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Abstract

Research in computational semantics is in-
creasingly guided by our understanding
of human semantic processing. However,
semantic models are typically studied in
the context of natural language process-
ing system performance. In this paper, we
present a systematic evaluation and com-
parison of a range of widely-used, state-
of-the-art semantic models in their abil-
ity to predict patterns of conceptual repre-
sentation in the human brain. Our results
provide new insights both for the design
of computational semantic models and for
further research in cognitive neuroscience.

1 Introduction

Recent years have witnessed many breakthroughs
in data-driven semantic modelling: from the log-
linear skip-gram model of Mikolov et al. (2013a)
to multi-modal meaning representations (Bruni
et al., 2012; Kiela and Bottou, 2014; Kiela and
Clark, 2015; Kiela et al., 2015a). These models
boast of a higher performance accuracy in numer-
ous semantic tasks, including modeling seman-
tic similarity and relatedness (Silberer and Lap-
ata, 2012), lexical entailment (Kiela et al., 2015b),
analogy (Mikolov et al., 2013b) and metaphor
(Shutova et al., 2016). However, less is known
about the extent to which such models correlate
with and reflect human conceptual representation.

Much research in the cognitive neuroscience
community has been concerned with uncovering
how the brain represents conceptual knowledge,
by leveraging brain activation data associated with
the meanings of concepts obtained during func-
tional magnetic resonance imaging (fMRI) exper-
iments. In the computational linguistics commu-
nity, the availability of such fMRI data provides

researchers with a benchmark for evaluating se-
mantic model performance in terms of their abil-
ity to represent human semantic memory. Mitchell
et al. (2008) were the first to demonstrate that
distributional semantic models encode some of
the patterns found in the fMRI data. Other re-
searchers followed in their steps, evaluating tra-
ditional count-based distributional models (Dev-
ereux et al., 2010; Murphy et al., 2012), topic
model-based semantic features (Pereira et al.,
2013), psycholinguistic and behavioural features
(Palatucci et al., 2009; Chang et al., 2010; Fer-
nandino et al., 2015) and visual representations
(Anderson et al., 2013, 2017). While all of these
studies report correlation between the investigated
semantic models and patterns found in the brain
imaging data, their focus on individual models and
the use of different datasets and prediction meth-
ods make their results difficult to compare and
to integrate into a coherent evaluation landscape.
The work of Murphy et al. (2012) is an exception,
in that the authors systematically compare several
distributional models with a range of parameters
on the same brain imaging dataset. However, they
focus on the traditional count-based distributional
models only.

We take inspiration from the works of Mitchell
et al. (2008) and Murphy et al. (2012); however,
we conduct a more extensive study of the ability
of different types of semantic models to predict
the patterns of brain activity associated with con-
ceptual representation. We evaluate and compare
several kinds of semantic models, using different
modalities and data sources: (1) traditional count-
based distributional models (with word window-
based and dependency-based contexts) learnt from
text; (2) log-linear skip-gram models (with word
window-based and dependency-based contexts);
(3) behavioural models based on the free associ-
ation task; (4) word representations learnt from
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visual data; and (5) multi-modal word repre-
sentations combining linguistic and visual infor-
mation. Unlike previous studies, where evalu-
ations were typically conducted using a single
technique, we evaluate our models using several
methods: ridge regression (Hoerl and Kennard,
1970), similarity-based encoding and similarity-
based decoding (Anderson et al., 2016). Such
an experimental setup allows for a comprehensive
evaluation and comparison of the models.

To the best of our knowledge the dependency-
based skip-gram model and the free association-
based model, as well as their multimodal coun-
terparts, have not been previously evaluated on
the brain activity prediction task. Other mod-
els have been evaluated individually and have not
yet been systematically compared within a sin-
gle evaluation framework. Providing such a com-
parison, our experiments and results demonstrate
that (1) visual information is a stronger predic-
tor of brain activity than the linguistic informa-
tion for concrete nouns; (2) sparse text-based mod-
els, whether dependency-based or built using lin-
ear bag-of-words context, tend to predict neu-
ral activity more accurately than dense models;
(3) cognitively-motivated association-based mod-
els perform on par with or better than other lin-
guistic models, which suggests that they provide
an interesting avenue in computational semantics
research.

2 Related work

The seminal work of Mitchell et al. (2008) in-
troduced a new semantic model able to predict
brain activation data associated with the meanings
of concrete nouns from their corpus-harvested se-
mantic representations. They chose a set of 25
verbs to act as semantic features in their distri-
butional model, inspired by the importance of
sensory-motor features in neural representations
of concepts (Cree and McRae, 2003).

Since then, various studies have shown that dis-
tributional semantic models encode and are able to
predict neural activation patterns associated with
concepts (Devereux et al., 2010; Murphy et al.,
2012; Pereira et al., 2013). Devereux et al. (2010)
build on the work of Mitchell et al. (2008) and
show that automatically acquired feature-norm
like semantic representations can make equally
powerful predictions about brain activity associ-
ated with the presentation of words. Pereira et al.

(2013) use semantic features learnt from topic
models on Wikipedia to predict neural activation
patterns for unseen concepts.

Several other studies have demonstrated the fit
of semantic models built from human behavioural
data with regard to predicting neural activation
patterns (Palatucci et al., 2009; Chang et al., 2010;
Fernandino et al., 2015). Chang et al. (2010) use
brain region encodings as well as detailed taxo-
nomic encodings of McRae et al. (2005) feature
norms to predict brain activation patterns using a
linear regression model. They demonstrate that
learned brain activity patterns can be used to de-
code mental states. Fernandino et al. (2015) use
human elicited attribute salience scores based on
five sensory-motor attributes (sound, color, visual
motion, shape and manipulation) to derive fMRI
brain activation patterns for concrete words, but
are unsuccessful at modeling neural activation pat-
terns for abstract words.

Recent advances in multi-modal semantics have
shown that grounding semantic models in sen-
sory modalities improves performance on a variety
of tasks (Silberer and Lapata, 2012; Bruni et al.,
2012; Kiela and Bottou, 2014; Bulat et al., 2016).
Anderson et al. (2013) show that semantic models
built from visual data correlate highly with fMRI-
based brain activation patterns. Anderson et al.
(2015) find that similarity in activity in the brain
areas related to linguistic processing can be bet-
ter predicted from text-based semantic representa-
tions, whilst image-based representations perform
better at predicting similarity in the visual process-
ing areas of the brain. In line with the dual coding
theory, Anderson et al. (2017) demonstrate an ad-
vantage in decoding brain activity patterns of ab-
stract words for text-based semantic models over
the image-based ones. Contrary to previous find-
ings, Anderson et al. (2017) find no advantage in
decoding neural activity patterns associated with
concrete words for image-based models.

Murphy et al. (2012) present the first study sys-
tematically comparing several text-based seman-
tic models on the brain activity prediction task.
They focus on the traditional count-based distri-
butional models and achieve the best performance
using dependency-based features. Our study is
more extensive than that of Murphy et al. (2012),
as we evaluate both the count-based models and
the more recent skip-gram word embeddings, as
well as comparing them to free association-based,
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visual and multi-modal semantic representations.
While Murphy and colleagues evaluate the mod-
els using one method only — linear regression,
we compare predicted neural activation patterns
obtained using both regression and the similarity-
based encoding and decoding methods proposed
by Anderson et al. (2016).

3 Brain imaging data

We use the dataset of fMRI neural activation pat-
terns associated with the meanings of nouns, cre-
ated by Mitchell et al. (2008) as described below.

3.1 fMRI experiment
Nine right-handed adults between the age of 18
and 32 (five female) participated in the study.
They were presented with line drawings and noun
labels for 60 concrete nouns from 12 semantic
classes – animals, body parts, buildings, building
parts, clothing, furniture, insects, kitchen items,
tools, vegetables, vehicles and man-made objects
– with five exemplars per class. The task for the
participants during the scanning was to think about
the properties of the noun stimuli they were pre-
sented with. The entire set of 60 stimulus words
was presented six times to every participant, in a
different order for each presentation.

The fMRI images were acquired on a Siemens
Allegra 3.0T scanner. The initial data was cor-
rected for slice timing, motion and linear trend;
spatially normalised and resampled to 3x3x6mm3

voxels. Only those voxels overlapping with the
cortex were selected (approximately 20000 for ev-
ery participant).

3.2 Voxel selection
We employ the same voxel selection procedure
as Mitchell et al. (2008) for evaluating the sim-
ilarity between actual fMRI images and model-
predicted fMRI images. Similarity is computed by
only taking into account 500 voxels with the most
stable activation profile across words – with pro-
files compared across the six presentations. The
evaluation is performed using leave-two-out cross
validation. Voxel selection was performed inde-
pendently for each of the cross validation folds, at
training time. A voxel’s stability score across the
six presentations was approximated as the mean
pairwise Pearson correlation between its activation
profiles over the 58 training words in the cross-
validation fold. The 500 voxels with the highest
stability score were chosen.

3.3 Brain activity vectors

We evaluate our models on the data of each par-
ticipant independently. Following Mitchell et al.
(2008), we obtain a single fMRI image per con-
cept (a representative image) by first computing
the mean fMRI response over its six presentations,
and then subtracting the mean of all 60 of these
representative images from each. In the rest of
this paper we will refer to these representations as
brain activity vectors.

4 Semantic models

MITCHELL As a benchmark for all other seman-
tic models, we use the publicly available1 co-
occurrence based semantic vectors developed in
the Mitchell et al. (2008) study. The features of
this semantic space are 25 sensory-motor verbs.
Co-occurrence statistics were collected using a
window size of 5 words either side of the tar-
get word, on a trillion-word corpus provided by
Google.

4.1 Text-based semantic models

We train a variety2 of context-counting and
context-predicting text-based semantic models on
the January 2016 dump of Wikipedia, which was
tokenised using the Stanford NLP tools3, lemma-
tised with the Morpha lemmatiser (Minnen et al.,
2001), and parsed with the C&C parser (Clark and
Curran, 2007).

DISTRIB We obtain count-based distributional se-
mantic models, using the top 10K most frequent
lemmatised words in the corpus (excluding stop-
words) as contexts. The context window is de-
fined as sentence boundaries. Counts are re-
weighted using positive pointwise mutual infor-
mation (PPMI) and vectors are L2-normalised.

SVD300 We also construct 300-dimensional dense
semantic representations by applying singular
value decomposition (SVD) (Deerwester et al.,
1990) to DISTRIB.

1https://www.cs.cmu.edu/afs/cs/
project/theo-73/www/science2008/data.
html

2We have experimented with different parameter settings
for each type of language-based semantic space (e.g. size of
the vectors, number of iterations when learning the embed-
dings etc.) and found that the reported vectors with “stan-
dard’ settings perform the best (or do not get significantly
outperformed).

3https://nlp.stanford.edu/software/
index.shtml
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DEPS Following Murphy et al. (2012), who find
that dependency-based semantic vectors perform
best on a neurosemantic decoding task, we also
include such a semantic space in our compari-
son. Vector representations are created by leverag-
ing the dependency relations output by the C&C
parser (Clark and Curran, 2007) as features. We
use both the incoming and outgoing dependency
relations as features; for example, given the de-
pendency relation (RUN, DOBJ, MARATHON) we
extract the tuple (DOBJ, MARATHON) as a fea-
ture for RUN and (!DOBJ, RUN) as a feature for
MARATHON. The top 10K most frequent depen-
dency features are used as contexts and counts are
re-weighted using PPMI.

DEPS-SVD300 We also obtain 300-dimensional
dense dependency-based semantic representations
by applying SVD to DEPS.

EMBED-BOW We train 300-dimensional embed-
dings using the standard log-linear skipgram
model with negative sampling of Mikolov et al.
(2013a). The embeddings were trained using lin-
ear bag-of-words contexts, with the window de-
fined as k = 2 (EMBED-BOW2) or k = 5
(EMBED-BOW5) words either side of the target
word. We use 10 negative samples per word-
context pair and 15 iterations over the corpus.

EMBED-DEPS In addition to the embeddings
trained with linear bag-of-words contexts, we also
obtain 300-dimensional dependency-based word
embeddings using the Levy and Goldberg (2014)
implementation of the generalised skip-gram with
arbitrary contexts model. Using both incoming
and outgoing dependency relations output by the
C&C parser, we create word-context pairs using
all words and contexts occurring more than 400
times in the corpus. This resulted in a vocabulary
of about 92,000 words, with over 250,000 distinct
syntactic contexts. We use 10 negative samples
per word-context pair and 15 iterations over the
corpus.

4.2 Association-based semantic model

Free word association datasets (Nelson et al.,
2004; De Deyne et al., 2016) represent a rich
source of semantic information and have been suc-
cessfully used in NLP, including research on se-
mantic memory (Steyvers et al., 2004) and multi-
modal semantics (Hill and Korhonen, 2014). Re-
cent studies have shown the superiority of se-

mantic models built using data collected from
multiple-response free association tasks — where
subjects are asked to list multiple associative
cues for every target word rather than a sin-
gle association — over the models built from
single-response ones (De Deyne et al., 2013).
Moreover, such association-based semantic mod-
els have been shown to outperform current state-
of-the-art text-based language models on concept
relatedness and similarity judgments (De Deyne
et al., 2016).

We make use of the word association dataset
collected as part of the Small World of Words4

project, where more than 100K fluent English
speakers were asked to list three associations for
each target word. The dataset contains multiple-
response association data for over 10K words. We
use a subset of this dataset, where all target words
have at least 50 primary, 50 secondary and 50 ter-
tiary responses and all responses also appear as
normed target words5.

ASSOC We construct a count-based semantic
model of word associations (henceforth ASSOC)
similarly to a count-based distributional model:
the responses are treated as semantic features, and
counts are replaced by the sum of primary, sec-
ondary and tertiary association frequencies be-
tween the target word and the responses. Counts
are re-weighted using PPMI and vectors are L2-
normalised. The association-based representa-
tions obtained for the 60 target words in the
Mitchell et al. (2008) dataset under this model are
9854-dimensional.

4.3 Image-based semantic model

We also build state-of-the-art deep visual seman-
tic representations (henceforth VISUAL) for the 60
concepts in the Mitchell et al. (2008) dataset. Fol-
lowing previous work in multi-modal semantics
(Bergsma and Goebel, 2011; Kiela and Bottou,
2014) and the findings of a recent study of sys-
tem architectures and data sources for construct-
ing visual representations (Kiela et al., 2016), we
retrieve 10 images per concept from Google Im-
ages. We use the MMFeat toolkit6 (Kiela, 2016)
to build our image representations. We extract the
4096-dimensional pre-softmax layer from a for-

4https://smallworldofwords.org/
5Total of 9854 words (appearing as both target and re-

sponses) and 1092251 association pairs
6https://github.com/douwekiela/mmfeat
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ward pass through a convolutional neural network
(Krizhevsky et al., 2012), which has been pre-
trained on the ImageNet classification task using
Caffe (Jia et al., 2014). We obtain the visual rep-
resentation for a given concept by taking the mean
of the 10 resulting image representations.

4.4 Multi-modal semantic models
We also included multi-modal semantic spaces
in our analysis, as these are currently widely
used in NLP and have been previously shown to
achieve the best performance at predicting con-
ceptual encodings in the brain (Anderson et al.,
2015). Multi-modal semantic spaces are con-
structed by combining the visual (VISUAL) and
respective linguistic (e.g. MITCHELL, DISTRIB,
DEPS) or association-based (ASSOC) representa-
tions into a multi-modal representation by con-
catenating their respective L2-normalized vectors.

5 Methods

In this study, we use two different ways of
analysing the correlation between the semantic
models described in Section 4 and the fMRI brain
activation patterns used as a proxy for human con-
ceptual representation. First, we compare these se-
mantic models in their predictive power, by look-
ing at how well they can synthesise, i.e. predict,
brain activation patterns for unseen concepts (Sec-
tion 5.1). Secondly, we look at how well they
are able to decode neural activation patterns by
measuring their success at predicting the stimulus
that produced an unlabeled (unseen) fMRI pattern
(Section 5.2).

5.1 Predicting brain activity patterns
The brain activity prediction task has been used in
previous NLP research as a method of evaluating
different semantic models in their ability to model
conceptual representation. Most of these studies
learn a mapping function between the semantic
model of choice and the fMRI neural activity pat-
terns using regression techniques (Mitchell et al.,
2008; Devereux et al., 2010; Murphy et al., 2012).
Recent work by Anderson et al. (2016) introduce
a new method for synthesising fMRI activity pat-
terns through similarity-based encoding that does
not require model fitting. We compare the predic-
tion performance of the semantic models detailed
in Section 4 by implementing both a regression-
based model and the similarity-based encoding al-
gorithm of Anderson et al. (2016).

Regression-based learning Following previous
work (Mitchell et al., 2008; Devereux et al., 2010;
Murphy et al., 2012), for every participant, we
learn a mapping function between semantic model
features and brain activation vectors using lin-
ear regression. The learned weights are used to
make predictions about brain activation vectors as-
sociated with concepts that were not seen during
training. We implement Ridge regression (Hoerl
and Kennard, 1970), a multiple linear regression
model that uses a least squares loss function and
L2 regularisation.

Similarity-based encoding We implement the
similarity-based encoding method introduced by
Anderson et al. (2016). This method predicts the
brain activity vector for an unseen concept by ex-
ploiting its similarity (with respect to a particular
semantic model) to words for which we have ob-
served brain activity vectors.

The first step in predicting a brain activity vec-
tor for an unseen concept is to compute its se-
mantic model similarity code. This is a N -
dimensional7 vector of similarity scores — com-
puted using Pearson’s correlation — between the
unseen concept and the N words for which we
have brain activation vectors8. The predicted brain
activity vector for the unseen concept is then “syn-
thesised” by using its semantic model similarity
code to weight a superposition of brain activity
vectors:

~b′ = 1
C

N∑
i=1

~bi · corr(~vi, ~vN+1) (1)

Assuming the unseen word is indexedN+1 and
~vj is the semantic model representation of word j,
C is a normalisation constant defined as the sum of
absolute values of elements in the semantic model
similarity code:

C = |
N∑

i=1

corr(~vi, ~vN+1)| (2)

5.2 Decoding neural activity patterns
We then evaluate our semantic models in terms of
their ability to decode unseen fMRI activation pat-
terns. The analysis in this case does not involve

7Assuming that we have N words for which we have both
semantic model representations (e.g. DISTRIB vectors) and
observed brain activation vectors.

8The similarities are measured w.r.t. the semantic model
we use as “predictor”, e.g. DISTRIB, SVD300 or VISUAL
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synthesising brain activation vectors for new con-
cepts, but predicting the correct label (stimulus)
associated with a given fMRI pattern.

We implement the similarity-based decoding
procedure as detailed in Anderson et al. (2016).
The first step is to obtain the semantic model simi-
larity matrix — by computing the semantic model
similarity codes for each of the 60 concepts in the
Mitchell et al. (2008) dataset (as described above)
— and the brain activity similarity matrix — by
computing brain activity similarity codes.

At test time, two of the N words are chosen for
decoding, together with their respective semantic
model similarity codes (~si, ~sj) and brain activity
similarity codes (~ai,~aj). Next, ~s′

i,
~s′
j , ~a′

i and ~a′
j are

obtained by removing the i-th and j-th elements in
~si, ~sj ,~ai and~aj respectively, because entries in the
similarity vectors corresponding to the test words
would reveal the correct answer in the matching
task. We will refer to ~s′

i and ~s′
j as reduced seman-

tic model similarity codes, and by analogy to ~a′
i

and ~a′
j as reduced neural similarity codes.

Decoding is considered a success if the sum of
Pearson’s correlations for the correct pairings
( corr(~s′

i,
~a′
i) + corr(~s′

j ,
~a′
j) ) is higher than the

sum of Pearson’s correlations for the incorrect
pairings ( corr(~s′

i,
~a′
j) + corr(~s′

j ,
~a′
i) ).

6 Experiments

All semantic spaces presented in Section 4 have
full coverage on the Mitchell et al. (2008) dataset.
All experiments detailed in this section were per-
formed separately for every participant and evalu-
ated using leave-two-out cross validation.

6.1 Regression experiments
We repeatedly train a regression model to fit brain
activation vectors for each of the semantic spaces
described in Section 4, using only 58 of the 60
available concept representations (leave-two-out
cross validation). This resulted in 1770 cross-
validation folds.9 The only hyperparameter in
the regression is λ, which controls the degree of
regularisation. The λ hyperparameter was opti-
mised when training each cross-validation fold, by
choosing from the range 0.0001 to 100 through
generalised cross validation (i.e. λ was optimised
by only looking at the training items during each
cross-validation fold).

9There are (60 choose 2) ways to choose two test items
from the 60 Mitchell et al. (2008) concepts.

During each testing round, we used the learned
mapping function to construct predicted brain acti-
vation vectors for the two held out words.We eval-
uated each of the semantic models by computing
its accuracy of matching the two predicted brain
activation vectors with the two observed ones. A
matching score was computed by analysing the
cosine similarity between the predicted and the
observed brain activation vectors. If the sum
of similarities for the correct pairing was higher
than the one for the incorrect pairing the match-
ing accuracy was set to 1 for this cross-validation
fold, and otherwise it was set to 0. If the model
was choosing the match at random, the expected
accuracy is 0.50. The similarity between two
brain activation vectors was computed by only
taking into account the 500 most stable voxels
(during each cross-validation fold) as detailed in
Section 3.2. The cross-validated accuracies for
each of our semantic models are presented in Ta-
ble 1, with selected results also shown in Figure 1.
We only report results on two multi-modal mod-
els (VISUAL+MITCHELL and VISUAL+ASSOC), as
there was no significant difference in performance
between any pair of multi-modal models.

All semantic models learn to predict neu-
ral activation patterns for unseen words signif-
icantly above chance level. Association-based
semantic models (ASSOC) significantly10 outper-
form all dense semantic representations (whether
embedding-based or SVD-reduced), with p <
0.05. Sparse text-based representations with linear
context (DISTRIB and DEPS) significantly outper-
form some dense semantic representations. How-
ever, no dense semantic models significantly out-
perform DISTRIB and DEPS. There is no signif-
icant difference between the performance of AS-
SOC, DISTRIB and DEPS. Contrary to the findings
of Murphy et al. (2012), we do not find any advan-
tage in predicting brain activation patterns from
dependency-based text models.

Both VISUAL and multi-modal models signifi-
cantly outperform text-based models overall (p <
0.05), excepting MITCHELL with p < 0.11 when
comparing to VISUAL and p < 0.09 when compar-
ing against multi-modal semantic models. These
results support previous findings regarding the im-
portance of grounding semantic models in percep-
tual input. These grounded semantic models per-

10We used (pairwise) paired t-tests to judge the statistical
significance of the difference in performance between any
two models within the same experiment.
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MODEL P1 P2 P3 P4 P5 P6 P7 P8 P9 mean
MITCHELL 0.78 0.72 0.71 0.75 0.76 0.56 0.71 0.63 0.63 0.70
DISTRIB 0.85 0.67 0.73 0.84 0.72 0.55 0.70 0.54 0.69 0.70
SVD300 0.85 0.65 0.68 0.77 0.67 0.53 0.66 0.52 0.62 0.66
DEPS 0.85 0.70 0.77 0.86 0.74 0.40 0.70 0.59 0.72 0.70
DEPS-SVD300 0.80 0.68 0.74 0.81 0.70 0.32 0.68 0.61 0.66 0.67
EMBED-BOW2 0.85 0.65 0.70 0.78 0.64 0.55 0.60 0.57 0.65 0.66
EMBED-BOW5 0.83 0.62 0.72 0.74 0.66 0.56 0.70 0.56 0.58 0.66
EMBED-DEPS 0.82 0.60 0.67 0.81 0.67 0.49 0.63 0.62 0.72 0.67
ASSOC 0.90 0.65 0.78 0.87 0.74 0.51 0.75 0.60 0.67 0.72
VISUAL 0.90 0.78 0.85 0.88 0.69 0.56 0.75 0.57 0.69 0.74
VISUAL+ASSOC 0.90 0.78 0.84 0.86 0.70 0.58 0.76 0.56 0.70 0.74
VISUAL+MITCHELL 0.90 0.78 0.84 0.86 0.70 0.58 0.76 0.56 0.70 0.74

Table 1: Regression results. Cross-validated accuracies for models trained on participants P1
through P9, together with mean over participants.

form as well as models that encode mental repre-
sentations through associations (ASSOC). There is
no significant advantage for multi-modal models
over VISUAL.

6.2 Similarity-based encoding experiments

We also compare performance of the semantic
models when the predicted brain activation vec-
tor is computed using the Anderson et al. (2016)
similarity based encoding method. We use a
leave-two-out cross validation strategy, to match
previous work and our experiments detailed in
Section 6.1. The similarity-based encoding ap-
proach does not require any mapping function to
be learned, hence is a robust and fast way to ob-
tain synthesised brain activation vectors for un-
seen words.

During each cross-validation fold, semantic
model similarity codes of the two test words were
computed using the procedure outlined in Sec-
tion 5.1. Predicted brain activation vectors were
then synthesised for the two test words by weight-
ing a superposition of brain activity vectors using
their semantic model similarity codes. The match-
ing score for each of the cross-validation folds was
computed in the same way as in the case of the
regression model (Section 6.1). The only differ-
ence was that we measured the similarity between
the two brain activation vectors using Pearson’s
correlation coefficient, following Anderson et al.
(2016). As in the previous experiment, the ex-
pected chance performance of this method is 0.5.
The cross-validated accuracies for each of our se-
mantic models are shown in Table 2, with selected
results also shown in Figure 1.

All semantic models perform significantly
above chance level. As in the case of the re-

gression experiments, there is a clear advantage
in synthesising brain activation vectors for visu-
ally grounded models (VISUAL and multi-modal
models) over the language-based ones (this time
including MITCHELL), as well as ASSOC. When
looking at the performance of the text-based mod-
els in general, there is no difference in perfor-
mance when comparing context-predicting mod-
els to count-based ones, or sparse semantic models
to dense ones.

6.3 Brain activation pattern decoding

In the similarity-based decoding experiments, we
assess the ability of semantic models to iden-
tify the correct stimulus for a given brain activa-
tion pattern, using the same leave-two-out cross-
validation strategy. At test time, we obtain the re-
duced semantic model similarity codes and the re-
duced neural similarity codes for the two test items
as described in Section 5.2. It is important to note
that these similarity code vectors do not contain
any information about the true labeling, since en-
tries corresponding to the test items were removed.
Decoding is considered successful if the matching
score (computed as the sum of Pearson’s correla-
tions) is higher for the congruent pair than for the
incorrect one. Again, the expected performance
for a model decoding at random is 0.50. Table 3
shows the performance of our semantic models,
with selected results also shown in Figure 1.

The performance of all semantic models in
the decoding task is significantly above chance
level. Grounded semantic models (visual and
multi-modal) prove once again to have a signif-
icant advantage in decoding brain activation pat-
terns over the text-based models and association-
based model (p < 0.05). There is no signifi-
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MODEL P1 P2 P3 P4 P5 P6 P7 P8 P9 mean
MITCHELL 0.79 0.76 0.74 0.8 0.78 0.66 0.69 0.62 0.74 0.73
DISTRIB 0.87 0.69 0.79 0.89 0.79 0.75 0.75 0.52 0.79 0.76
SVD-300 0.89 0.72 0.79 0.90 0.79 0.74 0.78 0.56 0.83 0.78
DEPS 0.88 0.74 0.83 0.91 0.81 0.68 0.76 0.58 0.83 0.78
DEPS-SVD300 0.89 0.75 0.84 0.91 0.81 0.67 0.77 0.57 0.83 0.78
EMBED-BOW2 0.92 0.74 0.81 0.91 0.75 0.75 0.77 0.59 0.81 0.78
EMBED-BOW5 0.91 0.73 0.83 0.91 0.76 0.73 0.79 0.55 0.80 0.78
EMBED-DEPS 0.91 0.71 0.80 0.92 0.75 0.71 0.79 0.62 0.85 0.78
ASSOC 0.91 0.72 0.81 0.91 0.73 0.69 0.75 0.62 0.79 0.77
VISUAL 0.94 0.82 0.88 0.90 0.78 0.76 0.83 0.65 0.82 0.82
VISUAL+ASSOC 0.94 0.82 0.88 0.90 0.79 0.76 0.83 0.65 0.83 0.82
VISUAL+MITCHELL 0.94 0.82 0.88 0.90 0.78 0.76 0.83 0.65 0.82 0.82

Table 2: Similarity based encoding results: Cross-validated accuracies for models trained on
participants P1 through P9, together with mean over participants.

MODEL P1 P2 P3 P4 P5 P6 P7 P8 P9 mean
MITCHELL 0.80 0.76 0.75 0.82 0.77 0.7 0.71 0.65 0.75 0.75
DISTRIB 0.87 0.70 0.79 0.90 0.80 0.76 0.77 0.58 0.80 0.77
SVD300 0.88 0.73 0.79 0.89 0.80 0.76 0.79 0.61 0.85 0.79
DEPS 0.88 0.75 0.84 0.91 0.80 0.70 0.78 0.61 0.84 0.79
DEPS-SVD300 0.89 0.76 0.84 0.90 0.81 0.70 0.79 0.61 0.85 0.79
EMBED-BOW2 0.91 0.75 0.81 0.90 0.76 0.76 0.78 0.60 0.82 0.79
EMBED-BOW5 0.91 0.74 0.83 0.91 0.77 0.75 0.80 0.58 0.82 0.79
EMBED-DEPS 0.91 0.71 0.80 0.92 0.75 0.71 0.79 0.62 0.85 0.78
ASSOC 0.90 0.73 0.79 0.90 0.73 0.69 0.76 0.63 0.81 0.77
VISUAL 0.94 0.83 0.89 0.90 0.79 0.78 0.84 0.65 0.84 0.83
VISUAL+ASSOC 0.94 0.83 0.89 0.90 0.79 0.78 0.84 0.65 0.84 0.83
VISUAL+MITCHELL 0.94 0.83 0.89 0.90 0.79 0.78 0.84 0.65 0.84 0.83

Table 3: Similarity based decoding results: Cross-validated accuracies for models trained on
participants P1 through P9, together with mean over participants.

cant difference in performance between any of the
multi-modal models and VISUAL.

6.4 Discriminating between words in the
same semantic class

Following Mitchell et al. (2008), we also compare
the models in their ability to make accurate pre-
dictions when the two test words are exemplars of
the same semantic category11. This formulation of
the task is more difficult, since items in the same
semantic class (e.g. dog and cat) are more simi-
lar than items from different semantic classes (e.g.
eye and desk).

In order to measure the performance of our
models in this task, we recompute the cross-
validated accuracies for all three experiments
(regression-based learning, encoding and decod-
ing) by only taking into account the performance
on the 120 cross-validation folds where the test
items share the same semantic class. The results
across models and experiments show very simi-
lar trends as the ones computed using all 1770

11The 60 concepts are exemplars of 12 semantic classes.

cross-validation folds. The majority of the mod-
els still perform above chance level, but as ex-
pected they perform worse than when evaluated
using the entire dataset. Visually-grounded mod-
els still perform the best in all three experiments
(mean performance across participants for multi-
modal models in all three tasks is in the [0.61-
0.63] range).

7 Conclusion and future work

We presented the first systematic comparison of
a range of widely-used, state-of-the-art seman-
tic models in their ability to predict patterns of
conceptual representation in the human brain.
Firstly, we demonstrated that visual information is
a stronger predictor of brain activity than linguis-
tic information for concrete nouns. These findings
provide further support to the existing hypotheses
about the interplay of linguistic, conceptual and
perceptual systems in the human brain (Barsalou,
2008). These results also resonate with the success
of the rapidly growing field of multimodal seman-
tics (Kiela et al., 2016).
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Figure 1: (TOP) Comparison of individual and mean model performance for five selected models
(MITCHELL, DEPS, ASSOC, VISUAL, VISUAL+ASSOC), using results in Table 1 (Ridge regression), Table
2 (Similarity-based encoding) and Table 3 (Similarity-based decoding). (BOTTOM) Mean±SE accuracy
of participants for all models.

Secondly, our results suggest that sparse text-
based models, whether dependency-based or built
using linear bag-of-words context, predict neural
activity more accurately than dense models. We
also show that the structure of the text-based se-
mantic model (sparse vs. dense) has more influ-
ence on the performance than the type of informa-
tion used to construct the context (linear bag-of-
words vs. dependency-based).

Finally, we found that cognitively-motivated
association-based models perform on par with or
better than other linguistic models. These re-
sults are in line with the previous findings of be-
havioural research suggesting that humans repre-
sent the meanings of concepts through association
with other concepts (Barsalou et al., 2008) which
in turn endorses the association-based semantic
models as a promising direction in computational
semantics research.

An interesting avenue for future work would be
to investigate the variance of results amongst in-
dividual participants (Figure 1). Previous stud-
ies that use fMRI data always report variation
across participants (Devereux et al., 2010; Ander-
son et al., 2017) and most often attribute it to head
motion. However, understanding how individual
variations in participants can impact modeling de-

cisions would be of great value to the computa-
tional semantics community.
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