form:

z = R[Nation].R[Next].Nation.Turkey, (1)

where R[·] represents the reverse of a relation.
The denotation of the logical form z with respect
to the knowledge base w is equal to JzKw =
{Sweden}. See Liang (2013) for more details
about the semantics of lambda DCS.

2.2 Grammar rules
The space of logical forms is defined recursively
by grammar rules. In this setting, each constructed
logical form belongs to a category (e.g., Entity,
Rel, Set), with a special category Root for com-
plete logical forms. A rule specifies the categories
of the arguments, category of the resulting logi-
cal form, and how the logical form is constructed
from the arguments. For instance, the rule

Rel[z1] + Set[z2]→ Set[z1.z2] (2)

specifies that a partial logical form z1 of category
Rel and z2 of category Set can be combined into
z1.z2 of category Set. With this rule, we can
construct Nation.Turkey if we have constructed
Nation of type Rel and Turkey of type Set.

We consider the rules used by Pasupat and
Liang (2015) for their floating parser.1 The rules

1Their grammar and our implementation use more fine-
grained categories (Atomic, V alues, Records) instead of
Set. We use the coarser category here for simplicity.
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Root[z1]
R[Nation].R[Next].Nation.Turkey

Set[R[z1].z2]
R[Nation].R[Next].Nation.Turkey

Set[R[Next].z1]
R[Next].Nation.Turkey

Set[z1.z2]
Nation.Turkey

Set[z1]
Turkey

Ent[Turkey]
Turkey

Rel[Nation]
Nation

Rel[Nation]
Nation

∅ →

∅ →

“Turkey” →

(a) Derivation tree (zi represents the ith child)

Root[z1]

Set[R[z1].z2]

Set[R[Next].z1]

Set[z1.z2]

Set[z1]

Ent

Rel

(b) Macro

Root[z1]

M2

Sub-macro M3

Set[z1]

Ent

Sub-macro M1

Set[R[z1].z2]

Set[R[Next].z1]

Set[z1.z2]

M1Rel

Sub-macro M2

(c) Atomic sub-macros

Figure 1: From the derivation tree (a), we extract a
macro (b), which can be further decomposed into
atomic sub-macros (c). Each sub-macro is con-
verted into a macro rule.

are divided into compositional rules and terminal
rules. Rule (2) above is an example of a compo-
sitional rule, which combines one or more partial
logical forms together. A terminal rule has one of
the following forms:

TokenSpan[span]→ c[f(span)] (3)

∅ → c[f(∅)] (4)

where c is a category. A rule with the form (3) con-
verts an utterance token span (e.g., “Turkey”) into
a partial logical form (e.g., Turkey). A rule with
the form (4) generates a partial logical form with-
out any trigger. This allows us to generate logical
predicates that do not correspond to any part of the
utterance (e.g., Nation).

A complete logical form is generated by recur-
sively applying rules. We can represent the deriva-
tion process by a derivation tree such as in Fig-

ure 1a. Every node of the derivation tree corre-
sponds to one rule. The leaf nodes correspond to
terminal rules, and the intermediate nodes corre-
spond to compositional rules.

2.3 Learning a semantic parser
Parameters of the semantic parser are learned from
training data {(xi, wi, yi)}ni=1. Given a training
example with an utterance x, a knowledge base
w, and a target denotation y, the learning algo-
rithm constructs a set of candidate logical forms
indicated by Z . It then extracts a feature vector
φ(x,w, z) for each z ∈ Z , and defines a log-linear
distribution over the candidates z:

pθ(z | x,w) ∝ exp(θ>φ(x,w, z)), (5)

where θ is a parameter vector. The straightfor-
ward way to construct Z is to enumerate all possi-
ble logical forms induced by the grammar. When
the search space is prohibitively large, it is a com-
mon practice to use beam search. More precisely,
the algorithm constructs partial logical forms re-
cursively by the rules, but for each category and
each search depth, it keeps only the B highest-
scoring logical forms according to the model prob-
ability (5).

During training, the parameter θ is learned by
maximizing the regularized log-likelihood of the
correct denotations:

J(θ) =
1
n

n∑
i=1

log pθ(yi | xi, wi)− λ‖θ‖1, (6)

where the probability pθ(yi | xi, wi) marginalizes
over the space of candidate logical forms:

pθ(yi | xi, wi) =
∑

z∈Zi:JzKwi=yi

pθ(z | xi, wi).

The objective is optimized using AdaGrad (Duchi
et al., 2010). At test time, the algorithm selects a
logical form z ∈ Z with the highest model prob-
ability (5), and then executes it on the knowledge
base w to predict the denotation JzKw.

3 Learning a macro grammar

The base grammar usually defines a large search
space containing many irrelevant logical forms.
For example, the grammar in Pasupat and Liang
(2015) can generate long chains of join opera-
tions (e.g., R[Silver].Rank.R[Gold].Bronze.2)
that rarely express meaningful computations.
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Algorithm 1: Processing a training example
Data: example (x,w, y), macro grammar,

base grammar with terminal rules T
1 Select a setR of macro rules (Section 3.4);
2 Generate a set Z of candidate logical forms

from rulesR∪ T (Section 2.3);
3 if Z contains consistent logical forms then
4 Update model parameters (Section 3.5);
5 else
6 Apply the base grammar to search for a

consistent logical form (Section 2.3);
7 Augment the macro grammar

(Section 3.6);
8 end
9 Associate utterance x with the highest-

scoring consistent logical form found;

The main contribution of this paper is a new al-
gorithm to speed up the search based on previous
searches. At a high-level, we incrementally build
a macro grammar which encodes useful logical
form macros discovered during training. Algo-
rithm 1 describes how our learning algorithm pro-
cesses each training example. It first tries to use an
appropriate subset of rules in the macro grammar
to search for logical forms. If the search succeeds,
then the semantic parser parameters are updated
as usual. Otherwise, it falls back to the base gram-
mar, and then add new rules to the macro grammar
based on the consistent logical form found. Only
the macro grammar is used at test time.

We first describe macro rules and how they are
generated from a consistent logical form. Then we
explain the steps of the training algorithm in detail.

3.1 Logical form macros

A macro characterizes an abstract logical form
structure. We define the macro for any given log-
ical form z by transforming its derivation tree as
illustrated in Figure 1b. First, for each terminal
rule (leaf node), we substitute the rule by a place-
holder, and name it with the category on the right-
hand side of the rule. Then we merge leaf nodes
that represent the same partial logical form. For
example, the logical form (1) uses the relation
Nation twice, so in Figure 1b, we merge the two
leaf nodes to impose such a constraint.

While the resulting macro may not be tree-like,
we call each node root or leaf if it is a root node
or a leaf node of the associated derivation tree.

3.2 Constructing macro rules from macros

For any given macro M , we can construct a set
of macro rules that, when combined with termi-
nal rules from the base grammar, generates exactly
the logical forms that satisfy the macro M . The
straightforward approach is to associate a unique
rule with each macro: assuming that its k leaf
nodes contain categories c1, . . . , ck, we can define
a rule:

c1[z1] + · · ·+ ck[zk]→ Root[f(z1, . . . , zk)], (7)

where f substitutes z1, . . . , zk into the corre-
sponding leaf nodes of macro M . For example,
the rule for the macro in Figure 1b is

Rel[z1]+Ent[z2]→ Root[R[z1].R[Next].z1.z2].

3.3 Decomposed macro rules

Defining a unique rule for each macro is computa-
tionally suboptimal since the common structures
shared among macros are not being exploited.
For example, while max(R[Rank].Gold.Num.2)
and R[Nation].argmin(Gold.Num.2, Index) be-
long to different macros, the partial logical form
Gold.Num.2 is shared, and we wish to avoid gen-
erating and featurizing it more than once.

In order to reuse such shared parts, we de-
compose macros into sub-macros and define rules
based on them. A subgraph M ′ of M is a sub-
macro if (1) M ′ contains at least one non-leaf
node; and (2) M ′ connects to the rest of the macro
M\M ′ only through one node (the root of M ′). A
macroM is called atomic if the only sub-macro of
M is itself.

Given a non-atomic macro M , we can find an
atomic sub-macro M ′ of M . For example, from
Figure 1b, we first find sub-macro M ′ = M1. We
detach M ′ from M and define a macro rule:

c′1[z1] + · · ·+ c′k[zk]→ c′out[f(z1, . . . , zk)], (8)

where c′1, . . . , c′k are categories of the leaf nodes
of M ′, and f substitutes z1, . . . , zk into the sub-
macro M ′. The category c′out is computed by
serializing M ′ as a string; this way, if the sub-
macro M ′ appears in a different macro, the cat-
egory name will be shared. Next, we substitute
the subgraph M ′ in M by a placeholder node with
name c′out. The procedure is repeated on the new
graph until the remaining macro is atomic. Finally,
we define a single rule for the atomic macro. The
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macro grammar uses the decomposed macro rules
in replacement of Rule (7).

For example, the macro in Figure 1b is decom-
posed into three macro rules:

Ent[z1]→M1[z1],
Rel[z1] +M1[z2]→M2[R[z1].R[Next].z1.z2],

M2[z1]→ Root[z1].

These correspond to the three atomic sub-macros
M1, M2 and M3 in Figure 1c. The first and the
second macro rules can be reused by other macros.

Having defined macro rules, we now describe
how Algorithm 1 uses and updates the macro
grammar when processing each training example.

3.4 Triggering macro rules

Throughout training, we keep track of a set S of
training utterances that have been associated with
a consistent logical form. (The set S is updated
by Step 9 of Algorithm 1.) Then, given a train-
ing utterance x, we compute its K-nearest neigh-
bor utterances in S, and select all macro rules that
were extracted from their associated logical forms.
These macro rules are used to parse utterance x.

We use token-level Levenshtein distance as
the distance metric for computing nearest neigh-
bors. More precisely, every utterance is writ-
ten as a sequence of lemmatized tokens x =
(x(1), . . . , x(m)). After removing all determiners
and infrequent nouns that appear in less than 2% of
the training utterances, the distance between two
utterances x and x′ is defined as the Levenshtein
distance between the two sequences. When com-
puting the distance, we treat each word token as
an atomic element. For example, the distance be-
tween “highest score” and “best score” is 1. De-
spite its simplicity, the Levenshtein distance does
a good job in capturing the structural similarity
between utterances. Table 2 shows that nearest
neighbor utterances often map to consistent logi-
cal forms with the same macro.

In order to compute the nearest neighbors effi-
ciently, we pre-compute a sorted list of Kmax =
100 nearest neighbors for every utterance before
training starts. During training, calculating the in-
tersection of this sorted list with the set S gives the
nearest neighbors required. For our experiments,
the preprocessing time is negligible compared to
the overall training time (less than 3%), but if com-
puting nearest neighbors is expensive, then paral-

Who ranked right after Turkey?
Who took office right after Uriah Forrest?
How many more passengers flew to Los Angeles

than to Saskatoon in 2013?
How many more Hungarians live in the Serbian

Banat region than Romanians in 1910?
Which is deeper, Lake Tuz or Lake Palas Tuzla?
Which peak is higher, Mont Blanc or Monte Rosa?

Table 2: Examples of nearest neighbor utterances
in the WIKITABLEQUESTIONS dataset.

lelization or approximate algorithms (e.g., Indyk,
2004) could be used.

3.5 Updating model parameters
Having computed the triggered macro rulesR, we
combine them with the terminal rules T from the
base grammar (e.g., for building Ent and Rel) to
create a per-example grammar R ∪ T for the ut-
terance x. We use this grammar to generate logi-
cal forms using standard beam search. We follow
Section 2.3 to generate a set of candidate logical
forms Z and update model parameters.

However, we deviate from Section 2.3 in one
way. Given a set Z of candidate logical forms
for some training example (xi, wi, yi), we pick the
logical form z+

i with the highest model probability
among consistent logical forms, and pick z−i with
the highest model probability among inconsistent
logical forms, then perform a gradient update on
the objective function:

J(θ) =
1
n

n∑
i=1

[
log

p+
i

p+
i + p−i

]
− λ‖θ‖1, (9)

where p+
i = pθ(z+

i | xi, wi)
p−i = pθ(z−i | xi, wi).

Compared to (6), this objective function only con-
siders the top consistent and inconsistent logical
forms for each example instead of all candidate
logical forms. Empirically, we found that opti-
mizing (9) gives a 2% gain in prediction accuracy
compared to optimizing (6).

3.6 Updating the macro grammar
If the triggered macro rules fail to find a consis-
tent logical form, we fall back to performing a
beam search on the base grammar. For efficiency,
we stop the search either when a consistent logical
form is found, or when the total number of gener-
ated logical forms exceeds a threshold T . The two
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stopping criteria prevent the search algorithm from
spending too much time on a complex example.
We might miss consistent logical forms on such
examples, but because the base grammar is only
used for generating macro rules, not for updat-
ing model parameters, we might be able to induce
the same macro rules from other examples. For
instance, if an example has an uttereance phrase
that matches too many knowledge base entries, it
would be more efficient to skip the example; the
macro that would have been extracted from this
example can be extracted from less ambiguous ex-
amples with the same question type. Such omis-
sions are not completely disastrous, and can speed
up training significantly.

When the algorithm succeeds in finding a con-
sistent logical form z using the base grammar,
we derive its macro M following Section 3.1,
then construct macro rules following Section 3.3.
These macro rules are added to the macro gram-
mar. We also associate the utterance x with the
consistent logical form z, so that the macro rules
that generate z can be triggered by other examples.
Parameters of the semantic parser are not updated
in this case.

3.7 Prediction

At test time, we follow Steps 1–2 of Algorithm 1
to generate a set Z of candidate logical forms
from the triggered macro rules, and then output the
highest-scoring logical form in Z . Since the base
grammar is never used at test time, prediction is
generally faster than training.

4 Experiments

We report experiments on the WIKITABLEQUES-
TIONS dataset (Pasupat and Liang, 2015). Our al-
gorithm is compared with the parser trained only
with the base grammar, the floating parser of Pa-
supat and Liang (2015) (PL15), the Neural Pro-
grammer parser (Neelakantan et al., 2016) and the
Neural Multi-Step Reasoning parser (Haug et al.,
2017). Our algorithm not only outperforms the
others, but also achieves an order-of-magnitude
speedup over the parser trained with the base
grammar and the parser in PL15.

4.1 Setup

The dataset contains 22,033 complex questions on
2,108 Wikipedia tables. Each question comes with
a table, and the tables during evaluation are dis-

“Which driver appears the most?”
argmax(R[Driver].Type.Row,R[λx.count(Driver.x)])

“What language was spoken more during
the Olympic oath, English or French?”

argmax(English t French,R[λx.count(Language.x)])

“Who is taller, Rose or Tim?”
argmax(Rose t Tim,R[λx.R[Num].R[Height].Name.x)])

Table 3: Several example logical forms our gram-
mar can generate that are not covered by PL15.

joint from the ones during training. The train-
ing and test sets contain 14,152 and 4,344 exam-
ples respectively.2 Following PL15, the develop-
ment accuracy is averaged over the first three 80-
20 training data splits given in the dataset package.
The test accuracy is reported on the train-test data
split.

We use the same features and logical form prun-
ing strategies as PL15, but generalize their base
grammar. To control the search space, the actual
system in PL15 restricts the superlative operators
argmax and argmin to be applied only on the set
of table rows. We allow these operators to be ap-
plied on the set of tables cells as well, so that the
grammar captures certain logical forms that are
not covered by PL15 (see Table 3). Additionally,
for terminal rule (3), we allow f(span) to pro-
duce entities that approximately match the token
span in addition to exact matches. For example,
the phrase “Greenville” can trigger both entities
Greenville Ohio and Greensville.

We chose hyperparameters using the first train-
dev split. The beam size B of beam search is cho-
sen to be B = 100. The K-nearest neighbor pa-
rameter is chosen as K = 40. Like PL15, our
algorithm takes 3 passes over the dataset for train-
ing. The maximum number of logical forms gen-
erated in step 6 of Algorithm 1 is set to T = 5,000
for the first pass. For subsequent passes, we set
T = 0 (i.e., never fall back to the base grammar)
so that we stop augmenting the macro grammar.
During the first pass, Algorithm 1 falls back to the
base grammar on roughly 30% of the training ex-
amples.

For training the baseline parser that only relies
on the base grammar, we use the same beam size
B = 100, and take 3 passes over the dataset for
training. There is no maximum constraint on the

2The remaining 3,537 examples were not included in the
original data split.
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Dev Test
Pasupat and Liang (2015) 37.0% 37.1%
Neelakantan et al. (2016) 37.5% 37.7%
Haug et al. (2017) - 38.7%
This paper: base grammar 40.6% 42.7%
This paper: macro grammar 40.4% 43.7%

Table 4: Results on WIKITABLEQUESTIONS.

number of logical forms that can be generated for
each example.

4.2 Coverage of the macro grammar

With the base grammar, our parser generates
13,700 partial logical forms on average for each
training example, and hits consistent logical forms
on 81.0% of the training examples. With the
macro rules from holistic triggering, these num-
bers become 1,300 and 75.6%. The macro rules
generate much fewer partial logical forms, but at
the cost of slightly lower coverage.

However, these coverage numbers are com-
puted based on finding any logical form that ex-
ecutes to the correct denotation. This includes
spurious logical forms, which do not reflect the
semantics of the question but are coincidentally
consistent with the correct denotation. (For exam-
ple, the question “Who got the same number of sil-
vers as France?” on Table 1 might be spuriously
parsed as R[Nation].R[Next].Nation.France,
which represents the nation listed after France.)
To evaluate the “true” coverage, we sample 300
training examples and manually label their logi-
cal forms. We find that on 48.7% of these exam-
ples, the top consistent logical form produced by
the base grammar is semantically correct. For the
macro grammar, this ratio is also 48.7%, meaning
that the macro grammar’s effective coverage is as
good as the base grammar.

The macro grammar extracts 123 macros in to-
tal. Among the 75.6% examples that were covered
by the macro grammar, the top 34 macros cover
90% of consistent logical forms. By examining
the top 34 macros, we discover explicit semantic
meanings for 29 of them, which are described in
detail in the supplementary material.

4.3 Accuracy and speedup

We report prediction accuracies in Table 4. With
a more general base grammar (additional superla-
tives and approximate matching), and by optimiz-

Time (ms/ex)
Acc. Train Pred

PL15 37.0% 619 645
Ours: base grammar 40.6% 1,117 1,150
Ours: macro grammar 40.4% 99 70

no holistic triggering 40.1% 361 369
no macro decomposition 40.3% 177 159

Table 5: Comparison and ablation study: the
columns report averaged prediction accuracy,
training time, and prediction time (milliseconds
per example) on the three train-dev splits.

ing the objective function (9), our base parser out-
performs PL15 (42.7% vs 37.1%). Learning a
macro grammar slightly improves the accuracy to
43.7% on the test set. On the three train-dev splits,
the averaged accuracy achieved by the base gram-
mar and the macro grammar are close (40.6% vs
40.4%).

In Table 5, we compare the training and predic-
tion time of PL15 as well as our parsers. For a
fair comparison, we trained all parsers using the
SEMPRE toolkit (Berant et al., 2013) on a ma-
chine with Xeon 2.6GHz CPU and 128GB mem-
ory without parallelization. The time for con-
structing the macro grammar is included as part
of the training time. Table 5 shows that our parser
with the base grammar is more expensive to train
than PL15. However, training with the macro
grammar is substantially more efficient than train-
ing with only the base grammar— it achieves 11x
speedup for training and 16x speedup for test time
prediction.

We run two ablations of our algorithm to evalu-
ate the utility of holistic triggering and macro de-
composition. The first ablation triggers all macro
rules for parsing every utterance without holistic
triggering, while the second ablation constructs
Rule (7) for every macro without decomposing it
into smaller rules. Table 5 shows that both vari-
ants result in decreased efficiency. This is be-
cause holistic triggering effectively prunes irrele-
vant macro rules, while macro decomposition is
important for efficient beam search and featuriza-
tion.

4.4 Influence of hyperparameters

Figure 2a shows that for all beam sizes, training
with the macro grammar is more efficient than
training with the base grammar, and the speedup
rate grows with the beam size. The test time ac-
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(a) Varying beam size (b) Varying neighbor size (c) Varying base grammar usage count

Figure 2: Prediction accuracy and training time (per example) with various hyperparameter choices,
reported on the first train-dev split.

curacy of the macro grammar is robust to varying
beam sizes as long as B ≥ 25.

Figure 2b shows the influence of the neighbor
size K. A smaller neighborhood triggers fewer
macro rules, leading to faster computation. The
accuracy peaks at K = 40 then decreases slightly
for large K. We conjecture that the smaller num-
ber of neighbors acts as a regularizer.

Figure 2c reports an experiment where we limit
the number of fallback calls to the base grammar
to m. After the limit is reached, subsequent train-
ing examples that require fallback calls are simply
skipped. This limit means that the macro gram-
mar will get augmented at most m times during
training. We find that for small m, the prediction
accuracy grows with m, implying that building a
richer macro grammar improves the accuracy. For
larger m, however, the accuracies hardly change.
According to the plot, a competitive macro gram-
mar can be built by calling the base grammar on
less than 15% of the training data.

Based on Figure 2, we can trade accuracy for
speed by choosing smaller values of (B,K,m).
With B = 50, K = 40 and m = 2000, the macro
grammar achieves a slightly lower averaged devel-
opment accuracy (40.2% rather than 40.4%), but
with an increased speedup of 15x (versus 11x) for
training and 20x (versus 16x) for prediction.

5 Related work and discussion

A traditional semantic parser maps natural lan-
guage phrases into partial logical forms and

composes these partial logical forms into com-
plete logical forms. Parsers define composi-
tion based on a grammar formalism such as
Combinatory Categorial Grammar (CCG) (Zettle-
moyer and Collins, 2007; Kwiatkowski et al.,
2011, 2013; Kushman and Barzilay, 2013; Krish-
namurthy and Kollar, 2013), Synchronous CFG
(Wong and Mooney, 2007), and CFG (Kate and
Mooney, 2006; Chen and Mooney, 2011; Berant
et al., 2013; Desai et al., 2016), while others use
the syntactic structure of the utterance to guide
composition (Poon and Domingos, 2009; Reddy
et al., 2016). Recent neural semantic parsers al-
low any sequence of logical tokens to be generated
(Dong and Lapata, 2016; Jia and Liang, 2016; Ko-
ciský et al., 2016; Neelakantan et al., 2016; Liang
et al., 2017; Guu et al., 2017). The flexibility of
these composition methods allows arbitrary logi-
cal forms to be generated, but at the cost of a vastly
increased search space.

Whether we have annotated logical forms or
not has dramatic implications on what type of ap-
proach will work. When logical forms are avail-
able, one can perform grammar induction to mine
grammar rules without search (Kwiatkowski et al.,
2010). When only annotated denotations are avail-
able, as in our setting, one must use a base gram-
mar to define the output space of logical forms.
Usually these base grammars come with many re-
strictions to guard against combinatorial explosion
(Pasupat and Liang, 2015).

Previous work on higher-order unification for
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lexicon induction (Kwiatkowski et al., 2010) us-
ing factored lexicons (Kwiatkowski et al., 2011)
also learns logical form macros with an online al-
gorithm. The result is a lexicon where each entry
contains a logical form template and a set of possi-
ble phrases for triggering the template. In contrast,
we have avoided binding grammar rules to particu-
lar phrases in order to handle lexical variations. In-
stead, we use a more flexible mechanism—holistic
triggering—to determine which rules to fire. This
allows us to generate logical forms for utterances
containing unseen lexical paraphrases or where the
triggering is spread throughout the sentence. For
example, the question “Who is X, John or Y” can
still trigger the correct macro extracted from the
last example in Table 3 even when X and Y are
unknown words.

Our macro grammars bears some resemblance
to adaptor grammars (Johnson et al., 2006) and
fragment grammars (O’Donnell, 2011), which are
also based on the idea of caching useful chunks of
outputs. These generative approaches aim to solve
the modeling problem of assigning higher proba-
bility mass to outputs that use reoccurring parts.
In contrast, our learning algorithm uses caching as
a way to constrain the search space for computa-
tional efficiency; the probabilities of the candidate
outputs are assigned by a separate discriminative
model. That said, the use of macro grammars does
have a small positive modeling contribution, as it
increases test accuracy from 42.7% to 43.7%.

An orthogonal approach for improving search
efficiency is to adaptively choose which part of
the search space to explore. For example, Berant
and Liang (2015) uses imitation learning to strate-
gically search for logical forms. Our holistic trig-
gering method, which selects macro rules based on
the similarity of input utterances, is related to the
use of paraphrases (Berant and Liang, 2014; Fader
et al., 2013) or string kernels (Kate and Mooney,
2006) to train semantic parsers. While the input
similarity measure is critical for scoring logical
forms in these previous works, we use the measure
only to retrieve candidate rules, while scoring is
done by a separate model. The retrieval bar means
that our similarity metric can be quite crude.

6 Summary

We have presented a method for speeding up se-
mantic parsing via macro grammars. The main
source of efficiency is the decreased size of the

logical form space. By performing beam search
on a few macro rules associated with the K-
nearest neighbor utterances via holistic triggering,
we have restricted the search space to semanti-
cally relevant logical forms. At the same time,
we still maintain coverage over the base logical
form space by occasionally falling back to the base
grammar and using the consistent logical forms
found to enrich the macro grammar. The higher ef-
ficiency allows us expand the base grammar with-
out having to worry much about speed: our model
achieves a state-of-the-art accuracy while also en-
joying an order magnitude speedup.
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