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Abstract

Word embeddings have attracted much at-
tention recently. Different from alpha-
betic writing systems, Chinese characters
are often composed of subcharacter com-
ponents which are also semantically infor-
mative. In this work, we propose an ap-
proach to jointly embed Chinese words as
well as their characters and fine-grained
subcharacter components. We use three
likelihoods to evaluate whether the con-
text words, characters, and components
can predict the current target word, and
collected 13,253 subcharacter components
to demonstrate the existing approaches of
decomposing Chinese characters are not
enough. Evaluation on both word similar-
ity and word analogy tasks demonstrates
the superior performance of our model.

1 Introduction

Distributed word representation represents a word
as a vector in a continuous vector space and can
better uncover both the semantic and syntactic in-
formation over traditional one-hot representations.
It has been successfully applied to many down-
stream natural language processing (NLP) tasks
as input features, such as named entity recog-
nition (Collobert et al., 2011), text classification
(Joulin et al., 2016), sentiment analysis (Tang
et al., 2014), and question answering (Zhou et al.,
2015). Among many embedding methods (Ben-
gio et al., 2003; Mnih and Hinton, 2009), CBOW
and Skip-Gram models are very popular due to
their simplicity and efficiency, making it feasi-
ble to learn good embeddings of words from large
scale training corpora (Mikolov et al., 2013b,a).
Despite the success and popularity of word em-

beddings, most of the existing methods treat each

word as the minimum unit, which ignores the mor-
phological information of words. Rare words can-
not be well represented when optimizing a cost
function related to a rare word and its contexts.
To address this issue, some recent studies (Luong
et al., 2013; Qiu et al., 2014; Sun et al., 2016a;
Wieting et al., 2016) have investigated how to ex-
ploit morphemes or character n-grams to learn bet-
ter embeddings of English words.
Different from other alphabetic writing systems

such as English, written Chinese is logosyllabic,
i.e., a Chinese character can be aword on its own or
part of a polysyllabic word1. The characters them-
selves are often composed of subcharacter com-
ponents which are also semantically informative.
The subword items of Chinese words, including
characters and subcharacter components, contain
rich semantic information. The characters com-
posing a word can indicate the semantic mean-
ing of the word and the subcharacter components,
such as radicals and components themselves being
a character, composing a character can indicate the
semantic meaning of the character. The compo-
nents of characters can be roughly divided into two
types: semantic component and phonetic compo-
nent. The semantic component indicates themean-
ing of a character while the phonetic component
indicates the sound of a character. For example,
氵 (water) is the semantic component of charac-
ters 湖 (lake) and 海 (sea), 马 (horse) is the pho-
netic component of characters妈 (mother) and骂
(scold) where both妈 and骂 are pronounced sim-
ilar to马.
Leveraging the subword information such as

characters and subcharacter components can en-
hance Chinese word embeddings with internal
morphological semantics. Some methods have
been proposed to incorporate the subword infor-

1https://en.wikipedia.org/wiki/Written_
Chinese
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mation for Chinese word embeddings. Sun et al.
(2014) and Li et al. (2015) proposed methods to
enhance Chinese character embeddings with rad-
icals based on C&W model (Collobert and We-
ston, 2008) and word2vec models (Mikolov et al.,
2013a,b) respectively. Chen et al. (2015) used
Chinese characters to improve Chinese word em-
beddings and proposed the CWE model to jointly
learn Chinese word and character embeddings.
Xu et al. (2016) extended the CWE model by ex-
ploiting the internal semantic similarity between
a word and its characters in a cross-lingual man-
ner. To combine both the radical-character and
character-word compositions, Yin et al. (2016)
proposed a multi-granularity embedding (MGE)
model based on the CWE model, which represents
the context as a combination of surroundingwords,
surrounding characters, and the radicals of the tar-
get word. Particularly, they developed a dictionary
of 20,847 characters and 296 radicals.

However, all the above approaches still missed a
lot of fine-grained components in Chinese charac-
ters. Formally and historically, radicals are char-
acter components used to index Chinese charac-
ters in dictionaries. Although many of the rad-
icals are also semantic components, a character
has only one radical, which cannot fully uncover
the semantics and structure of the character. Be-
sides over 200 radicals, there are more than 10,000
components which are also semantically mean-
ingful or phonetically useful. For example, Chi-
nese character照 (illuminate, reflect, mirror, pic-
ture) has one radical 灬 (the corresponding tra-
ditional Chinese radical is 火, meaning fire) and
three other components, i.e., 日 (sun), 刀 (knife),
and 口 (mouth). Shi et al. (2015) proposed us-
ingWUBI input method to decompose the Chinese
characters into components. However, WUBI in-
put method uses rules to group Chinese characters
into meaningless clusters which can fit the alpha-
bet based keyboard. The semantics of the compo-
nents are not straightforwardly meaningful.

In this work, we present a model to jointly
learn the embeddings of Chinese words, charac-
ters, and subcharacter components. The learned
Chinese word embeddings can leverage the ex-
ternal context co-occurrence information and in-
corporate rich internal subword semantic informa-
tion. Experiments on both word similarity and
word analogy tasks demonstrate the effectiveness
of our model over previous works. The code

and data are available at https://github.com/
HKUST-KnowComp/JWE.

2 Joint Learning Word Embedding

In this section, we introduce our joint learning
word embedding model (JWE), which combines
words, characters, and subcharacter components
information. Our model is based on CBOWmodel
(Mikolov et al., 2013a). JWE uses the average of
context word vectors, the average of context char-
acter vectors, and the average of context subchar-
acter vectors to predict the target word, and uses
the sum of these three prediction losses as the ob-
jective function.

INPUT PROJECTION OUTPUT

wi+1

wi�1

ci�1

ci+1

si�1

si+1

si

wi

Figure 1: Illustration of JWE.wi is the target word.
wi−1 and wi+1 are the left word and right word of
wi respectively. ci−1 and ci+1 represent the char-
acters in the context. si−1 and si+1 represent the
subcharacters in the context, si represents the sub-
characters of the target word wi.

We denote D as the training corpus, W =
(w1, w2, · · · , wN ) as the vocabulary of words,
C = (c1, c2, · · · , cM ) as the vocabulary of char-
acters, S = (s1, s2, · · · , sK) as the vocabulary
of subcharacters, and T as the context window
size respectively. As illustrated in Figure 1, JWE
aims to maximize the sum of log-likelihoods of
three predictive conditional probabilities for a tar-
get word wi:

L(wi) =
3∑

k=1

logP (wi|hik), (1)

where hi1 , hi2 , hi3 are the composition of context
words, context characters, context subcharacters
respectively. Let vwi , vci , vsi be the “input” vec-
tors of word wi, character ci, and subcharacter si
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respectively, v̂wi be the “output” vectors of word
wi. The conditional probability is defined by the
softmax function as follows:

p(wi|hik) =
exp(hT

ik
v̂wi)∑N

j=1 exp(hT
ik

v̂wj )
, k = 1, 2, 3,

(2)
where hi1 is the average of the “input” vectors of
words in the context, i.e.:

hi1 =
1

2T

∑
−T≤j≤T,j ̸=0

vwi+j . (3)

Similarly, hi2 is the average of characters’ “input”
vectors in the context, hi3 is the average of sub-
characters’ “input” vectors in the context or in the
target word or all of them. Given a corpusD, JWE
maximizes the overall log likelihood:

L(D) =
∑

wi∈D

L(wi), (4)

where the optimization follows the implementa-
tion of negative sampling used in CBOW model
(Mikolov et al., 2013a).
This objective function is different from that of

MGE (Yin et al., 2016). For a target word wi, the
objective function of MGE is almost equivalent to
maximizing P (wi|hi1 + hi2 + hi3). During the
backpropagation, the gradients of hi1 , hi2 , hi3 can
be different in our model while they are always
same in MGE, so the gradients of the embeddings
of words, characters, subcharacter components can
be different in our model while they are same in
MGE. Thus, the representations of words, charac-
ters, and subcharacter components are decoupled
and can be better trained in our model. A sim-
ilar decoupled objective function is used in (Sun
et al., 2016a) to learn English word embeddings
and phrase embeddings. Our model differs from
theirs in that we combine the subwords of both the
context words and target word to predict the target
word while they use the morphemes of the target
English word to predict it.

3 Experiments

We quantitatively evaluate the quality of word em-
beddings learned by our model on word similarity
evaluation and word analogy tasks.

3.1 Experimental Settings
Training Corpus. We adopt the Chinese
Wikipedia Dump2 as our training corpus. In pre-

2 http://download.wikipedia.com/zhwiki

Model Wordsim-240 Wordsim-295
CBOW 0.5009 0.5985
CWE 0.5133 0.5805
MGE 0.5128 0.5425
JWE+c+p1 0.5437 0.6549
JWE+c+p2 0.5476 0.6676
JWE+c+p3 0.5554 0.6533
JWE+r+p1 0.5478 0.6434
JWE+r+p2 0.5619 0.6621
JWE+r+p3 0.5273 0.6461
JWE-n 0.5476 0.6710

Table 1: Results on word similarity evaluation.
For our JWEmodel, +c represents the components
feature and +r represents the radicals feature; +p
indicates which subcharacters are used to predict
the target word; +p1 indicates using the surround-
ing words’ subcharacter features; +p2 indicates us-
ing the target word’s subcharacter features; +p3
indicates using the subcharacter features of both
the surrounding words and the target word; -n in-
dicates only using characters without either com-
ponents or radicals.

processing, pure digits and non Chinese charac-
ters are removed. We use THULAC3 (Sun et al.,
2016b) for Chinese word segmentation and POS
tagging. We identify all entity names for CWE
(Chen et al., 2015) and MGE (Yin et al., 2016)
as they do not use the characters information for
non-compositional words. Our model (JWE) does
not use such a non-compositional word list. We
obtained a 1GB training corpus with 153,071,899
tokens and 3,158,225 unique words.
Subcharacter Components. We crawled the

components and radicals information of Chinese
characters from HTTPCN4. We obtained 20,879
characters, 13,253 components and 218 radicals,
of which 7,744 characters have more than one
components, and 214 characters are equal to their
radicals.
Parameter Settings. We compare our method

with CBOW (Mikolov et al., 2013b)5 , CWE
(Chen et al., 2015)6, and MGE (Yin et al., 2016)7.

3http://thulac.thunlp.org/
4http://tool.httpcn.com/zi/
5https://code.google.com/p/word2vec/
6https://github.com/Leonard-Xu/CWE
7We used the source code provided by the author. Our

experimental results of baselines are different from that in
MGE paper because we used a 1GB corpus while they used a
500MB corpus and we fixed the training iteration while they
tried the training iteration in range [5, 200] and chose the best.
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For all models, we used the same parameter set-
tings. We fixed the word vector dimension to be
200, the window size to be 5, the training iteration
to be 100, the initial learning rate to be 0.025, and
the subsampling parameter to be 10−4. Words with
frequency less than 5 were ignored during training.
We used 10-word negative sampling for optimiza-
tion.

3.2 Word Similarity

This task evaluates the embedding’s ability of un-
covering the semantic relatedness of word pairs.
We select two different Chinese word similarity
datasets, wordsim-240 and wordsim-296 provided
by (Chen et al., 2015) for evaluation. There are
240 pairs of Chinese words in wordsim-240 and
296 pairs of Chinese words in wordsim-296. Both
datasets contain human-labeled similarity scores
for each word pair. There is a word in wordsim-
296 that did not appear in the training corpus, so
we removed this from the gold-standard to pro-
duce wordsim-295. All words in wordsim-240 ap-
peared in the training corpus. The similarity score
for a word pair is computed as the cosine simi-
larity of their embeddings generated by the learn-
ing model. We compute the Spearman correlation
(Myers et al., 2010) between the human-labeled
scores and similarity scores computed by embed-
dings. The evaluation results of our model and
baseline methods on wordsim-240 and wordsim-
295 are shown in Table 1.
From the results, we can see that JWE substan-

tially outperforms CBOW, CWE, and MGE on
the two word similarity datasets. JWE can bet-
ter leverage the rich morphological information in
Chinese words than CWE and MGE. It shows the
benefits of decoupling the representation of words,
characters, and subcharacter components as op-
posed to employing concatenation, sum, or aver-
age on all of them as the context.
We also observe that JWE with only characters

can get competitive results on the word similarity
task compared to JWE with characters and sub-
characters. The reason may be that characters are
enough to provide additional semantic information
for computing the similarities of many word pairs
in the two datasets. For example, the similarity of
法律 (law, statute) and律师 (lawyer) in wordsim-
295 can be directly inferred from the shared char-
acter律 (law, rule).

3.3 Word Analogy
This task examines the quality of word embedding
by its capacity of discovering linguistic regularities
between pairs of words. For example, for a tuple
like “罗马 (Rome):意大利 (Italy)::柏林 (Berlin):
德国 (Germany)”, the model can answer correctly
if the nearest vector representation to vec(意大利)
- vec(罗马) + vec(柏林) is vec(德国) among all
words except from罗马,意大利, and柏林. More
generally, given an analogy tuple “a : b :: c : d,”
the model answers the analogy question “a : b ::
c :?” by finding x in the vocabulary such that

arg max
x ̸=a,x̸=b,x ̸=c

cos(⃗b − a⃗ + c⃗, x⃗).

We use accuracy as the evaluation metric. In this

Model Total Capital State Family
CBOW 0.7954 0.8493 0.8857 0.6029
CWE 0.7553 0.8420 0.8743 0.4632
MGE 0.7696 0.8907 0.8857 0.3934
JWE+c+p1 0.7562 0.8272 0.8286 0.5331
JWE+c+p2 0.8407 0.8848 0.9486 0.6618
JWE+c+p3 0.8505 0.9188 0.9371 0.6250
JWE+r+p1 0.7553 0.8198 0.8171 0.5551
JWE+r+p2 0.8185 0.8656 0.9143 0.6397
JWE+r+p3 0.8416 0.9010 0.9200 0.6434
JWE-n 0.8229 0.8803 0.9028 0.6286

Table 2: Results on word analogy reasoning. The
configurations are the same of the ones used in Ta-
ble 1.

task, we use the Chinese word analogy dataset in-
troduced by (Chen et al., 2015), which consists
of 1,124 tuples of words and each tuple contains
4 words, coming from three different categories:
“Capital” (677 tuples), “State” (175 tuples), and
“Family” (272 tuples). Our training corpus covers
all the testing words.
The results in Table 2 show that JWE outper-

forms the baselines on all categories’ word anal-
ogy tasks. Different from the results on the word
similarity task, JWEwith components consistently
performs better than JWE with radicals and JWE
without either radicals or components. It demon-
strates the necessary of delving deeper into fine-
grained components for complex semantic reason-
ing tasks.

3.4 Case Studies
In addition to evaluating the benefits of incorpo-
rating subword information for Chinese word em-
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beddings, it would be interesting to see the rela-
tionships of the embeddings of words, characters,
and subcharacter components as they are embed-
ded into a same continuous vector space.

照 (photograph)

照片 (photo)
相片 (photo)

拍照 (photograph)
护照 (passport)
照相 (photography)

河 (river)

黄河 (the Yellow River)
河流 (river)

河道 (watercourse)
运河 (canal)

河南 (Henan province)

Table 3: Closest words of characters 照 (photo-
graph) and河 (river).

Component 疒 (illness)

Closest
characters

疗 (cure)症 (symptom)
痛 (pain)疮 (sore)
患 (suffer)痒 (itch)

疳 (infantile malnutrition)
病 (disease)肿 (swelling)

Closest
words

治疗 (cure)病症 (symptom)
复发 (recurrence)疼痛 (pain)

症状 (symptom)
腹绞痛 (abdominal pain)

患者 (patients)癫痫 (epilepsy)
疾病 (disease)疗法 (therapy)

Table 4: Closest characters and closest words of
the component疒 (illness).

We evaluate the embeddings’ abilities of uncov-
ering the semantic relatedness of words, charac-
ters, and subcharacter components through case
studies. The similarities between them are com-
puted by the cosine similarities of their embed-
dings. Take two Chinese character 照 (photo-
graph) and 河 (river) as examples, we list their
closest words in Table 3. We can see that most
of the closest words are semantically related to the
corresponding character.
We further take the component疒 (illness) as an

example and list its closest characters and words
in Table 4. All of the closest characters and words
are semantically related to the component疒 (ill-
ness). Most of them have the component 疒 (ill-
ness). 患 (suffer), 肿 (swelling), and 患者 (pa-
tients) do not have the component疒 (illness), but

they are also semantically related to疒 (illness). It
shows that JWE does not overuse the component
information but leverages both the external con-
text co-occurrence information and internal sub-
word morphological information well.

4 Conclusion and Future Work

In this paper, we propose a model to jointly learn
the embeddings of Chinese words, characters, and
subcharacter components. Our approach makes
full use of subword information to enhance Chi-
nese word embeddings. Experiments show that
our model substantially outperforms the baseline
methods on Chinese word similarity computation
and Chinese word analogy reasoning, and demon-
strate the benefits of incorporating fine-grained
components compared to just using characters.
There could be several directions to be explored

for future work. First, we use the average oper-
ation to integrate the subcharacter components as
the context to predict the target word. The struc-
ture of Chinese characters and the positions of
components in the character may be considered to
fully leverage the component information of Chi-
nese characters. Second, for any target word, we
simply use word context, character context, and
subcharacter context to predict it and do not distin-
guish compositional words and non-compositional
words. To solve this problem, attention models
may be used to adaptively assign weights to word
context, character context, and subcharacter con-
text.
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