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Abstract

Rapid progress has been made towards
question answering (QA) systems that can
extract answers from text. Existing neu-
ral approaches make use of expensive bi-
directional attention mechanisms or score
all possible answer spans, limiting scala-
bility. We propose instead to cast extrac-
tive QA as an iterative search problem:
select the answer’s sentence, start word,
and end word. This representation re-
duces the space of each search step and al-
lows computation to be conditionally allo-
cated to promising search paths. We show
that globally normalizing the decision pro-
cess and back-propagating through beam
search makes this representation viable
and learning efficient. We empirically
demonstrate the benefits of this approach
using our model, Globally Normalized
Reader (GNR), which achieves the sec-
ond highest single model performance on
the Stanford Question Answering Dataset
(68.4 EM, 76.21 F1 dev) and is 24.7x
faster than bi-attention-flow. We also in-
troduce a data-augmentation method to
produce semantically valid examples by
aligning named entities to a knowledge
base and swapping them with new entities
of the same type. This method improves
the performance of all models considered
in this work and is of independent interest
for a variety of NLP tasks.

1 Introduction

Question answering (QA) and information extrac-
tion systems have proven to be invaluable in wide
variety of applications such as medical informa-
tion collection on drugs and genes (Quirk and
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Figure 1: GNR answering a question. It first
picks a sentence, then start word, then end word.
Probabilities are global and normalized over the
beam. Model initially picks the wrong sentence,
but global normalization lets it recover. Final
prediction’s probability (0.64) exceeds sentence
pick (0.49), whereas with local normalization each
probability is upper bounded by the previous step.

Poon, 2016), large scale health impact studies (Al-
thoff et al., 2016), or educational material develop-
ment (Koedinger et al., 2015). Recent progress in
neural-network based extractive question answer-
ing models are quickly closing the gap with human
performance on several benchmark QA tasks such
as SQuAD (Rajpurkar et al., 2016), MS MARCO
(Nguyen et al., 2016), or NewsQA (Trischler et al.,
2016a). However, current approaches to extractive
question answering face several limitations:
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1. Computation is allocated equally to the en-
tire document, regardless of answer location,
with no ability to ignore or focus computation
on specific parts. This limits applicability to
longer documents.

2. They rely extensively on expensive bi-
directional attention mechanisms (Seo et al.,
2016) or must rank all possible answer spans
(Lee et al., 2016).

3. While data-augmentation for question an-
swering have been proposed (Zhou et al.,
2017), current approaches still do not pro-
vide training data that can improve the per-
formance of existing systems.

In this paper we demonstrate a methodology for
addressing these three limitations, and make the
following claims:

1. Extractive Question Answering can be cast
as a nested search process, where sentences
provide a powerful document decomposition
and an easy to learn search step. This fac-
torization enables conditional computation to
be allocated to sentences and spans likely to
contain the right answer.

2. When cast as a search process, models with-
out bi-directional attention mechanisms and
without ranking all possible answer spans can
achieve near state of the art results on extrac-
tive question answering.

3. Preserving narrative structure and explicitly
incorporating type and question information
into synthetic data generation is key to gener-
ating examples that actually improve the per-
formance of question answering systems.

Our claims are supported by experiments on the
SQuAD dataset where we show that the Globally
Normalized Reader (GNR), a model that performs
an iterative search process through a document
(shown visually in Figure 1), and has computation
conditionally allocated based on the search pro-
cess, achieves near state of the art Exact Match
(EM) and F1 scores without resorting to more ex-
pensive attention or ranking of all possible spans.
Furthermore, we demonstrate that Type Swaps, a
type-aware data augmentation strategy that aligns
named entities with a knowledge base and swaps
them out for new entities that share the same type,

improves the performance of all models on extrac-
tive question answering.

We structure the paper as follows: in Section 2
we introduce the task and our model. Section 3 de-
scribes our data-augmentation strategy. Section 4
introduces our experiments and results. In Section
5 we discuss our findings. In Section 6 we relate
our work to existing approaches. Conclusions and
directions for future work are given in Section 7.

2 Model

Given a document d and a question q, we pose ex-
tractive question answering as a search problem.
First, we select the sentence, the first word of the
span, and finally the last word of the span. A ex-
ample of the output of the model is shown in Fig-
ure 1, and the network architecture is depicted in
Figure 2.

More formally, let d1, . . . , dn denote each sen-
tence in the document, and for each sentence di,
let di,1, . . . , di,mi denote the word vectors corre-
sponding to the words in the sentence. Similarly,
let q1, . . . , q` denote the word vectors correspond-
ing to words in the question. An answer is a tuple
a = (i∗, j∗, k∗) indicating the correct sentence i∗,
start word in the sentence j∗ and end word in the
sentence k∗. Let A(d) denote the set of valid an-
swer tuples for document d. We now describe each
stage of the model in turn.

2.1 Question Encoding

Each question is encoded by running a stack
of bidirectional LSTM (Bi-LSTM) over each
word in the question, producing hidden states
(hfwd

1 , hbwd
1 ), . . . , (hfwd

` , hbwd
` ) (Graves and

Schmidhuber, 2005). Following Lee et al.
(2016), these hidden states are used to compute a
passage-independent question embedding, qindep.
Formally,

sj = w>q MLP([hbwd
j ;hfwd

j ]) (1)

αj =
exp(sj)∑`

j′=1 exp(sj′)
(2)

qindep =
∑̀
j=1

αj [hbwd
j ;hfwd

j ], (3)

where wq is a trainable embedding vector, and
MLP is a two-layer neural network with a Relu
non-linearity. The question is represented by
concatenating the final hidden states of the for-
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ward and backward LSTMs and the passage-
independent embedding, q = [hbwd

1 ;hfwd
` ; qindep].

2.2 Question-Aware Document Encoding

Conditioned on the question vector, we compute
a representation of each document word that is
sensitive to both the surrounding context and the
question. Specifically, each word in the document
is represented as the concatenation of its word vec-
tor di,j , the question vector q, boolean features
indicating if a word appears in the question or is
repeated, and a question-aligned embedding from
Lee et al. (2016). The question-aligned embed-
ding qalign

i,j is given by

si,j,k = MLP(di,j)>MLP(qk) (4)

αi,j,k =
exp(si,j,k)∑`

k′=1 exp(si,j,k′)
(5)

q
align
i,j =

∑̀
k=1

αi,j,kqk. (6)

The document is encoded by a separate stack of
Bi-LSTMs, producing a sequence of hidden states
(hfwd

1,1 , h
bwd
1,1 ), . . . , (hfwd

n,mn
, hbwd

n,mn
). The search

procedure then operates on these hidden states.

2.3 Answer Selection

Sentence selection. The first phase of our search
process picks the sentence that contains the answer
span. Each sentence di is represented by the hid-
den state of the first and last word in the sentence
for the backward and forward LSTM respectively,
[hbwd

i,1 ;hfwd
i,mi

], and is scored by passing this repre-
sentation through a fully connected layer that out-
puts the unnormalized sentence score for sentence
di, denoted φsent(di).

Span start selection. After selecting a sentence
di, we pick the start of the answer span within
the sentence. Each potential start word di,j is rep-
resented as its corresponding document encoding
[hfwd

i,j ;hbwd
i,j ], and is scored by passing this encod-

ing through a fully connected layer that outputs the
unnormalized start word score for word j in sen-
tence i, denoted φsw(di,j).

Span end selection. Conditioned on sentence
di and starting word di,j , we select the end
word from the remaining words in the sen-
tence di,j , . . . , di,mi . To do this, we run a Bi-
LSTM over the remaining document hidden states

(hfwd
i,j , h

bwd
i,j ), . . . , (hfwd

i,mi
, hbwd

i,mi
) to produce repre-

sentations (h̃fwd
i,j , h̃

bwd
i,j ), . . . , (h̃fwd

i,mi
, h̃bwd

i,mi
). Each

end word di,k is then scored by passing
[h̃fwd

i,k ; h̃bwd
i,k ] through a fully connected layer that

outputs the unnormalized end word score for
word k in sentence i, with start word j, denoted
φew(di,j:k).

2.4 Global Normalization
The scores for each stage of our model can be nor-
malized at the local or global level. Previous work
demonstrated that locally-normalized models have
a weak ability to correct mistakes made in previ-
ous decisions, while globally normalized models
are strictly more expressive than locally normal-
ized models (Andor et al., 2016; Zhou et al., 2015;
Collins and Roark, 2004).

In a locally normalized model each decision is
made conditional on the previous decision. The
probability of some answer a = (i, j, k) is decom-
posed as

P(a|d, q) =Psent(i|d, q) · Psw(j|i, d, q)·
Pew(k|j, i, d, q). (7)

Each sub-decision is locally normalized by apply-
ing a softmax to the relevant selection scores:

Psent(i|d, q) =
exp(φsent(di))∑n

x=1 exp(φsent(dx))
, (8)

Psw(j|i, d, q) =
exp(φsw(di,j))∑mi

x=1 exp(φsw(di,x))
, (9)

Pew(k|j, i, d, q) =
exp(φew(di,j:k))∑mi

x=j exp(φew(di,j:x))
.

(10)
To allow our model to recover from incorrect

sentence or start word selections, we instead glob-
ally normalize the scores from each stage of our
procedure. In a globally normalized model, we
define

score(a, d, q) = φsent(di)+φsw(di,j)+φew(di,j:k).
(11)

Then, we model

P(a | d, q) =
exp(score(a, d, q))

Z
, (12)

where Z is the partition function

Z =
∑

a′∈A(d)

exp(score(a′, d, q)). (13)
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Figure 2: Globally Normalized Reader’s search process. Same color Bi-LSTMs share weights.

In contrast to locally-normalized models, the
model is normalized over all possible search paths
instead of normalizing each step of search proce-
dure. At inference time, the problem is to find

arg max
a∈A(d)

P(a | d, q), (14)

which can be approximately computed using beam
search.

2.5 Objective and Training

We minimize the negative log-likelihood on the
training set using stochastic gradient descent.
For a single example (a, d, q), the negative log-
likelihood

−score(a, d, q) + logZ (15)

requires an expensive summation to compute
logZ. Instead, to ensure learning is efficient, we
use beam search during training and early updates
(Andor et al., 2016; Zhou et al., 2015; Collins and
Roark, 2004). Concretely, we approximate Z by
summing only over candidates on the final beam
B:

Z ≈
∑
a′∈B

exp(score(a′, d, q)). (16)

At training time, if the gold sequence falls off
the beam at step t during decoding, a stochastic
gradient step is performed on the partial objective
computed through step t and normalized over the
beam at step t.

2.6 Implementation

Our best performing model uses a stack of 3 Bi-
LSTMs for the question and document encodings,
and a single Bi-LSTM for the end of span predic-
tion. The hidden dimension of all recurrent layers
is 200.

We use the 300 dimensional 8.4B token Com-
mon Crawl GloVe vectors (Pennington et al.,
2014). Words missing from the Common Crawl
vocabulary are set to zero. In our experiments,
all architectures considered have sufficient capac-
ity to overfit the training set. We regularize the
models by fixing the word embeddings throughout
training, dropping out the inputs of the Bi-LSTMs
with probability 0.3 and the inputs to the fully-
connected layers with probability 0.4 (Srivastava
et al., 2014), and adding gaussian noise to the re-
current weights with σ = 10−6. Our models are
trained using Adam with a learning rate of 0.0005,
β1 = 0.9, β2 = 0.999, ε = 10−8 and a batch size
of 32 (Kingma and Ba, 2014).

All our experiments are implemented in Ten-
sorflow (Abadi et al., 2016), and we tokenize us-
ing Ciseau (Raiman, 2017). Despite perform-
ing beam-search during training, our model trains
to convergence in under 4 hours through the use
of efficient LSTM primitives in CuDNN (Chetlur
et al., 2014) and batching our computation over
examples and search beams. We release our code
and augmented dataset.1

1https://github.com/baidu-research/
GloballyNormalizedReader
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Our implementation of the GNR is 24.7
times faster at inference time than the official
Bi-Directional Attention Flow implementation2.
Specifically, on a machine running Ubuntu 14
with 40 Intel Xeon 2.6Ghz processors, 386GB
of RAM, and a 12GB TitanX-Maxwell GPU, the
GNR with beam size 32 and batch size 32 requires
51.58 ± 0.266 seconds (mean ± std)3 to process
the SQUAD validation set. By contrast, the Bi-
Directional Attention Flow model with batch size
32 requires 1260.23±17.26 seconds. We attribute
this speedup to avoiding expensive bi-directional
attention mechanisms and making computation
conditional on the search beams.

3 Type Swaps

Question: Who said in April 25, 2011
December 2012

that the

fight would change from military to law enforce-
ment?
Answer: Sheryl Sandberg

Jeh Johnson
Document (snippet): . . . Basic objectives of
the Cabinet of Japan

Bush administration

“war on terror”, such as

targeting al Qaeda and building international
counterterrorism alliances, remain in place. In
April 25, 2011

December 2012

, Sheryl Sandberg
Jeh Johnson

, the General

Counsel of the ministry of education
Department of Defense

, stated

that the military fight will be replaced by a
law enforcement operation when speaking at
Ain Shams University

Oxford University

. . .

Figure 3: Type Swaps example. Replacements un-
derlined with originals underneath.

In extractive question answering, the set of pos-
sible answer spans can be pruned by only keeping
answers whose nature (person, object, place, date,
etc.) agrees with the question type (Who, What,
Where, When, etc.). While this heuristic helps hu-
man readers filter out irrelevant parts of a docu-
ment when searching for information, no explicit
supervision of this kind is present in the dataset.
Despite this absence, the distribution question rep-
resentations learned by our models appear to uti-
lize this heuristic. The final hidden state of the

2https://github.com/allenai/
bi-att-flow

3All numbers are averaged over 5 runs.

question-encoding LSTMs naturally cluster based
on question type (Table 1).

In other words, the task induces a question en-
coding that superficially respects type informa-
tion. This property is a double-edged sword: it
allows the model to easily weed out answers that
are inapplicable, but also leads it astray by select-
ing a text span that shares the answer’s type but
has the wrong underlying entity. A similar obser-
vation was made in the error analysis of (Weis-
senborn et al., 2017). We propose Type Swaps, an
augmentation strategy that leverages this emergent
behavior in order to improve the model’s ability
to prune wrong answers, and make it more robust
to surface form variation. This strategy has three
steps:

1. Locate named entities in document and ques-
tion.

2. Collect surface variation for each entity type:

human → {Ada Lovelace, Daniel Kah-
nemann,...},

country→ {USA, France, ...}, ...

3. Generate new document-question-answer ex-
amples by swapping each named entity in
an original triplet with a surface variant that
shares the same type from the collection.
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Figure 4: The majority of the surface variations
occur for people, numbers, dates, and organiza-
tions.

Assigning types to named entities in natural lan-
guage is an open problem, nonetheless when faced
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Table 1: Top bigrams in K-means (K = 7) clusters of question after Bi-LSTM. We observe emergent
clustering according to question type: e.g. Where→ Cluster 7, Who→ Cluster 3. “What” granularity
only observable with more clusters.

Cluster 1 2 3 4 5 6 7
Size 84789 42187 53061 130022 27549 16894 28377

Bigram Bigram Occurences
what is 3339 520 87 3736 20 8 138

what did 2463 3 3 112 1 0 1
how many 2 5095 1 1 0 0 0
how much 7 1102 0 12 0 0 0

who was 2 0 1934 0 0 0 1
who did 2 0 683 2 0 0 0

what was 2177 508 105 2034 71 31 92
when did 0 0 0 1 2772 0 0

when was 0 0 1 1 1876 0 0
what year 0 0 0 1 13 2690 0

in what 52 3 9 727 110 1827 518
where did 0 0 0 13 1 0 955

where is 0 1 0 11 0 0 665

with documents where we can safely assume that
the majority of the entities will be contained in
a large knowledge base (KB) such as Wikidata
Vrandečić and Krötzsch (2014) we find that sim-
ple string matching techniques are sufficiently ac-
curate. Specifically, we use a part of speech tagger
(Honnibal, 2017) to extract nominal groups in the
training data and string-match them with entities
in Wikidata. Using this technique, we are able to
extract 47,598 entities in SQuAD that fall under
6,380 Wikidata instance of4 types. Addition-
ally we assign “number types” (e.g. year, day of
the week, distance, etc.) to nominal groups that
contain dates, numbers, or quantities5. These ex-
traction steps produce 84,632 unique surface vari-
ants (on average 16.93 per type) with the majority
of the variation found in humans, numbers or or-
ganizations as visible in Figure 4.

With this method, we can generate 2.92 · 10369

unique documents (average of 3.36 · 10364 new
documents for each original document). To ensure
there is sufficient variation in the generated docu-
ments, we sample from this set and only keep vari-
ations where the question or answer is mutated. At
each training epoch, we train on T Type Swap ex-

4https://www.wikidata.org/wiki/
Property:P31

5In our experiments we found that not including numeri-
cal variation in the generated examples led to an imbalanced
dataset and lower final performance.

amples and the full original training data. An ex-
ample output of the method is shown in Figure 3.

4 Results

We evaluate our model on the 100,000 example
SQuAD dataset (Rajpurkar et al., 2016) and per-
form several ablations to evaluate the relative im-
portance of the proposed methods.

4.1 Learning to Search

In our first experiment, we aim to quantify the im-
portance of global normalization on the learning
and search process. We use T = 104 Type Swap
samples and vary beam width B between 1 and 32
for a locally and globally normalized models and
summarize the Exact-Match and F1 score of the
model’s predicted answer and ground truth com-
puted using the evaluation scripts from (Rajpurkar
et al., 2016) (Table 3). We additionally report an-
other metric, the Sentence score, which is a mea-
sure for how often the predicted answer came from
the correct sentence. This metric provides a mea-
sure for where mistakes are made during predic-
tion.

4.2 Type Swaps

In our second experiment, we evaluate the impact
of the amount of augmented data on the perfor-
mance of our model. In this experiment, we use
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Table 2: Model comparison

Model EM F1
Human (Rajpurkar et al., 2016) 80.3 90.5
Single model
Sliding Window (Rajpurkar et al., 2016) 13.3 20.2
Match-LSTM (Wang and Jiang, 2016) 64.1 73.9
DCN (Xiong et al., 2016) 65.4 75.6
Rasor (Lee et al., 2016) 66.4 74.9
Bi-Attention Flow (Seo et al., 2016) 67.7 77.3
R-Net(Wang et al., 2017) 72.3 80.6
Globally Normalized Reader w/o Type Swaps (Ours) 66.6 75.0
Globally Normalized Reader (Ours) 68.4 76.21

Table 3: Impact of Beam Width B

Model B EM F1 Sentence

Local, T = 104

1 65.7 74.8 89.0
2 66.6 75.0 88.3

10 66.7 75.0 88.6
32 66.3 74.6 88.0
64 66.6 75.0 88.8

Global, T = 104

1 58.8 68.4 84.5
2 64.3 73.0 86.8

10 66.6 75.2 88.1
32 68.4 76.21 88.4
64 67.0 75.6 88.4

the best beam sizes for each model (B = 10 for lo-
cal andB = 32 for global) and vary the augmenta-
tion from T = 0 (no augmentation) to T = 5 ·104.
The results of this experiment are summarized in
(Table 4).

We observe that both models improve in perfor-
mance with T > 0 and performance degrades past
T = 104. Moreover, data augmentation and global
normalization are complementary. Combined, we
obtain 1.6 EM and 2.0 F1 improvement over the
locally normalized baseline.

We also verify that the effects of Type Swaps
are not limited to our specific model by observ-
ing the impact of augmented data on the DCN+
(Xiong et al., 2016)6. We find that it strongly re-
duces generalization error, and helps improve F1,
with potential further improvements coming by re-

6 The DCN+ is the DCN with additional hyperpa-
rameter tuning by the same authors as submitted on the
SQuAD leaderboard https://rajpurkar.github.
io/SQuAD-explorer/.

Table 4: Impact of Augmentation Sample Size T .

Model T EM F1 Sentence
Local 0 65.8 74.0 88.0
Local 103 66.3 74.6 88.9
Local 104 66.7 74.9 89.0
Local 5 · 104 66.7 75.0 89.0
Local 105 66.2 74.5 88.6
Global 0 66.6 75.0 88.2
Global 103 66.9 75.0 88.1
Global 104 68.4 76.21 88.4
Global 5 · 104 66.8 75.3 88.3
Global 105 66.1 74.3 86.9

Table 5: Impact of Type Swaps on the DCN+

T Train F1 Dev F1
0 81.3 78.1
5 · 104 72.5 78.2

ducing other forms of regularization (Table 5).

5 Discussion

In this section we will discuss the results presented
in Section 4, and explain how they relate to our
main claims.

5.1 Extractive Question Answering as a
Search Problem

Sentences provide a natural and powerful docu-
ment decomposition for search that can be eas-
ily learnt as a search step: for all the models and
configurations considered, the Sentence score was
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above 88% correct (Table 3)7. Thus, sentence se-
lection is the easy part of the problem, and the
model can allocate more computation (such as the
end-word selection Bi-LSTM) to spans likely to
contain the answer. This approach avoids wasteful
work on unpromising spans and is important for
further scaling these methods to long documents.

5.2 Global Normalization

The Globally Normalized Reader outperforms
previous approaches and achieves the second
highest EM behind (Wang et al., 2017), with-
out using bi-directional attention and only scor-
ing spans in its final beam. Increasing the beam
width improves the results for both locally and
globally normalized models (Table 3), suggest-
ing search errors account for a significant por-
tion of the performance difference between mod-
els. Models such as Lee et al. (2016) and Wang
and Jiang (2016) overcome this difficulty by rank-
ing all possible spans and thus never skipping a
possible answer. Even with large beam sizes, the
locally normalized model underperforms these ap-
proaches. However, by increasing model flexi-
bility and performing search during training, the
globally normalized model is able to recover from
search errors and achieve much of the benefits of
scoring all possible spans.

5.3 Type-Aware Data Augmentation

Type Swaps, our data augmentation strategy, of-
fers a way to incorporate the nature of the ques-
tion and the types of named entities in the answers
into the learning process of our model and reduce
sensitivity to surface variation. Existing neural-
network approaches to extractive QA have so far
ignored this information. Augmenting the dataset
with additional type-sensitive synthetic examples
improves performance by providing better cover-
age of different answer types. Growing the num-
ber of augmented samples used improves the per-
formance of all models under study (Table 4-5).
With T ∈ [104, 5 · 104], (EM, F1) improve from
(65.8 → 66.7, 74.0 → 75.0) for locally normal-
ized models, and (66.6 → 68.4, 75.0 → 76.21)

7The objective function difference explains the lower per-
formance of globally versus locally normalized models on the
Sentence score: local models must always assign the high-
est probability to the correct sentence, while global models
only ensure the correct span has the highest probability. Thus
global models do not need to enforce a high margin between
the correct answer’s sentence score and others and are more
likely to keep alternate sentences around.

for globally normalized models.
Past a certain amount of augmentation, we ob-

serve performance degradation. This suggests that
despite efforts to closely mimic the original train-
ing set, there is a train-test mismatch or excess du-
plication in the generated examples.

Our experiments are conducted on two vastly
different architectures and thus these benefits are
expected to carry over to different models (Weis-
senborn et al., 2017; Seo et al., 2016; Wang et al.,
2017), and perhaps more broadly in other natu-
ral language tasks that contain named entities and
have limited supervised data.

6 Related Work

Our work is closely related to existing approaches
in learning to search, extractive question answer-
ing, and data augmentation for NLP tasks.

Learning to Search. Several approaches to
learning to search have been proposed for various
NLP tasks and conditional computation. Most re-
cently, Andor et al. (2016) and Zhou et al. (2015)
demonstrated the effectiveness of globally normal-
ized networks and training with beam search for
part of speech tagging and transition-based depen-
dency parsing, while Wiseman and Rush (2016)
showed that these techniques could also be applied
to sequence-to-sequence models in several appli-
cation areas including machine translation. These
works focus on parsing and sequence prediction
tasks and have a fixed computation regardless of
the search path, while we show that the same tech-
niques can also be straightforwardly applied to
question answering and extended to allow for con-
ditional computation based on the search path.

Learning to search has also been used in con-
text of modular neural networks with conditional
computation in the work of Andreas et al. (2016)
for image captioning. In their work reinforcement
learning was used to learn how to turn on and off
computation, while we find that conditional com-
putation can be easily learnt with maximum like-
lihood and the help of early updates (Andor et al.,
2016; Zhou et al., 2015; Collins and Roark, 2004)
to guide the training process.

Our framework for conditional computation
whereby the search space is pruned by a sequence
of increasingly complex models is broadly rem-
iniscent of the structured prediction cascades of
(Weiss and Taskar, 2010). Trischler et al. (2016b)
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also explored this approach in the context of ques-
tion answering.

Extractive Question Answering. Since the in-
troduction of the SQuAD dataset, numerous sys-
tems have achieved strong results. Seo et al.
(2016); Wang et al. (2017) and Xiong et al. (2016)
make use of a bi-directional attention mecha-
nisms, whereas the GNR is more lightweight and
achieves similar results without this type of at-
tention mechanism. The document representation
used by the GNR is very similar to Lee et al.
(2016). However, both Lee et al. (2016) and
Wang and Jiang (2016) must score all O(N2)
possible answer spans, making training and infer-
ence expensive. The GNR avoids this complex-
ity by learning to search during training and out-
performs both systems while scoring only O(B)
spans. Weissenborn et al. (2017) is a locally nor-
malized model that first predicts start and then
end words of each span. Our experiments lead
us to believe that further factorizing the problem
and using global normalization along with our
data augmentation would yield corresponding im-
provements.

Data augmentation. Several works use data
augmentation to control the generalization error of
deep learning models. Zhang and LeCun (2015)
use a thesaurus to generate new training examples
based on synonyms. Vijayaraghavan et al. (2016)
employs a similar method, but uses Word2vec and
cosine similarity to find similar words. Jia and
Liang (2016) use a high-precision synchronous
context-free grammar to generate new semantic
parsing examples. Our data augmentation tech-
nique, Type Swaps, is unique in that it leverages
an external knowledge-base to provide new ex-
amples that have more variation and finer-grained
changes than methods that use only a thesaurus or
Word2Vec, while also keeping the narrative and
grammatical structure intact.

More recently Zhou et al. (2017) proposed a
sequence-to-sequence model to generate diverse
and realistic training question-answer pairs on
SQuAD. Similar to their approach, our technique
makes use of existing examples to produce new
examples that are fluent, however we also are able
to explicitly incorporate entity type information
into the generation process and use the generated
data to improve the performance of question an-
swering models.

7 Conclusions and Future Work

In this work, we provide a methodology that over-
comes several limitations of existing approaches
to extractive question answering. In particular,
our proposed model, the Globally Normalized
Reader, reduces the computational complexity of
previous models by casting the question answer-
ing as search and allocating more computation to
promising answer spans. Empirically, we find that
this approach, combined with global normaliza-
tion and beam search during training, leads to near
state of the art results. Furthermore, we find that
a type-aware data augmentation strategy improves
the performance of all models under study on the
SQuAD dataset. The method is general, only re-
quiring that the training data contains named enti-
ties from a large KB. We expect it to be applicable
to other NLP tasks that would benefit from more
training data.

As future work we plan to apply the GNR
to other question answering datasets such as
MS MARCO (Nguyen et al., 2016) or NewsQA
(Trischler et al., 2016a), as well as investigate the
applicability and benefits of Type Swaps to other
tasks like named entity recognition, entity link-
ing, machine translation, and summarization. Fi-
nally, we believe there a broad range of structured
prediction problems (code generation, generative
models for images, audio, or videos) where the
size of original search space makes current tech-
niques intractable, but if cast as learning-to-search
problems with conditional computation, might be
within reach.
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