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Abstract

Neural parsers have benefited from au-
tomatically labeled data via dependency-
context word embeddings. We inves-
tigate training character embeddings on
a word-based context in a similar way,
showing that the simple method signif-
icantly improves state-of-the-art neural
word segmentation models, beating tri-
training baselines for leveraging auto-
segmented data.

1 Introduction

Neural network Chinese word segmenta-
tion (CWS) models (Zhang et al., 2016; Liu
et al., 2016; Cai and Zhao, 2016) appeal for their
strong ability of feature representation, employing
unigram and bigram character embeddings as
input features (Zheng et al., 2013; Pei et al., 2014;
Ma and Hinrichs, 2015; Chen et al., 2015a). They
give state-of-the-art performances. We investigate
leveraging automatically segmented texts for
enhancing their accuracies.
Such semi-supervised methods can be divided

into two main categories. The first one is boot-
strapping, which includes self-training and tri-
training. The idea is to generate more training in-
stances by automatically labeling large-scale data.
Self-training (Yarowsky, 1995; McClosky et al.,
2006; Huang et al., 2010; Liu and Zhang, 2012)
labels additional data by using the base classifier
itself, and tri-training (Zhou and Li, 2005; Li et al.,
2014) uses two extra classifiers, taking the in-
stances with the same labels for additional training
data. A second semi-supervised learning method
in NLP is knowledge distillation, which extracts
knowledge from large-scale auto-labeled data as
features.

∗Equal contributions

Tri-training has been used in neural parsing, giv-
ing considerable improvements for both of depen-
dency (Weiss et al., 2015) and constituent pars-
ing (Vinyals et al., 2015; Choe and Charniak,
2016). Knowledge from auto-labeled data has
also been used for parsing (Bansal et al., 2014;
Melamud et al., 2016), where word embeddings
are trained on automatic dependency tree context.
Such knowledge has also been proved effective in
conventional discrete CWS models, such as label
distribution information (Wang et al., 2011; Zhang
et al., 2013). However, it has not been investigated
for neural CWS.
We propose word-context character embed-

dings (WCC), using segmentation label informa-
tion in the pre-training of unigram and bigram
character embeddings. The method packs the la-
bel distribution information into the embeddings,
which could be regarded as a way for knowl-
edge parameterization. Our idea follows Levy and
Goldberg (2014), who use dependency contexts
to train word embeddings. Additionally, moti-
vated by co-training, we proposemulti-view word-
context character embeddings for cross-domain
segmentation, which pre-trains two types of em-
bedding for in-domain and out-of-domain data, re-
spectively. In-domain embeddings are used for
solving data sparseness, and out-of-domain em-
beddings are used for domain adaptation.
Our proposed model is simple, efficient and ef-

fective, giving average 1% accuracy improvement
on in-domain data and 3.5% on out-of-domain
data, respectively, significantly out-performing
self-training and tri-training methods for leverag-
ing auto-segmented data.

2 Baseline Segmentation Model

Chinese word segmentation can be regarded as a
character sequence labeling task, where each char-
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Figure 1: Baseline model architecture.

acter in the sentence is assigned a segment label
from left to right, including {B, M, E, S}, to in-
dicate the segmentation (Xue, 2003; Low et al.,
2005; Zhao et al., 2006). B, M, E represent the
character is the beginning, middle or end of a
multi-character word, respectively. S represents
that the current character is a single character
word.
Following Chen et al. (2015b), a standard bi-

LSTMmodel (Graves, 2008) is used to assign seg-
mentation label for each character. As shown in
Figure 1, our model consists of a representation
layer and a scoring layer. The representation layer
utilizes a bi-LSTM to capture the context of each
character in the sentence. Given a sentence {w1,
w2, w3, · · · , wN }, where wi is the ith character in
the sentence, andN is the sentence length, we have
a corresponding embedding ewi and ewi−1wi for
each character unigram wi and character bigram
wi−1wi, respectively. A forward word representa-
tion ef

i is calculated as follows:

ef
i = concat1(ewi , ewi−1wi),

= tanh(W1[ewi ; ewi−1wi ])

A backward representation eb
i can be obtained in

the same way. Then ef
i and eb

i are fed into forward
and backward LSTM units at current position, ob-
taining the corresponding forward and backward
LSTM representations rlstm−f

i and rlstm−b
i , re-

spectively.
In the scoring layer, we first obtain a linear com-

bination of rlstm−f
i and rlstm−b

i , which is the final

representation at the ith position.

ri = concat2(rlstm−f
i , rlstm−b

i )

= tanh(W2[r
lstm−f
i ; rlstm−b

i ])

Given the representation ri, we use a scoring unit
to score for each potential segment label. Given ri,
the score of segment labelM is:

f i
M = WMh,

where

h = concat3(ri, eM),
= tanh(W3[ri; eM])

WM is the score matrix for label M, and eM is the
label embedding for labelM.

3 Word-Context Character Embeddings

Our model structure is a derivation from the skip-
gram model (Mikolov et al., 2013), similar to
Levy and Goldberg (2014). Given a sentence with
length n: {w1, w2, w3, · · · wn} and its cor-
responding segment labels: {l1, l2, l3, · · · ln},
the pre-training context of current character wt is
the around characters in the windows with size
c, together with their corresponding segment la-
bels (Figure 2). Characters wi and labels li in the
context are represented by vectors ec

wi
∈ Rd and

ec
li
∈ Rd, respectively, where d is the embedding

dimensionality.
The word-context embedding of character wt is

represented as ewt ∈ Rd, which is trained by pre-
dicting the surrounding context representations ec

w′
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and ec
li
, parameterizing the labeled segmentation

information in the embedding parameters. To cap-
ture order information (Ling et al., 2015), we use
different embedding matrices for context embed-
ding in different context positions, training differ-
ent embeddings for the same word when they re-
side on different locations as the context word. In
particular, our context window size is five. As a
result, each word has four different versions of ec,
namely ec−1, ec−2, ec

+1, and ec
+2, each taking a dis-

tinct embedding matrix. Given the context win-
dow [w−2,w−1,w,w+1,w+2],w−1 is the left first
context word of the focus word w, ec−1,wi

will be
selected from embedding matrix E−1, and w+1 is
the right first word of w, ec

+1,wi
will be selected

from embedding matrix E+1.
Note that each character has two types of em-

beddings, where ewi is the embedding form of wi

when wi is the focus word, and ec
wi

is the embed-
ding form of wi when wi is used as a surrounding
context word. We do not have eli because li only
acts as the surrounding context. After pre-training,
ewi will be used as the WCC embeddings.
The objective of our model is to maximize the

average log probability of the context:

1
T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j |wt)+ log p(tt+j |wt)

Negative sampling (Mikolov et al., 2013) is used,
where log p(wt+j |wt) and log p(tt+j |wt) are com-
puted as:

p(wt+j |wt) = logσ(ec
wt+j

⊤ewt)

+
k∑

i=1

Ewi∼Pn(w)[logσ(−ec
wi

⊤ewt)]

and

p(tt+j |wt) = logσ(ec
lt+j

⊤ewt)

+
k∑

i=1

Eli∼Pn(l)[logσ(−ec
li
⊤ewt)],

respectively, where Pn(w) and Pn(l) is the noise
distributions and k is the size of negative samples
for each data sample.
Bigram embeddings are trained in the same way

as unigram character embeddings. For out-of-
domain segmentation, we pre-train two embed-
dings for each token, extracting knowledge from
the two domains, respectively.

上 来 了马

在 马 上骑 来 了

ride on horse up come le

他

E S SBS

he immedially come le

E S SB S S

Figure 2: Word-context for the character ’ 上’ in
two different sentences. The windows size c = 3.

4 Experiments

4.1 Set-up

Weperform experiments on three standard datasets
for Chinese word segmentation: PKU and MSR
from the second SIGHAN bakeoff shared task,
and Chinese Treebank 6.0 (CTB6). For PKU and
MSR, 10% of the training data are randomly se-
lected as development data. We followZhang et al.
(2016) to split the CTB6 corpus into training, de-
velopment and testing sections. For evaluating
cross-domain performance, we also experiment on
Chinese novel data. Following Zhang et al. (2014),
the training set of CTB5 is selected for training,
and the manually annotated sentences of free In-
ternet novel ’Zhuxian’ (ZX) are selected as the de-
velopment and test data (Liu and Zhang, 2012)1.
Chinese Gigaword (LDC2011T13, 4M) is used

for in-domain unlabeled data. For out-of-domain
data, 20K raw sentences of Zhuxian is used.
We take self-training and tri-training as base-
lines, which also use large-scale auto-segmented
data. For self-training, skip-gram pre-training and
word-context character embedding, unlabeled cor-
pus is segmented automatically by our baseline
model. For tri-training, we additionally use the
ZPar (Zhang and Clark, 2007) and ICTCLAS2 as
our base classifiers .
We use F1 to evaluate segmentation accuracy.

The recalls of in-vocabulary (IV) and out-of-
vocabulary (OOV) are also measured.

4.2 Hyper-Parameters

The hyper-parameters used in this work are listed
in Table 1. The values are selected according

1http://zhangmeishan.github.io/
eacl14mszhang.zip

2http://ictclas.nlpir.org/
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unigram dimension 50
bigram dimesion 50
label embedding dimention 32
LSTM hidden size 100
LSTM input size 100
learning rate 0.1
windows size 5

Table 1: Hyper-parameters.

System CTB6 PKU MSR Speed
Greedy 94.9 95.0 97.2 14.7
CRF 95.0 95.1 97.2 3.6

Table 2: Comparisons between greedy and CRF
segmentation. Speed: tokens per millisecond.

to the development set of CTB6. Many previ-
ous character-based CWS models use a transi-
tion matrix to model the tag dependency and CRF
for structured inference (Pei et al., 2014; Chen
et al., 2015a). However, we find that, the greedy
model obtains comparable segmentation accura-
cies across CTB6, PKU andMSR, yet givingmuch
fast speed (Table 2). Hence we adopt the greedy
model as our baseline segmentation model.

4.3 Utilizing Varying-Scale Data

The results of self-training and tri-training with
varying-scale training data are list in Table 3,
where +4X means adding 4 times the size of su-
pervised training data into the training set. We
find that self-training does not work well, and tri-
training with 16X gives a 0.5% accuracy improve-
ment. We adopt this setting for our baseline in the
remaining experiments3.
We also try to choose more effective examples

for self-training and tri-training, by selecting train-
ing instances according to the base segmentation
model score. However, the segmentation perfor-
mances do not get improved. A possible reason is
that the training instances with higher confidence
are always shorter than the original sampled sen-
tences, which may not be very helpful for semi-
spervised segmentation.

4.4 In-Domain Results

As shown in Table 4, pre-training with conven-
tional skip-gram embeddings gives only small im-
provements, which is consistent as findings of pre-
vious work (Chen et al., 2015a; Ma and Hinrichs,

3For out-of-domain experiments, we include both the
+16X and the 20K out-of-domain data for self-training and
tri-training.

Systems +4X +8X +16X +32X
baseline 94.9

self-training 95.0 94.9 94.9 94.8
tri-training 95.2 95.3 95.4 95.4

Table 3: Results of self-training and tri-training on
CTB6 with varying scaled training data.

Type System CTB6 PKU MSR

non-nn

Tseng et al. (2005) - 95.0 96.4
Sun et al. (2009) - 95.2 97.3
Wang et al. (2011) 95.8 - -
Zhang et al. (2013) - 96.1 97.5

nn

Zheng et al. (2013) - 92.4 93.3
Pei et al. (2014) - 95.2 97.2
Kong et al. (2015) - 90.6 90.7
Ma and Hinrichs (2015) - 95.1 96.6
Chen et al. (2015c)† - 94.8 95.6
Xu and Sun (2016) 95.8 96.1 96.3
Liu et al. (2016) 95.5 95.7 97.6
Zhang et al. (2016) 95.4 95.1 97.0
Cai and Zhao (2016) - 95.5 96.5

comb Zhang et al. (2016) 96.0 95.7 97.7

Ours

baseline 94.9 95.0 97.2
+ self-training 95.0 94.8 97.0
+ tri-training 95.5 95.5 97.4
+ skip-gram embeddings 95.3 95.5 97.4
+ WCC embeddings 96.2 96.0 97.8

Table 4: Comparison with other models.

2015; Cai and Zhao, 2016). Segmentation with
self-training even shows accuracy drops on PKU
andMSR.We speculate that the self-training by the
neural CWS baseline is sensitive to the segmenta-
tion errors of the auto-labeled data. On average,
our method obtains an absolute 1% accuracy im-
provement over the baseline, outperforming other
semi-supervised method significantly4.
We compare our model with other state-of-the-

art segmentation models5, which are grouped into
3 classes, namely traditional segmentation mod-
els (non-nn), neural segmentationmodels (nn), and
the combination of both neural and traditional dis-
crete features (comb). Our simple model gives
top accuracies compared with related work. Liu
et al. (2016), Cai and Zhao (2016) and Zhang et al.
(2016) propose to incorporate word embedding
features in the neural CWS, pre-training the word
embeddings in the large-scale labeled data. Differ-
ent to them, we employ a simpler character level
model containing word information, yet obtaining
higher F1 scores.

4The p-values are below 0.01 using pairwise t-test.
5Results with † are obtained from Cai and Zhao (2016),

because results in the original paper use dictionary resources.
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ours:

若在 (if)_鬼王 (guiwang)_手上 (hand)
夺下 (wrest)_七星剑 (qixin sword)，_我 (I)
必 (must)_器重 (think highly of)_于 (at)

你 (you)

baseline:

若在 (if)_鬼 (gui)_王 (king)_手上 (hand)
夺下 (wrest)_七 (seven)_星 (star)_剑 (sword)，
我 (I)_必 (must)_器 (ware)_重 (heavy)

于 (at)_你 (you)

Figure 3: Case studies.

4.5 Out-of-Domain Results

We test out-of-domain performance of our model
on the ZX dataset. We also use the multi-view
word-context character embeddings (WCC) for
cross domain segmentation, which uses two types
of embeddings by simple vector concatenation.
One type of embeddings is pre-trained on in-
domain data, and the other type is pre-trained on
out-of-domain data. In such case, the multi-view
embeddings includes cross-domain information,
which may enhance the cross-domain segmenta-
tion performance (Mou et al., 2016).
As shown in Table 5, using word-context char-

acter (WCC) embeddings and multi-view word-
context character embeddings both give signifi-
cantly higher accuracy improvements compared
with other semi-supervised methods. Addition-
ally, we find that multi-view WCC embeddings
give an extra 1% F1 score improvement overWCC
embeddings. Our proposed model also signifi-
cantly improves the OOV recall (ROOV) and IV
recall (RIV). By studying the cases of segmented
output (Figure 3), we find that our model can rec-
ognize OOV words such as ‘鬼王’, ‘七星剑’ and
the IV word ‘器重’, which are incorrectly labeled
by the baseline. This confirms that our proposed
model is helpful for the data sparseness problem
on closed domain and domain adaptation on across
domain.
We also list the results of Zhang et al. (2014)

and Liu et al. (2014) on this dataset. Liu et al.
(2014) obtains better out-of-domain performance
than our model. However, their results cannot be
compared directly with ours because they use par-
tial labeled URL link data fromChineseWikipedia
data for training.

5 Conclusion

We proposed word-context character embeddings
for semi-supervised neural CWS, which makes the
segmentation model more accurate on in-domain

System F1 ROOV RIV
Zhang et al.
(2014b))

baseline 87.7 - -
+ self-training 88.7 - -

Liu et al.
(2014)

baseline 87.5 - -
+Chinese Wikipedia 90.6 - -

Ours

baseline† 86.6 60.8 91.7
+ skip-gram‡ 87.6 - -
+ self-training‡ 87.8 70.3 91.5
+ tri-training‡ 88.1 68.1 91.5
+ WCC embeddings‡ 89.1 70.4 93.7

+ multi-view
WCC embeddings♯ 90.1 74.1 93.3

Table 5: Results on the out-of-domain data. Mod-
els with † do not use large-scale data, models with
‡ use in-domain large-scale data, and models with
♯ use both in-domain, and out-of-domain large-
scale data.

data, and more robust on the out-of-domain data.
Our segmentation model is simple yet effective,
achieving state-of-the-art segmentation accuracies
on standard benchmarks. It can also be use-
ful for other NLP tasks with small labeled train-
ing data, but a large unlabeled data. Our code
could be downloaded at https://github.com/
zhouh/WCC-Segmentation.
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