
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 845–854
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Deep Neural Solver for Math Word Problems

Yan Wang Xiaojiang Liu Shuming Shi
Tencent AI Lab

{brandenwang, kieranliu, shumingshi}@tencent.com

Abstract

This paper presents a deep neural solver
to automatically solve math word prob-
lems. In contrast to previous statistical
learning approaches, we directly translate
math word problems to equation templates
using a recurrent neural network (RNN)
model, without sophisticated feature engi-
neering. We further design a hybrid mod-
el that combines the RNN model and a
similarity-based retrieval model to achieve
additional performance improvement. Ex-
periments conducted on a large dataset
show that the RNN model and the hy-
brid model significantly outperform state-
of-the-art statistical learning methods for
math word problem solving.

1 Introduction

Developing computer models to automatically
solve math word problems has been an interest
of NLP researchers since 1963 Feigenbaum et al.
(1963); Bobrow (1964); Briars and Larkin (1984);
Fletcher (1985). Recently, machine learning tech-
niques Kushman et al. (2014); Amnueypornsakul
and Bhat (2014); Zhou et al. (2015); Mitra and
Baral (2016) and semantic parsing methods Shi
et al. (2015); Koncel-Kedziorski et al. (2015) are
proposed to tackle this problem and promising re-
sults are reported on some datasets. Although
progress has been made in this task, performance
of state-of-the-art techniques is still quite low on
large datasets having diverse problem types Huang
et al. (2016).

A typical math word problems are shown in Ta-
ble 1. The reader is asked to infer how many pens
Dan and Jessica have, based on constraints pro-
vided. Given the success of deep neural network-
s (DNN) on many NLP tasks (like POS tagging,

Problem: Dan have 2 pens, Jessica have 4
pens. How many pens do they have in total ?
Equation: x = 4+2
Solution: 6

Table 1: A math word problem

syntactic parsing, and machine translation), it may
be interesting to study whether DNN could also
help math word problem solving. In this paper, we
propose a recurrent neural network (RNN) model
for automatic math word problem solving. It is a
sequence to sequence (seq2seq) model that trans-
forms natural language sentences in math word
problems to mathematical equations. Experiments
conducted on a large dataset show that the RNN
model significantly outperforms state-of-the-art s-
tatistical learning approaches.

Since it has been demonstrated Huang et al.
(2016) that a simple similarity based method per-
forms as well as more sophisticated statistical
learning approaches on large datasets, we imple-
ment a similarity-based retrieval model and com-
pare with our seq2seq model. We observe that al-
though seq2seq performs better on average, the re-
trieval model is able to correctly solve many prob-
lems for which RNN generates wrong results. We
also find that the accuracy of the retrieval model
positively correlate with the maximal similarity s-
core between the target problem and the problems
in training data: the larger the similarity score, the
higher the average accuracy is.

Inspired by these observations, we design a hy-
brid model which combines the seq2seq model
and the retrieval model. In the hybrid model, the
retrieval model is chosen if the maximal similar-
ity score returned by the retrieval model is larger
than a threshold, otherwise the seq2seq model is
selected to solve the problem. Experiments on our

845

dataset show that, by introducing the hybrid mod-
el, the accuracy increases from 58.1% to 64.7%.

Our contributions are as follows:
1) To the best of our knowledge, this is the

first work of using DNN technology for automatic
math word problem solving.

2) We propose a hybrid model where a se-
q2seq model and a similarity-based retrieval mod-
el are combined to achieve further performance
improvement.

3) A large dataset is constructed for facilitating
the study of automatic math problem solving.1

The remaining part of this paper is organized
as follows: After analyzing related work in Sec-
tion 2, we formalize the problem and introduce our
dataset in Section 3. We present our RNN-based
seq2seq model in Section 4, and the hybrid model
in Section 5. Then experimental results are shown
and analyzed in Section 6. Finally we conclude
the paper in Section 7.

2 Related work

2.1 Math Word Problems Solving

Previous work on automatic math word problem
solving falls into two categories: symbolic ap-
proaches and statistical learning approaches.

In 1964, STUDENT Bobrow (1964) handles al-
gebraic problems by two steps: first, they trans-
form natural language sentences into kernel sen-
tences using a small set of transformation pat-
terns. Then the kernel sentences are transformed
to mathematical expressions by pattern match-
ing. A similar approach is also used to solve En-
glish rate problems Charniak (1968, 1969). Ligu-
da and Pfeiffer Liguda and Pfeiffer (2012) pro-
pose modeling math word problems with aug-
mented semantic networks. In addition, Addi-
tion/subtraction problems are studied most Bri-
ars and Larkin (1984); Dellarosa (1986); Bakman
(2007); Yuhui et al. (2010); Roy et al. (2015).

In 2015, Shi et.al Shi et al. (2015) propose a
system SigmaDolphin which automatically solves
math word problems by semantic parsing and rea-
soning. In the same year, Koncel et.al Koncel-
Kedziorski et al. (2015) also formalizes the prob-
lem of solving multi-sentence algebraic word
problems as that of generating and scoring equa-
tion trees.

1We plan to make the dataset publicly available when the
paper is published

Since 2014, statistical learning based approach-
es are proposed to solve the math word problems.
Hosseini et al. Hosseini et al. (2014) deal with the
open-domain aspect of algebraic word problems
by learning verb categorization from training data.
Kushman et al. Kushman et al. (2014) proposed
a equation template system to solve a wide range
of algebra word problems. Zhou et al. Zhou et al.
(2015) further extends this method by adopting the
max-margin objective, which results in higher ac-
curacy and lower time cost. In addition, Roy and
Roth Roy et al. (2015); Roy and Roth (2016) tries
to handle arithmetic problems with multiple step-
s and operations without depending on additional
annotations or predefined templates. Mitra et al.
Mitra and Baral (2016) presents a novel method
to learn to use formulas to solve simple addition-
subtraction arithmetic problems.

As reported in 2016 Huang et al. (2016), state-
of-the-art approaches have extremely low per-
formance on a big and highly diverse data set
(18,000+ problems). In contrast to these ap-
proaches, we study the feasibility of applying deep
learning to the task of math word problem solving.

2.2 Sequence to Sequence (seq2seq) Learning

With the framework of seq2seq learning Sutskev-
er et al. (2014); Wiseman and Rush (2016), re-
cent advances in neural machine translation (N-
MT) Bahdanau et al. (2014); Cho et al. (2014) and
neural responding machine (NRM) Shang et al.
(2015) have demonstrated the power of recurren-
t neural networks (RNNs) at capturing and trans-
lating natural language semantics. The NMT and
NRM models are purely data-driven and directly
learn to converse from end-to-end conversational
corpora.

Recently, the task of translating natural lan-
guage queries into regular expressions is explored
by using a seq2seq model Locascio et al. (2016),
which achieves a performance gain of 19.6% over
previous state-of-the-art models. To our knowl-
edge, we are the first to apply seq2seq model to
the task of math word problem solving.

3 Problem Formulation and Dataset

3.1 Problem Formulation

A math word problem P is a word sequence
Wp and contains a set of variables Vp =
{v1, . . . , vm, x1, . . . , xk} where v1, . . . , vm are
known numbers in P and x1, . . . , xk are variables

846

Problem: Dan have 5 pens and 3 pencils,
Jessica have 4 more pens and 2 less pencils
than him. How many pens and pencils do
Jessica have in total?
Equation: x = 5 + 4 +3 -2
Solution: 10

Table 2: A math word problem

whose values are unknown. A problem P can be
solved by a mathematical equation Ep formed by
Vp and mathematical operators.

In math word problems, different equations may
belong to a same equation template. For exam-
ple, equation x = (9 ∗ 3) + 7 and equation
x = (4 ∗ 5) + 2 share the same equation template
x = (n1 ∗ n2) + n3. To decrease the diversity of
equations, we map each equation to an equation
template Tp through a number mapping Mp. The
number mapping process can be defined as:

Definition 1 Number mapping: For a problem
P with m known numbers, a number mapping Mp

maps the numbers in problem P to a list of number
tokens {n1, . . . , nm} by their order in the problem
text.

Definition 2 Equation template: A general for-
m of equations. For a problem P with equationEp

and number mapping Mp, its equation template is
obtained by mapping numbers in Ep to a list of
number tokens {n1, . . . , nm} according to Mp.

Take the problem in Table 2 as an example, first
we can obtain a number mapping from the prob-
lem:

M : {n1 = 5; n2 = 3; n3 = 4; n4 = 2; }
and then the given equation can be expressed as an
equation template:

x = n1 + n3 + n2 − n4

After number mapping, the problem in Table 2
can be mapped to:

“Dan have n1 pens and n2 pencils, Jessica have
n3 more pens and n4 less pencils than him. How
many pens and pencils do Jessica have in total?”

We solve math word problems by generating e-
quation templates through a seq2seq model. The
input of the seq2seq model is the sequenceWP af-
ter number mapping, and the output is an equation
template TP . The equation EP can be obtained by
applying the corresponding number mapping MP

to TP .

3.2 Constructing a Large Dataset

Most public datasets for automatic math word
problem solving are quite small and contains lim-
ited types of problems. The most frequently used
Alg514 (Kushman et al., 2014) dataset contains
only 514 linear algebra problems with 28 equa-
tion templates. There are 1,000 problems in the
newly constructed DRAW-1K (Shyam and Ming-
Wei, 2017) dataset. Dophin1878 (Shi et al., 2015)
includes 1,878 number word problems. An ex-
ception is the Dolphin18K dataset (Huang et al.,
2016) which contains 18,000+ problems. Howev-
er, this dataset has not been made publicly avail-
able so far.

Since DNN-based approaches typically need
large training data, we have to build a large dataset
of labeled math word problems. We crawl over
60,000 Chinese math word problems from a cou-
ple of online education web sites. All of them are
real math word problems for elementary school s-
tudents. We focus on one-unknown-variable lin-
ear math word problems in this paper. For oth-
er problem types, we would like to leave as fu-
ture work. Please pay attention that the solutions
to the problems are in natural language, and we
have to extract equation systems and structured
answers from the solution text. We implemen-
t a rule-based extraction method for this purpose,
which achieves very high precision and medium
recall. That is, most equations and structured an-
swers extracted by our method are correct, and
many problems are dropped from the dataset. As
a result, we get dataset Math23k which contains
23,161 problems labeled with structured equation-
s and answers. Please refer to Table 3 for some s-
tatistics of the dataset and a comparison with other
public datasets.

4 Deep Neural Solver

In this section, we propose a RNN-based seq2seq
model to translate problem text to math equations.
Since not all numbers in problem text may be use-
ful for solving the problem, we propose, in Section
4.2, a significant number identification model to
distinguish whether a number in a problem should
appear in the corresponding equations.

4.1 RNN based Seq2seq Model

Figure 1 shows our RNN-based seq2seq model for
transforming problem text to a math equation, us-
ing the problem in Table 2 as an example. The in-

847

dataset # problems # templates # sentences # words problem types
Alg514 514 28 1.62k 19.3k algebra, linear

Dolphin1878 1,878 1,183 3.30k 41.4k number word problems
DRAW-1K 1,000 Unknown 6.23k 81.5k algebra, linear, one-VAR
Math23K 23,161 2,187 70.1k 822k algebra, linear, one-VAR

Table 3: Statistics of our dataset and several publicly available datasets

Figure 1: The seq2seq model

put sequence W is the problem after number map-
ping:

“Dan have n1 pens and n2 pencils, Jessica have
n3 more pens and n4 less pencils than him. How
many pens and pencils do Jessica have in total?”

The output sequence R = {r1, . . . , rs} is the
equation template:

x = n1 + n3 + n2 − n4

The gated recurrent units (GRU) (Chung et al.,
2014) and long short-memory (LSTM) (Hochreit-
er and Schmidhuber, 1997) cells are used for en-
coding and decoding, respectively. The reason
why we use GRU as the encoder instead of LSTM
is that the GRU has less parameters and less likely
to be overfitted on small dataset. Four fundamen-

tal operational stages of GRU are as follows:

zt =σ(W (z)xt + U zht−1) (Update gate)

rt =σ(W (r)xt + U rht−1) (Reset gate)

ĥt =tanh(rt � Uht−1 +Wxt) (New memory)

ht =(1− zt)� ĥt + zt � ht−1 (Hidden state)
(1)

where σ represents the sigmoid function and � is
an element-wise multiplication. The input xt is a
wordwt along with previously generated character
rt−1 . The variables U and W are weight matrices
for each gate.

The fundamental operational stages of LSTM
are as follows:

it = σ(W (i)xt + U iht−1) (Input gate)

ft = σ(W (f)xt + Ufht−1) (Forget gate)

ot = σ(W (o)xt + Uoht−1) (Output gate)

c̃t = tanh(W (c)xt + U (c)ht−1) (New memory)

ct = ft � c̃t−1 + it � c̃t (Final memory)

ht = ot � tanh(ct) (Hidden state)
(2)

where the input xt is a word wt along with previ-
ously generated character rt−1 .

Then, we redesigned the activation function of
the seq2seq model, which is different from vanil-
la seq2seq models. If we directly generate equa-
tion templates by a softmax function, some incor-
rect equations may be generated, such as: “x =
n1 + + ∗ n2” and “x = (n1 ∗ n2”. To ensure
that the output equations are mathematically cor-
rect, we need to find out which characters are ille-
gal according to previously generated characters.
This is done by five predefined rules like:

• Rule 1: If rt−1 in {+,−, ∗, /}, then rt will
not in {+,−, ∗, /,),=};
• Rule 2: If rt−1 is a number, then rt will not

be a number and not in {(,=};

848

• Rule 3: If rt−1 is “=”, then rt will not in
{+,−, ∗, /,=,)};
• Rule 4: If rt−1 is “(”, then rt will not in
{(,),+,−, ∗, /,=};
• Rule 5: If rt−1 is “)”, then rt will not be a

number and not in {(,)};
A binary vector ρt can be generated depends on

rt−1 and these rules. Each position in ρt is corre-
sponding to a character in the output vocabulary,
where “1” represents that the character is mathe-
matically correct, and “0” indicates mathematical-
ly incorrect. Thus, the output probability distribu-
tion at each time-step t can be calculated as:

P (r̂t|ht) =
ρt � ehT

t W s∑
ρt � ehT

t W s
(3)

where ht is the output of LSTM decoder, and W s

is the weight matrix. The probability of mathemat-
ically incorrect characters will be 0.

Our model is five layers deep, with a word em-
bedding layer, a two-layer GRU as encoder and a
two-layer LSTM as decoder. Both the encoder and
decoder contain 512 nodes. We perform standard
dropout during training (Srivastava et al., 2014) af-
ter GRU and LSTM layer with dropout probability
equal to 0.5. We train for 80 epochs, utilizing a
mini-batch size of 256 and a learning-rate of 0.01.

4.2 Significant Number Identification (SNI)
In a math word problem, not all numbers appear
in the equation for solving the problem. An ex-
ample is shown in Table 4, where the number “1”
in “1 day, 1 girl” and number “2” in “She has 2
types of” should not be used in equation construc-
tion. We say a number is significant if the number
should be included in the equation to the problem;
otherwise it is insignificant. For the problem in Ta-
ble 4, significant numbers are 9, 3, and 5, while 1
and 2 are insignificant numbers. Identifying sig-
nificant and insignificant numbers are important
for constructing correct equations. For this pur-
pose, we build a LSTM-based binary classification
model to determine whether a number in a piece of
problem text is significant.

The training data for SNI model are extract-
ed from the math word problems. Each number
and its context in problems is a training instance
of SNI. An instance will be labelled“True” if the
number is significant, otherwise it will be labelled

“False”. The structure of SNI model is shown in
Figure 2. By using single layer LSTMs with 128
nodes and a symmetric window of length 3, our
model achieves 99.1% accuracy. Table 4 is an ex-
ample of number mapping with and without SNI.

Problem: 1 day, 1 girl was organizing her
book case making sure each of the shelves had
exactly 9 books on it. She has 2 types of books
- mystery books and picture books. If she had
3 shelves of mystery books and 5 shelves of
picture books, how many books did she have
in total?
Number mapping: n1 = 1; n2 = 1; n3 = 9;
n4 = 2; n5 = 3; n6 = 5
Equation template: x = n5 ∗ n3 + n6 ∗ n3

Number mapping with SNI:
n1 = 9; n2 = 3; n3 = 5
Equation template with SNI:
x = n2 ∗ n1 + n3 ∗ n1

Problem after number mapping and SNI:
1 day, 1 girl was organizing her book case
making sure each of the shelves had exactly n1

books on it. She has 2 types of books -mystery
books and picture books. If she had n2 shelves
of mystery books and n3 shelves of picture
books, how many books did she have in total?

Table 4: Significant number identification (SNI)
example

Figure 2: The significant number identification
model

5 Hybrid Model

To compare the performance of our deep neural
solver and traditional statistical learning methods,
we implement a similarity-based retrieval model
(refer to Section 5.1 for more details).

The Venn diagram in Figure 3 shows the rela-
tionship between the problems solved by the re-

849

Figure 3: Green area: problems correctly solved
by the retrieval model; Blue area: problems cor-
rectly solved by the seq2seq model; Overlapped
area: problems correctly solved by both model-
s; White area: problems that both models fail to
solve

trieval model and those solved by the seq2seq
model. We can see that although seq2seq perform-
s better on average, the retrieval model is able to
correctly solve many problems that seq2seq can-
not solve. If we can combine the two models prop-
erly to build a hybrid model, more problems may
get solved.

In this section, we first give some details about
the retrieval model in Section 5.1, then the hybrid
model is introduced in Section 5.2.

5.1 Retrieval Model

The retrieval model solves problems by calculat-
ing the lexical similarity between the testing prob-
lem and each problem in the training data, and
then the equation template of the most similar
problem is applied to the testing problem. Each
problem is modeled as a vector of word TF-IDF
scores W = [w1,d, w2,d, . . . , wN,d]T , where

wt,d = tft,d ∗ |D|
|d ∈ D|t ∈ d| (4)

and tft,d is the word frequency of word t in prob-
lem d; |D| is the total number of problems in
dataset; |d ∈ D|t ∈ d| is the number of documents
containing the word t.

The similarity between the testing problem PT

and another problem Q can be calculated by the
Jaccard similarity between their corresponding
vectors:

J(PT , Q) =
|PT ∩Q|
|PT ∪Q| =

|PT ∩Q|
|PT |+ |Q| − |PT ∩Q|

(5)

The retrieval model will choose training prob-
lem Q1 that have the maximal similarity with PT

and use the equation template T of Q1 as the tem-
plate of problem PT .

An important and interesting observation about
the retrieval model is the relation between the
maximal similarity and solution accuracy. Figure
4 shows the results of only considering the prob-
lems for those the maximal similarity returned by
retrieval model is above a threshold θ (in oth-
er words, we skip a problem if its corresponding
maximal similarity is below the threshold). It is
clear that the larger the similarity score, the higher
the average accuracy is. In our hybrid model, we
make use of this property to combine the seq2seq
model and the retrieval model.

Figure 4: Precision and recall of the retrieval mod-
el, and the precision of the seq2seq model w.r.t.
different similarity threshold (θ) values

5.2 Hybrid Model
Our hybrid model combines the retrieval mod-
el and the seq2seq model by setting a hyper-
parameter θ as the threshold of similarity. In algo-
rithm 1, if the Jaccard similarity between testing
problem PT and the retrieved problem Q1 is high-
er than θ, the model will choose the equation tem-
plate T of Q1 as the equation template of problem
PT . Otherwise an equation template will be gen-
erated by a seq2seq model. As shown in Figure 4,
the retrieval model has a higher precision than the
seq2seq model when we set a high threshold.

6 Experiments

In this section, we conduct experiments on two
datasets to examine the performance of the pro-
posed models. Our main experimental result is to
show a significant improvement over the baseline

850

Algorithm 1 Hybrid model
Input: Q: problems in training data;

PT : testing problem;
θ: pre-defined threshold of similarity

Output: Problem solution
1: Get equation templates and number mappings

for training problems Q and testing problem
PT .

2: Number identification: identify significan-
t numbers

3: Retrieval:
choose problem Q1 from Q that has the max-
imal Jaccard similarity with PT

4: if J(PT , Q1) > θ then
5: Apply the retrieval model: select equation

template T of Q1

6: else
7: Apply the seq2seq model: T =

seq2seq(PT)
8: end if
9: Applying number mappings of PT to T and

calculating final solution

method on the proposed Math23K dataset. We fur-
ther show that the baseline method cannot solve
problems with new equation templates. In con-
trast, the proposed seq2seq model is quite robust
on problems with new equation templates (refer to
Table 7).

6.1 Experimental Setup

Datasets: As introduced in Section 3.2, we col-
lected a dataset called Math23K which contain-
s 23161 math word problems labeled with equa-
tion templates and answers. All these problems
are linear algebra questions with only one variable.
There are 2187 equation templates in the dataset.
In addition, we also evaluate our method on a pub-
lic dataset Alg514 (Kushman et al., 2014).

Baseline: We compare our proposed methods
with two baselines. The first baseline is the re-
trieval model introduced in Section 5.1. The sec-
ond one is ZDC (Zhou et al., 2015), which is
an improved version of KAZB (Kushman et al.,
2014). It maps a problem to one equation template
defined in the training set by reasoning across
problem sentences. It reports an accuracy of
79.7% on the Alg514 dataset. The Stanford parser
is adopted in ZDC to parse all math word problems

Math23K Alg514
ZDC 42.1% 79.7%
Retrieval model w/o SNI 46.0% 70.1%
Retrieval model w/ SNI 47.2% 70.1%
Seq2seq model w/o SNI 53.7% 17.2%
Seq2seq model w/ SNI 58.1% 16.1%
Hybrid model w/o SNI 61.1% 70.1%
Hybrid model w/ SNI 64.7% 70.1%

Table 5: Model comparison (average accuracy of
5-fold cross validation)

ZDC R R(S) Seq Seq(S) H
R(S) � >
Seq � � �

Seq(S) � � � �
H � � � � �

H(S) � � � � � �

Table 6: Result of significance test. The meaning
of abbreviations in this table is as follows: R: re-
trieval model w/o SNI; R(S): retrieval model w/ S-
NI; Seq: seq2seq model w/o SNI; Seq(S): seq2seq
model w/ SNI; H: hybrid model w/o SNI; H(S):
hybrid model w/ SNI

to Stanford coreNLP output formats. 2

6.2 Experimental Results

Each approach is evaluated on each dataset via 5-
fold cross-validation: In each run, 4 folds are used
for training and 1 fold is used for testing. Evalu-
ation results are summarized in Table 5. First, to
test the effectiveness of significant number identi-
fication (SNI), model performance before and af-
ter the application of SNI are compared. Then, the
performance of the hybrid model, seq2seq model,
and retrieval model are examined on two datasets
respectively.

To check whether the performance improve-
ments are significant enough, we conduct statisti-
cal significance study upon pairs of methods. Ta-
ble 6 shows the results of sign test, where the
symbol > indicates that the method in the row
significantly (with p value < 0.05) improves the
performance of the method in the column, and
the symbol � indicates that the performance im-
provement is extremely significant (with p value
< 0.01).

Several observations can be made from the re-
2We also try to run KAZB on our dataset, but fail on our

workstation (2 12-core E5-2650 CPU, 128G RAM, 4 K80
GPUs) due to large memory consumption.

851

sults. First, the seq2seq model significantly out-
performs state-of-the-art statistical learning meth-
ods (ZDC and the retrieval model). Second, by
combining the retrieval model and the seq2seq
model using a simple mechanism, our hybrid mod-
el achieves significant performance gain with re-
spect to the seq2seq model. Third, the SNI mod-
ule can effectively improve model accuracy. The
accuracy of the hybrid model and seq2seq mod-
el gains approximately 4% increase after number
identification. Please pay attention that on the s-
mall dataset of Alg514, the seq2seq model be-
haves much worse than others. This is not surpris-
ing, because deep neural networks typically need
large training data.

Figure 5 shows the performance of differen-
t models on various scales of training data. As
expected, the seq2seq model performs very well
on big datasets, but poorly on small datasets.

Figure 5: Performance of different models versus
the size of training set

Ability to Generate New Equation Templates:
please note that many problems in Math23K can
be solved using the same equation template. For
example, a problem which corresponds to the e-
quation x = (9 ∗ 3) + 7 and a different problem
that maps to x = (4 ∗ 5) + 2 share the same equa-
tion template.

One nice property of the seq2seq model is its a-
bility of generating new equation templates. Most
previous statistical learning methods (with a few
exceptions) for math word problem solving are on-
ly able to select an equation template from those
in the training data. In other words, they cannot
generate new templates. To test the performance
of the seq2seq model in generating new templates,

Math23K
ZDC 15.1%
Retrieval model w/o SNI 26.1%
Retrieval model w/ NI 29.2%
Seq2seq model w/o SNI 40.3%
Seq2seq model w/ SNI 47.5%
Hybrid model w/o SNI 40.3%
Hybrid model w/ SNI 47.7%

Table 7: Experimental results of non-overlapping
templates between training data and test data

we make a new split of our dataset between train-
ing data and test data, to ensure that the training
data and the test data do not share overlapped tem-
plates. As a result, we get a training set with 19,
024 problems and 1, 802 equation templates, and a
testing set with 4, 137 problems and 315 equation
templates.

Experimental results on the new training set and
test set are shown is shown in Table 7. By com-
paring Table 5 and Table 7, it is clear that the gap
between the seq2seq model and the baselines be-
comes larger in the new settings. It is because the
seq2seq model can effectively generate new equa-
tion templates for new problems, instead of select-
ing equation templates from the training set.

Although ZDC and the retrieval model cannot
generate new templates, their accuracy is not zero
in the new settings. That is because one problem
can be solved by multiple equation templates: Al-
though one problem is labeled with template T1 in
the test set, it may also be solved by another tem-
plate T2 in the training set.

6.3 Discussion

Compare to most previous statistical learning
methods for math problem solving, our proposed
seq2seq model and hybrid model have the follow-
ing advantages: 1) They have higher accuracy on
large training data. On the Math23K dataset, the
hybrid model achieves at least 22% higher accura-
cy than the baselines. 2) They have the ability of
generating new templates (i.e., templates that are
not in the training data. 3) They do not rely on
sophisticated feature engineering.

7 Conclusion

We have proposed an RNN-based seq2seq model
to automatically solve math word problems. This
model directly transforms problem text to a math

852

equation template. This is the first work of ap-
plying deep learning technologies to math word
problem solving. In addition, we have designed
a hybrid model which combines the seq2seq mod-
el and a retrieval model to further improve perfor-
mance. A large dataset has been constructed for
model training and empirical evaluation. Exper-
imental results show that both the seq2seq mod-
el and the hybrid model significantly outperfor-
m state-of-the-art statistical learning methods in
math word problem solving.

The output of our seq2seq model is a single e-
quation containing one unknown variable. There-
fore our approach is only applicable to the prob-
lems whose solution involves one linear equation
of one unknown variable. As future work, we plan
to extend our model to be able to generate equation
systems and nonlinear equations.

References
Bussaba Amnueypornsakul and Suma Bhat. 2014.

Machine-guided solution to mathematical word
problems. In PACLIC. pages 111–119.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arX-
iv:1409.0473 .

Yefim Bakman. 2007. Robust understanding of
word problems with extraneous information. arX-
iv preprint math/0701393 .

Daniel G Bobrow. 1964. Natural language input for a
computer problem solving system .

Diane J Briars and Jill H Larkin. 1984. An integrated
model of skill in solving elementary word problems.
Cognition and instruction 1(3):245–296.

Eugene Charniak. 1968. CALCULUS WORD PROB-
LEMS. Ph.D. thesis, Massachusetts Institute of
Technology.

Eugene Charniak. 1969. Computer solution of calcu-
lus word problems. In Proceedings of the 1st inter-
national joint conference on Artificial intelligence.
Morgan Kaufmann Publishers Inc., pages 303–316.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259 .

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Denise Dellarosa. 1986. A computer simulation of
childrens arithmetic word-problem solving. Behav-
ior Research Methods, Instruments, & Computers
18(2):147–154.

Edward A Feigenbaum, Julian Feldman, et al. 1963.
Computers and thought. New York.

Charles R Fletcher. 1985. Understanding and solving
arithmetic word problems: A computer simulation.
Behavior Research Methods, Instruments, & Com-
puters 17(5):565–571.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In EMNLP. pages 523–533.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do computers
solve math word probl ems? large-scale dataset con-
struction and evaluation. Proceedings of the 2016
North American Chapter of the ACL (NAACL HLT)
.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. TACL 3:585–597.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. Association for Com-
putational Linguistics.

Christian Liguda and Thies Pfeiffer. 2012. Model-
ing math word problems with augmented semantic
networks. In International Conference on Applica-
tion of Natural Language to Information Systems.
Springer, pages 247–252.

Nicholas Locascio, Karthik Narasimhan, Eduardo
DeLeon, Nate Kushman, and Regina Barzilay. 2016.
Neural generation of regular expressions from natu-
ral language with minimal domain knowledge. arX-
iv preprint arXiv:1608.03000 .

Arindam Mitra and Chitta Baral. 2016. Learning to use
formulas to solve simple arithmetic problems. ACL.

Subhro Roy and Dan Roth. 2016. Solving gener-
al arithmetic word problems. arXiv preprint arX-
iv:1608.01413 .

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-
tions of the Association for Computational Linguis-
tics 3:1–13.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. arXiv preprint arXiv:1503.02364 .

853

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In EMNLP. pages 1132–1142.

Upadhyay Shyam and Chang Ming-Wei. 2017. An-
notating derivations: A new evaluation strategy and
dataset for algebra word problems. In EACL. pages
494–504.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural network-
s. In Advances in neural information processing sys-
tems. pages 3104–3112.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. arXiv preprint arXiv:1606.02960 .

Ma Yuhui, Zhou Ying, Cui Guangzuo, Ren Yun, and
Huang Ronghuai. 2010. Frame-based calculus of
solving arithmetic multi-step addition and subtrac-
tion word problems. In Education Technology and
Computer Science (ETCS), 2010 Second Interna-
tional Workshop on. IEEE, volume 2, pages 476–
479.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using quadrat-
ic programming. In EMNLP. pages 817–822.

854

