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Abstract

Sequence-to-sequence models have shown
promising improvements on the temporal
task of video captioning, but they opti-
mize word-level cross-entropy loss dur-
ing training. First, using policy gra-
dient and mixed-loss methods for re-
inforcement learning, we directly opti-
mize sentence-level task-based metrics (as
rewards), achieving significant improve-
ments over the baseline, based on both
automatic metrics and human evaluation
on multiple datasets. Next, we pro-
pose a novel entailment-enhanced reward
(CIDEnt) that corrects phrase-matching
based metrics (such as CIDEr) to only al-
low for logically-implied partial matches
and avoid contradictions, achieving fur-
ther significant improvements over the
CIDEr-reward model. Overall, our
CIDEnt-reward model achieves the new
state-of-the-art on the MSR-VTT dataset.

1 Introduction

The task of video captioning (Fig. 1) is an im-
portant next step to image captioning, with ad-
ditional modeling of temporal knowledge and
action sequences, and has several applications
in online content search, assisting the visually-
impaired, etc. Advancements in neural sequence-
to-sequence learning has shown promising im-
provements on this task, based on encoder-
decoder, attention, and hierarchical models (Venu-
gopalan et al., 2015a; Pan et al., 2016a). How-
ever, these models are still trained using a word-
level cross-entropy loss, which does not correlate
well with the sentence-level metrics that the task
is finally evaluated on (e.g., CIDEr, BLEU). More-
over, these models suffer from exposure bias (Ran-

Figure 1: A correctly-predicted video caption gen-
erated by our CIDEnt-reward model.

zato et al., 2016), which occurs when a model
is only exposed to the training data distribu-
tion, instead of its own predictions. First, us-
ing a sequence-level training, policy gradient ap-
proach (Ranzato et al., 2016), we allow video
captioning models to directly optimize these non-
differentiable metrics, as rewards in a reinforce-
ment learning paradigm. We also address the ex-
posure bias issue by using a mixed-loss (Paulus
et al., 2017; Wu et al., 2016), i.e., combining the
cross-entropy and reward-based losses, which also
helps maintain output fluency.

Next, we introduce a novel entailment-corrected
reward that checks for logically-directed partial
matches. Current reinforcement-based text gener-
ation works use traditional phrase-matching met-
rics (e.g., CIDEr, BLEU) as their reward func-
tion. However, these metrics use undirected n-
gram matching of the machine-generated caption
with the ground-truth caption, and hence fail to
capture its directed logical correctness. Therefore,
they still give high scores to even those generated
captions that contain a single but critical wrong
word (e.g., negation, unrelated action or object),
because all the other words still match with the
ground truth. We introduce CIDEnt, which pe-
nalizes the phrase-matching metric (CIDEr) based
reward, when the entailment score is low. This
ensures that a generated caption gets a high re-
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Figure 2: Reinforced (mixed-loss) video captioning using entailment-corrected CIDEr score as reward.

ward only when it is a directed match with (i.e., it
is logically implied by) the ground truth caption,
hence avoiding contradictory or unrelated infor-
mation (e.g., see Fig. 1). Empirically, we show
that first the CIDEr-reward model achieves signif-
icant improvements over the cross-entropy base-
line (on multiple datasets, and automatic and hu-
man evaluation); next, the CIDEnt-reward model
further achieves significant improvements over the
CIDEr-based reward. Overall, we achieve the new
state-of-the-art on the MSR-VTT dataset.

2 Related Work
Past work has presented several sequence-to-
sequence models for video captioning, using at-
tention, hierarchical RNNs, 3D-CNN video fea-
tures, joint embedding spaces, language fusion,
etc., but using word-level cross entropy loss train-
ing (Venugopalan et al., 2015a; Yao et al., 2015;
Pan et al., 2016a,b; Venugopalan et al., 2016).

Policy gradient for image captioning was re-
cently presented by Ranzato et al. (2016), using
a mixed sequence level training paradigm to use
non-differentiable evaluation metrics as rewards.1

Liu et al. (2016b) and Rennie et al. (2016) improve
upon this using Monte Carlo roll-outs and a test in-
ference baseline, respectively. Paulus et al. (2017)
presented summarization results with ROUGE re-
wards, in a mixed-loss setup.

Recognizing Textual Entailment (RTE) is a tra-
ditional NLP task (Dagan et al., 2006; Lai and
Hockenmaier, 2014; Jimenez et al., 2014), boosted
by a large dataset (SNLI) recently introduced
by Bowman et al. (2015). There have been several
leaderboard models on SNLI (Cheng et al., 2016;
Rocktäschel et al., 2016); we focus on the decom-
posable, intra-sentence attention model of Parikh
et al. (2016). Recently, Pasunuru and Bansal
(2017) used multi-task learning to combine video
captioning with entailment and video generation.

1Several papers have presented the relative comparison of
image captioning metrics, and their pros and cons (Vedantam
et al., 2015; Anderson et al., 2016; Liu et al., 2016b; Hodosh
et al., 2013; Elliott and Keller, 2014).

3 Models
Attention Baseline (Cross-Entropy) Our
attention-based seq-to-seq baseline model is
similar to the Bahdanau et al. (2015) architecture,
where we encode input frame level video features
{f1:n} via a bi-directional LSTM-RNN and then
generate the caption w1:m using an LSTM-RNN
with an attention mechanism. Let θ be the model
parameters and w∗1:m be the ground-truth caption,
then the cross entropy loss function is:

L(θ) = −
m∑
t=1

log p(w∗t |w∗1:t−1, f1:n) (1)

where p(wt|w1:t−1, f1:n) = softmax(W Thdt ),
W T is the projection matrix, and wt and hdt are
the generated word and the RNN decoder hidden
state at time step t, computed using the standard
RNN recursion and attention-based context vector
ct. Details of the attention model are in the sup-
plementary (due to space constraints).

Reinforcement Learning (Policy Gradient) In
order to directly optimize the sentence-level test
metrics (as opposed to the cross-entropy loss
above), we use a policy gradient pθ, where θ rep-
resent the model parameters. Here, our baseline
model acts as an agent and interacts with its envi-
ronment (video and caption). At each time step,
the agent generates a word (action), and the gen-
eration of the end-of-sequence token results in a
reward r to the agent. Our training objective is to
minimize the negative expected reward function:

L(θ) = −Ews∼pθ [r(w
s)] (2)

where ws is the word sequence sampled from
the model. Based on the REINFORCE algo-
rithm (Williams, 1992), the gradients of this non-
differentiable, reward-based loss function are:

∇θL(θ) = −Ews∼pθ [r(w
s) · ∇θ log pθ(ws)] (3)

We follow Ranzato et al. (2016) approximating
the above gradients via a single sampled word
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Ground-truth caption Generated (sampled) caption CIDEr Ent
a man is spreading some butter in a pan puppies is melting butter on the pan 140.5 0.07
a panda is eating some bamboo a panda is eating some fried 256.8 0.14
a monkey pulls a dogs tail a monkey pulls a woman 116.4 0.04
a man is cutting the meat a man is cutting meat into potato 114.3 0.08
the dog is jumping in the snow a dog is jumping in cucumbers 126.2 0.03
a man and a woman is swimming in the pool a man and a whale are swimming in a pool 192.5 0.02

Table 1: Examples of captions sampled during policy gradient and their CIDEr vs Entailment scores.

sequence. We also use a variance-reducing bias
(baseline) estimator in the reward function. Their
details and the partial derivatives using the chain
rule are described in the supplementary.

Mixed Loss During reinforcement learning, op-
timizing for only the reinforcement loss (with au-
tomatic metrics as rewards) doesn’t ensure the
readability and fluency of the generated caption,
and there is also a chance of gaming the metrics
without actually improving the quality of the out-
put (Liu et al., 2016a). Hence, for training our
reinforcement based policy gradients, we use a
mixed loss function, which is a weighted combi-
nation of the cross-entropy loss (XE) and the rein-
forcement learning loss (RL), similar to the previ-
ous work (Paulus et al., 2017; Wu et al., 2016).
This mixed loss improves results on the metric
used as reward through the reinforcement loss
(and improves relevance based on our entailment-
enhanced rewards) but also ensures better read-
ability and fluency due to the cross-entropy loss (in
which the training objective is a conditioned lan-
guage model, learning to produce fluent captions).
Our mixed loss is defined as:

LMIXED = (1− γ)LXE + γLRL (4)

where γ is a tuning parameter used to balance
the two losses. For annealing and faster conver-
gence, we start with the optimized cross-entropy
loss baseline model, and then move to optimizing
the above mixed loss function.2

4 Reward Functions

Caption Metric Reward Previous image cap-
tioning papers have used traditional captioning
metrics such as CIDEr, BLEU, or METEOR as
reward functions, based on the match between the
generated caption sample and the ground-truth ref-
erence(s). First, it has been shown by Vedantam

2We also experimented with the curriculum learning
‘MIXER’ strategy of Ranzato et al. (2016), where the XE+RL
annealing is based on the decoder time-steps; however, the
mixed loss function strategy (described above) performed
better in terms of maintaining output caption fluency.

et al. (2015) that CIDEr, based on a consensus
measure across several human reference captions,
has a higher correlation with human evaluation
than other metrics such as METEOR, ROUGE,
and BLEU. They further showed that CIDEr gets
better with more number of human references (and
this is a good fit for our video captioning datasets,
which have 20-40 human references per video).

More recently, Rennie et al. (2016) further
showed that CIDEr as a reward in image caption-
ing outperforms all other metrics as a reward, not
just in terms of improvements on CIDEr metric,
but also on all other metrics. In line with these
above previous works, we also found that CIDEr
as a reward (‘CIDEr-RL’ model) achieves the best
metric improvements in our video captioning task,
and also has the best human evaluation improve-
ments (see Sec. 6.3 for result details, incl. those
about other rewards based on BLEU, SPICE).

Entailment Corrected Reward Although CIDEr
performs better than other metrics as a reward, all
these metrics (including CIDEr) are still based on
an undirected n-gram matching score between the
generated and ground truth captions. For exam-
ple, the wrong caption “a man is playing football”
w.r.t. the correct caption “a man is playing bas-
ketball” still gets a high score, even though these
two captions belong to two completely different
events. Similar issues hold in case of a negation
or a wrong action/object in the generated caption
(see examples in Table 1).

We address the above issue by using an entail-
ment score to correct the phrase-matching metric
(CIDEr or others) when used as a reward, ensur-
ing that the generated caption is logically implied
by (i.e., is a paraphrase or directed partial match
with) the ground-truth caption. To achieve an ac-
curate entailment score, we adapt the state-of-the-
art decomposable-attention model of Parikh et al.
(2016) trained on the SNLI corpus (image caption
domain). This model gives us a probability for
whether the sampled video caption (generated by
our model) is entailed by the ground truth caption
as premise (as opposed to a contradiction or neu-
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tral case).3 Similar to the traditional metrics, the
overall ‘Ent’ score is the maximum over the en-
tailment scores for a generated caption w.r.t. each
reference human caption (around 20/40 per MSR-
VTT/YouTube2Text video). CIDEnt is defined as:

CIDEnt =

{
CIDEr− λ, if Ent < β

CIDEr, otherwise
(5)

which means that if the entailment score is very
low, we penalize the metric reward score by de-
creasing it by a penalty λ. This agreement-based
formulation ensures that we only trust the CIDEr-
based reward in cases when the entailment score
is also high. Using CIDEr−λ also ensures the
smoothness of the reward w.r.t. the original CIDEr
function (as opposed to clipping the reward to a
constant). Here, λ and β are hyperparameters
that can be tuned on the dev-set; on light tun-
ing, we found the best values to be intuitive: λ =
roughly the baseline (cross-entropy) model’s score
on that metric (e.g., 0.45 for CIDEr on MSR-VTT
dataset); and β = 0.33 (i.e., the 3-class entailment
classifier chose contradiction or neutral label for
this pair). Table 1 shows some examples of sam-
pled generated captions during our model training,
where CIDEr was misleadingly high for incorrect
captions, but the low entailment score (probabil-
ity) helps us successfully identify these cases and
penalize the reward.

5 Experimental Setup
Datasets We use 2 datasets: MSR-VTT (Xu et al.,
2016) has 10, 000 videos, 20 references/video; and
YouTube2Text/MSVD (Chen and Dolan, 2011)
has 1970 videos, 40 references/video. Standard
splits and other details in supp.
Automatic Evaluation We use several standard
automated evaluation metrics: METEOR, BLEU-
4, CIDEr-D, and ROUGE-L (from MS-COCO
evaluation server (Chen et al., 2015)).
Human Evaluation We also present human eval-
uation for comparison of baseline-XE, CIDEr-RL,
and CIDEnt-RL models, esp. because the au-
tomatic metrics cannot be trusted solely. Rele-
vance measures how related is the generated cap-
tion w.r.t, to the video content, whereas coherence
measures readability of the generated caption.

3Our entailment classifier based on Parikh et al. (2016)
is 92% accurate on entailment in the caption domain, hence
serving as a highly accurate reward score. For other domains
in future tasks such as new summarization, we plan to use the
new multi-domain dataset by Williams et al. (2017).

Training Details All the hyperparameters are
tuned on the validation set. All our results (in-
cluding baseline) are based on a 5-avg-ensemble.
See supplementary for extra training details, e.g.,
about the optimizer, learning rate, RNN size,
Mixed-loss, and CIDEnt hyperparameters.

6 Results
6.1 Primary Results

Table 2 shows our primary results on the popular
MSR-VTT dataset. First, our baseline attention
model trained on cross entropy loss (‘Baseline-
XE’) achieves strong results w.r.t. the previous
state-of-the-art methods.4 Next, our policy gra-
dient based mixed-loss RL model with reward as
CIDEr (‘CIDEr-RL’) improves significantly5 over
the baseline on all metrics, and not just the CIDEr
metric. It also achieves statistically significant im-
provements in terms of human relevance evalua-
tion (see below). Finally, the last row in Table 2
shows results for our novel CIDEnt-reward RL
model (‘CIDEnt-RL’). This model achieves sta-
tistically significant6 improvements on top of the
strong CIDEr-RL model, on all automatic metrics
(as well as human evaluation). Note that in Ta-
ble 2, we also report the CIDEnt reward scores,
and the CIDEnt-RL model strongly outperforms
CIDEr and baseline models on this entailment-
corrected measure. Overall, we are also the new
Rank1 on the MSR-VTT leaderboard, based on
their ranking criteria.

Human Evaluation We also perform small hu-
man evaluation studies (250 samples from the
MSR-VTT test set output) to compare our 3 mod-
els pairwise.7 As shown in Table 3 and Table 4, in
terms of relevance, first our CIDEr-RL model stat.
significantly outperforms the baseline XE model
(p < 0.02); next, our CIDEnt-RL model signif-
icantly outperforms the CIDEr-RL model (p <

4We list previous works’ results as reported by the
MSR-VTT dataset paper itself, as well as their 3
leaderboard winners (http://ms-multimedia-challenge.
com/leaderboard), plus the 10-ensemble video+entailment
generation multi-task model of Pasunuru and Bansal (2017).

5Statistical significance of p < 0.01 for CIDEr, ME-
TEOR, and ROUGE, and p < 0.05 for BLEU, based on the
bootstrap test (Noreen, 1989; Efron and Tibshirani, 1994).

6Statistical significance of p < 0.01 for CIDEr, BLEU,
ROUGE, and CIDEnt, and p < 0.05 for METEOR.

7We randomly shuffle pairs to anonymize model iden-
tity and the human evaluator then chooses the better caption
based on relevance and coherence (see Sec. 5). ‘Not Distin-
guishable’ are cases where the annotator found both captions
to be equally good or equally bad).
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Models BLEU-4 METEOR ROUGE-L CIDEr-D CIDEnt Human*
PREVIOUS WORK

Venugopalan (2015b)? 32.3 23.4 - - - -
Yao et al. (2015)? 35.2 25.2 - - - -
Xu et al. (2016) 36.6 25.9 - - - -
Pasunuru and Bansal (2017) 40.8 28.8 60.2 47.1 - -
Rank1: v2t navigator 40.8 28.2 60.9 44.8 - -
Rank2: Aalto 39.8 26.9 59.8 45.7 - -
Rank3: VideoLAB 39.1 27.7 60.6 44.1 - -

OUR MODELS
Cross-Entropy (Baseline-XE) 38.6 27.7 59.5 44.6 34.4 -
CIDEr-RL 39.1 28.2 60.9 51.0 37.4 11.6
CIDEnt-RL (New Rank1) 40.5 28.4 61.4 51.7 44.0 18.4

Table 2: Our primary video captioning results on MSR-VTT. All CIDEr-RL results are statistically
significant over the baseline XE results, and all CIDEnt-RL results are stat. signif. over the CIDEr-RL
results. Human* refers to the ‘pairwise’ comparison of human relevance evaluation between CIDEr-RL
and CIDEnt-RL models (see full human evaluations of the 3 models in Table 3 and Table 4).

Relevance Coherence
Not Distinguishable 64.8% 92.8%
Baseline-XE Wins 13.6% 4.0%
CIDEr-RL Wins 21.6% 3.2%

Table 3: Human eval: Baseline-XE vs CIDEr-RL.

Relevance Coherence
Not Distinguishable 70.0% 94.6%
CIDEr-RL Wins 11.6% 2.8%
CIDEnt-RL Wins 18.4% 2.8%

Table 4: Human eval: CIDEr-RL vs CIDEnt-RL.

0.03). The models are statistically equal on co-
herence in both comparisons.

6.2 Other Datasets
We also tried our CIDEr and CIDEnt reward mod-
els on the YouTube2Text dataset. In Table 5, we
first see strong improvements from our CIDEr-RL
model on top of the cross-entropy baseline. Next,
the CIDEnt-RL model also shows some improve-
ments over the CIDEr-RL model, e.g., on BLEU
and the new entailment-corrected CIDEnt score. It
also achieves significant improvements on human
relevance evaluation (250 samples).8

6.3 Other Metrics as Reward
As discussed in Sec. 4, CIDEr is the most promis-
ing metric to use as a reward for captioning,
based on both previous work’s findings as well as
ours. We did investigate the use of other metrics
as the reward. When using BLEU as a reward
(on MSR-VTT), we found that this BLEU-RL
model achieves BLEU-metric improvements, but
was worse than the cross-entropy baseline on hu-
man evaluation. Similarly, a BLEUEnt-RL model
achieves BLEU and BLEUEnt metric improve-
ments, but is again worse on human evaluation.

8This dataset has a very small dev-set, causing tuning is-
sues – we plan to use a better train/dev re-split in future work.

Models B M R C CE H*
Baseline-XE 52.4 35.0 71.6 83.9 68.1 -
CIDEr-RL 53.3 35.1 72.2 89.4 69.4 8.4
CIDEnt-RL 54.4 34.9 72.2 88.6 71.6 13.6

Table 5: Results on YouTube2Text (MSVD)
dataset. CE = CIDEnt score. H* refer to the pair-
wise human comparison of relevance.

We also experimented with the new SPICE met-
ric (Anderson et al., 2016) as a reward, but this
produced long repetitive phrases (as also discussed
in Liu et al. (2016b)).

6.4 Analysis
Fig. 1 shows an example where our CIDEnt-
reward model correctly generates a ground-truth
style caption, whereas the CIDEr-reward model
produces a non-entailed caption because this cap-
tion will still get a high phrase-matching score.
Several more such examples are in the supp.

7 Conclusion
We first presented a mixed-loss policy gradi-
ent approach for video captioning, allowing for
metric-based optimization. We next presented an
entailment-corrected CIDEnt reward that further
improves results, achieving the new state-of-the-
art on MSR-VTT. In future work, we are apply-
ing our entailment-corrected rewards to other di-
rected generation tasks such as image caption-
ing and document summarization (using the new
multi-domain NLI corpus (Williams et al., 2017)).
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