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Abstract
An important aspect for the task of grammat-
ical error correction (GEC) that has not yet
been adequately explored is adaptation based
on the native language (L1) of writers, despite
the marked influences of L1 on second lan-
guage (L2) writing. In this paper, we adapt
a neural network joint model (NNJM) using
L1-specific learner text and integrate it into
a statistical machine translation (SMT) based
GEC system. Specifically, we train an NNJM
on general learner text (not L1-specific) and
subsequently train on L1-specific data using
a Kullback-Leibler divergence regularized ob-
jective function in order to preserve gener-
alization of the model. We incorporate this
adapted NNJM as a feature in an SMT-based
English GEC system and show that adapta-
tion achieves significant F0.5 score gains on
English texts written by L1 Chinese, Russian,
and Spanish writers.

1 Introduction

Grammatical error correction (GEC) deals with the
automatic correction of errors (spelling, grammar,
and collocation errors), particularly in non-native
written text. The native language (L1) background
of the writer has a noticeable influence on the er-
rors made in second language (L2) writing, and con-
sidering this factor can potentially improve the per-
formance of GEC systems. For example, consider
the following sentence written by a Finnish writer
(Jarvis and Odlin, 2000): “When they had escaped
in the police car they sat under the tree.” The prepo-
sition in appears to be grammatically correct. How-
ever, in the given context, the preposition ‘from’ is

the correct choice in place of the preposition ‘in’.
Finnish learners of English tend to overgeneralize
the use of the preposition ‘in’. Knowledge of L1
makes the correction more probable whenever the
preposition in appears in texts written by Finnish
writers. Similarly, Chinese learners of English tend
to make frequent verb tense and verb form errors,
since Chinese lacks verb inflection (Shaughnessy,
1977). The cross-linguistic influence of L1 on L2
writing is a highly complex phenomenon, and the er-
rors made by learners cannot be directly attributed to
the similarities or differences between the two lan-
guages. As Ortega (2009) points out, learners seem
to operate on two complementary principles: “what
works in L1 may work in L2 because human lan-
guages are fundamentally alike; but if it sounds too
L1-like, it will probably not work in L2”. In this
paper, we follow a data-driven approach to model
these influences and adapt GEC systems using L2
texts written by writers of the same L1 background.

The two most popular approaches for grammat-
ical error correction are the classification approach
(Dahlmeier et al., 2012; Rozovskaya et al., 2014)
and the statistical machine translation (SMT) ap-
proach (Chollampatt et al., 2016; Junczys-Dowmunt
and Grundkiewicz, 2014). The SMT approach has
emerged as a popular paradigm for GEC because
of its ability to learn text transformations from ill-
formed to well-formed text enabling it to correct
a wide variety of errors including complex errors
that are difficult to handle for the classification ap-
proach (Rozovskaya and Roth, 2016). The phrase-
based SMT approach has been used in state-of-
the-art GEC systems (Rozovskaya and Roth, 2016;

1901



Chollampatt et al., 2016; Hoang et al., 2016). The
SMT approach does not model error types specifi-
cally, nor does it require linguistic analysis like pars-
ing and part-of-speech (POS) tagging. We adopt
a phrase-based SMT approach to GEC in this pa-
per. Additionally, we implement and incorporate a
neural network joint model (NNJM) (Devlin et al.,
2014) as a feature in our SMT-based GEC system.
It is easy to integrate an NNJM into the SMT de-
coding framework as it uses a fixed-window context
and it has shown to improve SMT-based GEC (Chol-
lampatt et al., 2016). We adapt the NNJM to L1-
specific data (i.e., English text written by writers of
a particular L1) and obtain significant improvements
over the baseline which uses an unadapted NNJM.
Adaptation is done by using the unadapted NNJM
trained on general domain data (i.e., not L1-specific)
using a log likelihood objective function with self-
normalization (Devlin et al., 2014) as the starting
point, and training for subsequent iterations using
the smaller L1-specific in-domain data with a mod-
ified objective function which includes a Kullback-
Leibler (KL) divergence regularization term. This
modified objective function prevents overfitting on
the smaller in-domain data and preserves the gener-
alization capability of the NNJM. We show that this
method of adaptation works on very small and high-
quality L1-specific data as well (50–100 essays).

In summary, the two major contributions of this
paper are as follows. (1) This is the first work that
performs L1-based adaptation for GEC using the
SMT approach and covering all error types. (2)
We introduce a novel method of NNJM adaptation
and demonstrate that this method can work with in-
domain data that are much smaller than the general
domain data.

2 Related Work

In the past decade, there has been increasing atten-
tion on GEC in English, mainly due to the growing
number of English as second language (ESL) learn-
ers around the world. The popularity of this prob-
lem grew further through Helping Our Own (HOO)
(Dale and Kilgarriff, 2011; Dale et al., 2012) and
CoNLL shared tasks (Ng et al., 2013; Ng et al.,
2014). The majority of the published work on GEC
aimed at building classifiers or rule-based systems

for specific error types and combined them to build
hybrid systems (Dahlmeier et al., 2012; Rozovskaya
et al., 2014).

The cross-linguistic influences between L1 and
L2 have been mainly used for the task of native lan-
guage identification (Massung and Zhai, 2016). It
has also been used in typology prediction (Berzak et
al., 2014) and predicting error distributions in ESL
data (Berzak et al., 2015). L1-based adaptation has
previously shown to improve GEC for specific error
types using the classification approach. Rozovskaya
and Roth (2010) used an approach to correct prepo-
sition errors by restricting the candidate corrections
to those observed in L1-specific data. They further
added artificial training data that mimic the error fre-
quency in L1-specific text to improve accuracy. In
their later work, Rozovskaya and Roth (2011) fo-
cused on L1-based adaptation for preposition and
article correction, by modifying the prior probabil-
ities in the naı̈ve Bayes classifier during decision
time based on L1-specific ESL learner text. Both
approaches use native data for training, but rely on
non-native L1-specific text to introduce artificial er-
rors or to modify the prior probabilities. Dahlmeier
and Ng (2011) implemented a system to correct col-
location errors, by adding paraphrases derived from
L1 into the confusion set. Specifically, they use a
bilingual L1-L2 corpus, to obtain L2 paraphrases,
which are likely to be translated to the same phrase
in L1. There is no prior work on L1-based adap-
tation for GEC using the machine translation ap-
proach, which is a one of the most popular ap-
proaches for GEC.

With the availability of large-scale error corrected
data (Mizumoto et al., 2011), the statistical machine
translation (SMT) approach to GEC became popu-
lar and was employed in state-of-the-art GEC sys-
tems. Comparison of the classification approach
and the machine translation approach can be found
in (Rozovskaya and Roth, 2016) and (Susanto et
al., 2014). Recently, an end-to-end neural machine
translation framework was proposed for GEC (Yuan
and Briscoe, 2016), which was shown to achieve
competitive results. Neural network joint models
have shown to be improve SMT-based GEC sys-
tems (Chollampatt et al., 2016) due to their ability
to model words and phrases in a continuous space,
access to larger contexts from source side, and abil-
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ity to learn non-linear mappings from input to out-
put. In this paper, we exploit the advantages of
the SMT approach and neural network joint mod-
els (NNJMs) by adapting an NNJM based on the
L1 background of the writers and integrating it into
the SMT framework. We perform KL divergence
regularized adaptation to prevent overfitting on the
smaller in-domain data. KL divergence regulariza-
tion was previously used by Yu et al. (2013) for
speaker adaptation. Joty et al. (2015) proposed an-
other NNJM adaptation method, which uses a regu-
larized objective function that encourages a network
trained on general-domain data to be closer to an in-
domain NNJM. Other adaptation techniques used in
SMT include mixture modeling (Foster and Kuhn,
2007; Moore and Lewis, 2010; Sennrich, 2012) and
alternative decoding paths (Koehn and Schroeder,
2007).

3 A Machine Translation Framework for
Grammatical Error Correction

We formulate GEC as a translation task from a pos-
sibly erroneous input sentence to a corrected sen-
tence. We use the popular phrase-based SMT sys-
tem, Moses (Koehn et al., 2007), which employs a
log linear model to find the best correction hypothe-
sis T ∗ given an input sentence S:

T ∗ = argmax
T

P (T |S) = argmax
T

N∑

i=1

µifi(T, S)

where µi and fi(T, S) are the ith feature weight and
feature function, respectively. We use the standard
features in Moses, without any re-ordering mod-
els. The two main components of an SMT system
are the translation model (TM) and the language
model (LM). The TM (typically, a phrase table), re-
sponsible for generating hypotheses, is trained using
parallel data, i.e., learner-written sentences (source
data) and their corresponding corrected sentences
(target data). It also scores the hypotheses us-
ing features like forward and inverse phrase trans-
lation probabilities and lexical weights. The LM
is trained on well-formed text and ensures the flu-
ency of the corrected output. The feature weights
µi are computed by minimum error rate training
(MERT), optimizing the F0.5 measure (Junczys-
Dowmunt and Grundkiewicz, 2014) using a devel-

opment set. The F0.5 measure computed using
the MaxMatch scorer (Dahlmeier and Ng, 2012) is
the standard evaluation metric for GEC used in the
CoNLL-2014 shared task (Ng et al., 2014), weight-
ing precision twice as much as recall.

Apart from the TM and the n-gram LM, we add
a neural network joint model (NNJM) (Devlin et
al., 2014) as a feature, following Chollampatt et al.
(2016), who reported that NNJM improves the per-
formance of a state-of-the-art SMT-based GEC sys-
tem. Unlike Recurrent Neural Networks (RNNs)
and Long Short Term Memory networks (LSTMs),
NNJMs have a feed-forward architecture which re-
lies on a fixed context. This makes it easy to inte-
grate NNJMs into a machine translation decoder as
a feature. The feature value is given by logP (T |S),
which is the sum of the log probabilities of individ-
ual target words in the hypothesis T given the con-
text:

logP (T |S) ≈
|T |∑

i=1

logP (ti|hi) (1)

where |T | is the number of words in the target
hypothesis (corrected sentence), ti is the ith target
word, and hi is the context of ti. The context hi
consists of n−1 previous target words andm source
words surrounding the source word that is aligned to
the target word ti.

Each dimension in the output layer of the neural
network (Chollampatt et al., 2016) gives the proba-
bility of a word t in the output vocabulary given its
context h:

P (y = t|h) =
exp(Ut(h))

Z(h)
=

exp(Ut(h))∑
t′∈Vo

exp(Ut′(h))

whereUt(h) is the unnormalized output score before
the softmax, and Vo is the output vocabulary.

The neural network parameters which include the
weights, biases, and embedding matrices are trained
using back propagation with stochastic gradient de-
scent (LeCun et al., 1998). Instead of using the noise
contrastive estimation (NCE) loss as done in (Chol-
lampatt et al., 2016), we use the log likelihood ob-
jective function with a self-normalization term sim-
ilar to Devlin et al. (2014):

L =
1

N

N∑

i=1

[
log p(y = ti|hi)− α log2(Z(hi))

]

(2)
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where N is the number of training instances, and ti
is the target word in the ith training instance. Each
training instance consists of a target word t and its
context h. α is the self-normalization coefficient
which we set to 0.1, following Devlin et al. (2014).
The training can be done efficiently on GPUs. We
adapt this NNJM using L1-specific learner text using
a Kullback-Leibler divergence regularized objective
function as described in Section 4.

4 KL Divergence Regularized Adaptation

We first train an NNJM with the general-domain
data (the erroneous and corrected texts, not consider-
ing the L1 of the writers) as described in the previous
section. Let pGD(y|h) be the probability distribu-
tion estimated by the general-domain NNJM. Start-
ing from this NNJM, subsequent iterations of train-
ing are done using the L1-specific in-domain data
alone. The in-domain data consists of the erroneous
texts written by writers of a specific L1 and their cor-
responding corrected texts. This adaptive training is
done using a modified objective function having a
regularization term K, which is used to minimize
the KL divergence between pGD(y|h) and the net-
work’s output probability distribution p(y|h) (Yu et
al., 2013):

K =
1

N

N∑

i=1

Vo∑

j=1

pGD(y = tj |hi) log p(y = tj |hi)

The term K will prevent the estimated probability
distribution from deviating too much from that of
the general domain NNJM during training. Our final
objective function for the adaptation step is a linear
combination of the terms in L andK, with a regular-
ization weight λ and a self-normalization coefficient
α:

L′ =λK + (1− λ)
1

N

N∑

i=1

log p(y = ti|hi)

− α 1

N

N∑

i=1

log2(Z(hi))

We integrate the unadapted NNJM and adapted
NNJM independently into our SMT-based GEC sys-
tem in order to compare the effect of adaptation.

5 Other Adaptation Methods

We compare our method against two other adapta-
tion methods previously used in SMT.

Translation Model Interpolation: Following
Sennrich (2012), we linearly interpolate the fea-
tures in two phrase tables, one trained on in-
domain data (L1-specific learner text) and the other
on out-of-domain data. The interpolation weights
are set by minimization of perplexity using phrase
pairs extracted from our in-domain development set.
The lexical weights are re-computed from the lex-
ical counts and the interpolation weights are re-
normalized if a phrase pair exists only in one of the
phrase tables.

Neural Domain Adaptation Model: Joty et al.
(2015) proposed an adaptation of NNJM for SMT.
They first train an NNJM using in-domain data,
and then perform regularized adaptation on the gen-
eral domain data (concatenation of in-domain and
out-of-domain data) which restricts the model from
drifting away from the in-domain NNJM. Specifi-
cally, they add a regularization term J to the objec-
tive function in their adaptive training step:

J =
1

N

N∑

i=1

pID(y = ti|hi) log p(y = ti|hi)

where pID(y|h) id probability distribution estimated
by the in-domain NNJM.

NDAM has the following drawbacks compared to
our method: (1) Regularization is done using proba-
bilities of the target words alone and not on the entire
probability distribution over all words, leading to a
weak regularization. (2) If the in-domain data is too
small, the probability distribution learnt by the in-
domain NNJM will be overfitted. Therefore, encour-
aging adaptation to be closer to this probability dis-
tribution may not yield a good model. Our method,
on the other hand, can utilize in-domain data of very
small sizes to fine tune a general NNJM. (3) Their
method requires retraining of the model on complete
training data in order to adapt to each domain. On
the contrary, our method can adapt a single general
model to different domains using small in-domain
data, leading to a considerable reduction in training
time.

We re-implement their method by incorporating
this regularization term into the log likelihood objec-
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tive function with self-normalization, L (Equation
2), during adaptive training.

6 Data and Evaluation

The training data consist of two corpora: the NUS
Corpus of Learner English (NUCLE) (Dahlmeier
et al., 2013) and the Lang-8 Learner Corpora v2
(Mizumoto et al., 2011). We extract texts written
by learners who learn only English from Lang-8. A
language identification tool langid.py1 (Lui and
Baldwin, 2011) is then used to obtain purely English
sentences. In addition, we remove noisy source-
target sentence pairs in Lang8 where the ratio of the
lengths of the source and target sentences is outside
[0.5, 2.0], or their word overlap ratio is less than 0.2.
A sentence pair where the source or target sentence
has more than 80 words is also removed from both
NUCLE and Lang-8. The statistics of the data after
pre-processing are shown in Table 1.

Corpus #sents #src tokens #tgt tokens

NUCLE 57,063 1,156,460 1,151,278
LANG-8 2,048,654 24,649,768 25,912,707

CONCAT 2,105,717 25,806,228 27,063,985

Table 1: Statistics of training data

We obtain L1-specific in-domain data for adapta-
tion based on the L1 information provided in Lang-
8. Adaptation is performed on English texts writ-
ten by learners of three different L1 backgrounds:
Chinese, Russian, and Spanish. The statistics of the
in-domain data from Lang-8 for each L1 are given
in Table 2. For each L1, its out-of-domain data
are obtained by excluding the L1-specific in-domain
data (from Table 2) from the combined training data
(CONCAT).

L1 #sents #src tokens #tgt tokens

Chinese 260,872 3,521,336 3,688,098
Russian 43,488 566,517 596,692
Spanish 19,357 292,257 309,236

Table 2: Statistics of L1-specific data in Lang-8

We use the publicly available CLC-FCE (Yan-
nakoudakis et al., 2011) corpus to obtain the de-

1https://github.com/saffsd/langid.py

velopment and test data. The FCE corpus contains
1,244 scripts written by 1,244 distinct candidates sit-
ting the Cambridge ESOL First Certificate in En-
glish (FCE) examination in 2000 and 2001. The
corpus identifies the L1 of each writer. We extract
the scripts written by Chinese, Russian, and Span-
ish native writers. We split the data for each L1
into two roughly equal parts based on the number of
scripts, of which one part is used as the development
data and other part is used as the test data. Splitting
based on the number of scripts ensures that there is
no overlap between the writers of the development
and test data, as each script is written by a unique
learner. The details of the FCE dataset correspond-
ing to each L1 are given in Table 3.

#scripts #sents #src
tokens

#tgt
tokens #errors

L1: Chinese

DEV 33 1,041 15,424 15,601 1,751
TEST 33 1,078 15,640 15,816 1,487

L1: Russian

DEV 41 1,125 17,021 17,267 1,782
TEST 42 1,263 18,738 18,920 1,934

L1: Spanish

DEV 100 2,281 41,375 41,681 4,133
TEST 100 2,431 41,557 42,035 4,237

Table 3: Statistics of the FCE dataset for each L1

For evaluation, we use the F0.5 measure, com-
puted by the M2scorer v3.2 (Dahlmeier and Ng,
2012), as our evaluation metric. The error annota-
tions in FCE are converted to the format required
by the M2scorer. The statistics of error annotations
after converting to this format are given in Table 3.
To deal with the instability of parameter tuning in
SMT, we perform five runs of tuning and calculate
the statistical significance by stratified approximate
randomization test, as recommended by (Clark et
al., 2011).

7 Experiments and Results

7.1 Baseline SMT-based GEC system
We use Moses (Version 3) to build all our SMT-
based GEC systems. The phrase table of the base-
line system (SCONCAT) is trained using the complete
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L1: Chinese L1: Russian L1: Spanish
P R F0.5 P R F0.5 P R F0.5

SIN 50.03 16.11 35.09 38.11 16.99 30.52 43.40 12.74 29.28
SOUT 49.88 17.34 36.23 54.78 21.15 41.54 57.18 16.10 37.83
SCONCAT 51.72 17.56 37.23 54.17 21.70 41.62 55.45 16.93 38.09
SCONCAT + NNJMBASELINE 50.47 18.75 37.63 55.22 21.73 42.15 58.30 16.42 38.60
NNJM adaptation using KL divergence regularization
SCONCAT + NNJMADAPTED 56.02 17.59 38.90 55.71 22.53 43.03 59.05 16.77 39.24
SCONCAT + NNJMADAPTED (FCE) 53.82 18.60 38.91 56.03 22.46 43.13 58.88 16.95 39.38
Comparison to other adaptation techniques
TMINT + NNJMBASELINE 55.70 17.18 38.38 54.97 21.90 42.21 58.32 16.44 38.59
SCONCAT + NDAM 56.56 16.76 38.31 54.60 22.03 42.11 58.28 16.64 38.83
TMINT + NNJMADAPTED 55.89 17.62 38.81 56.30 21.75 42.70 57.04 16.97 38.73
Using smaller general domain data
SCONCAT + NNJMSMALL-BASELINE 53.29 17.47 37.75 55.34 20.87 41.55 58.05 16.46 38.55
SCONCAT + NDAMSMALL 53.89 17.36 37.87 55.29 21.09 41.70 56.82 16.69 38.36
SCONCAT + NNJMSMALL-ADAPTED 52.41 17.40 37.37 56.03 21.17 42.09 58.34 16.79 39.01

Table 4: Precision (P), recall (R), and F0.5 of L1-based adaptation of GEC systems. All results are averaged over 5 runs of tuning

and evaluation.

training data. We use two 5-gram language models
(LMs) trained using KenLM (Heafield et al., 2013).
One LM is trained on the English Wikipedia (about
1.78 billion tokens) and another on the target side of
the complete training data. The system is tuned us-
ing MERT, optimizing the F0.5 measure on the L1-
specific development data in Table 2.

For comparison, we show two other baselines SIN

and SOUT, where the phrase tables for each L1 are
trained on the in-domain data only (Table 2) and the
out-of-domain data only, respectively. The results
of the above baseline GEC systems on L1 Chinese,
Russian, and Spanish FCE test data are summarized
in Table 4. We enhance the baseline SCONCAT with an
NNJM feature, as described in following subsection.

7.2 NNJM Adaptation

We implement NNJM in Python using the deep
learning library Theano2 (Bergstra et al., 2010) in
order to use the massively parallel processing power
of GPUs for training. We first train an NNJM
(NNJMBASELINE) with complete training data for 10
epochs. The source context window size is set to 5
and the target context window size is set to 4, mak-
ing it a (5+5)-gram joint model. Training is done
using stochastic gradient descent with a mini-batch

2http://deeplearning.net/software/theano

size of 128 and learning rate of 0.1. To speed up
training and decoding, a single hidden layer neural
network is used with an input embedding dimen-
sion of 192 and 512 hidden units. We use a self-
normalization coefficient of 0.1. We pick 16,000 and
32,000 most frequent words on the source and tar-
get sides as our source context vocabulary and target
context vocabulary, respectively. The output vocab-
ulary is set to be the same as the target vocabulary.
The vocabulary is selected from the complete train-
ing data, and not based on the L1-specific in-domain
data. We add the self-normalized NNJM as a fea-
ture to our baseline GEC system, SCONCAT to build a
stronger baseline. This is referred to as SCONCAT +
NNJMBASELINE in Table 4.

We perform adaptation on NNJMBASELINE by
training for 10 additional epochs using the in-
domain training data alone. We use the same hyper-
parameters, network structure, and vocabulary, but
with the KL-divergence regularized objective func-
tion (regularization weight λ = 0.5). We train
the adapted NNJM (NNJMADAPTED) specific to each
L1. We integrate these to our baseline GEC system,
and the adapted systems are referred to as SCONCAT

+ NNJMADAPTED in Table 4. The results are aver-
aged over five runs of tuning and evaluation. Our
evaluation shows that each adapted system SCONCAT
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+ NNJMADAPTED outperforms every baseline system
(SIN, SOUT, SCONCAT, and SCONCAT + NNJMBASELINE)
significantly on all three L1s (p < 0.01).

7.3 Comparison to Other Adaptation
Techniques

We compare our method to two different adapta-
tion techniques described in Section 5: Translation
Model Interpolation (TMINT) (Sennrich, 2012) and
Neural Domain Adaptation Model (NDAM) (Joty
et al., 2015)3. The optimization of interpolation
weights for TMINT is done using the L1-specific
FCE development data. NDAM is trained on the
complete training data (CONCAT) for 10 epochs by
regularizing using an in-domain NNJM also trained
for 10 epochs on L1-specific in-domain data from
Lang-8. For NDAM, we use the same vocabulary
and hyperparameters as our NNJMs.

The results are shown in the rows TMINT +
NNJMBASELINE and SCONCAT + NDAM in Table
4. Our evaluation shows that for L1 Russian
and L1 Spanish, our adapted system SCONCAT

+ NNJMADAPTED significantly outperforms both
TMINT + NNJMBASELINE and SCONCAT + NDAM (p <
0.01), but the improvement is not statistically signif-
icant for L1 Chinese.

Our evaluation also shows that the combination
of TMINT and adapted NNJM is similar (for L1 Chi-
nese and Russian) or worse (for Spanish) in perfor-
mance compared to SCONCAT + NNJMADAPTED. This
is because NNJMADAPTED by itself is a translation
model adaptation (because it considers source and
target side contexts) and hence using TMINT along
with it does not bring in any newer information and
may even hurt the performance when the in-domain
data is very small (in the case of Spanish).

7.4 Effect of Adaptation Data
We also perform adaptation on the L1-specific FCE
development set in Table 3 (which is also our de-
velopment data for the GEC systems), instead of the
in-domain data from Lang-8 in Table 2. Our neu-
ral network overfits easily on the FCE development
set due to its much smaller size. Hence, we per-
form adaptive training for only 2 epochs on top of
NNJMBASELINE. The results are shown in the row

3We use the NDAMv1 (Joty et al., 2015) trained using the
log likelihood objective function with self-normalization.

SCONCAT + NNJMADAPTED (FCE) in Table 4. Although
the FCE development data is much smaller in size
than the L1-specific in-domain data from Lang-8,
we observe similar improvements on all three L1s.
This is likely due to the similarity of the devel-
opment and test sets, which are obtained from the
same FCE corpus. These experiments show that
smaller high-quality L1-specific error annotated data
(1,000–2,000 sentences) similar to the target data
can be used for adaptation to give competitive re-
sults compared to using much larger in-domain data
(20,000–250,000 sentences) from other sources.

We perform experiments with smaller general do-
main data. In order to do this, we select a sub-
set of CONCAT composed of the in-domain data
of the three L1s along with 300,000 sentences ran-
domly selected from the rest of CONCAT. This cor-
pus is referred to as SMALL-CONCAT (623,717 sen-
tences and 7,990,659 source tokens). We perform
both KL-divergence regularized NNJM adaptation
(NNJMSMALL-ADAPTED) as well as Neural Domain
Adaptation Model (Joty et al., 2015) (NDAMSMALL)
and compare them to NNJM trained with SMALL-
CONCAT (NNJMSMALL-BASELINE). We use these
NNJMs with our SCONCAT baseline. The results
are summarized in Table 4. When the ratio be-
tween in-domain data and general domain data is
high, both adaptation methods do not significantly
improve over an unadapted NNJM. In the case of
L1 Spanish, KL-divergence regularized adaptation
significantly outperforms the unadapted NNJM and
NDAM as the size of in-domain data is smaller.

7.5 Effect of Regularization

To analyze the effect of regularization when smaller
data are used, we vary the regularization weight λ in
our objective function (Section 4). The results are
shown in Figure 1. λ = 0 corresponds to no reg-
ularization and training completely depends on the
in-domain data apart from using the general NNJM
as a starting point. On the other hand, setting λ = 1
forces the distribution learnt by the network to be
similar to that of the unadapted model. We see that
having no regularization (λ = 0) fails on all three
L1s, due to overfitting on the smaller in-domain
data. However, the effect of varying regularization
is more significant on L1 Russian and Spanish, as
the general NNJM has seen much smaller in-domain
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Figure 1: Effect of regularization for SCONCAT +

NNJMADAPTED (FCE)

data compared to L1 Chinese.

7.6 Evaluation on Benchmark Dataset

We also evaluate our system on the benchmark
CoNLL-2014 shared task (Ng et al., 2014) test set
for GEC in English. The CoNLL-2014 shared task
consists of 1,312 sentences with two annotators. We
also perform evaluation on the extension of CoNLL-
2014 test set (Bryant and Ng, 2015), which contains
eight additional sets of annotations over the two sets
of annotations provided in the original test set. Fol-
lowing the settings of the CoNLL-2014 shared task,
we tune our unadapted baseline system and the L1-
adapted systems on the CoNLL-2013 shared task
test set consisting of 1,381 test sentences. The re-
sults are summarized in Table 5.

We find that only the systems adapted based on L1
Chinese improves over the unadapted baseline sys-
tem (SCONCAT + NNJMBASELINE). When the smaller-
sized, high-quality FCE data is used for adaptation
the margin of improvement is higher. This could be
due to large proportion of Chinese learner written
text in CoNLL-2014 test set, as the essays are writ-
ten by the students of National University of Sin-
gapore comprising mostly of native Chinese speak-
ers. Adaptation to L1 Russian and Spanish, does not
help the system on CoNLL-2014 test set. We also
compare our baseline SMT-based system with other
state-of-the-art GEC systems. Our baseline system
which is SMT-based, achieves the best F0.5 score
compared to other systems using the SMT approach
alone, making it a competitive SMT-based GEC
baseline. Overall, (Rozovskaya and Roth, 2016)

System CoNLL-2014
ST 10ANN

SCONCAT + NNJMBASELINE 42.80 59.14
Adaptation based on L1 Chinese
SCONCAT + NNJMADAPTED 43.06 59.27
SCONCAT + NNJMADAPTED (FCE) 44.27 60.36
Adaptation based on L1 Russian
SCONCAT + NNJMADAPTED 42.73 58.90
SCONCAT + NNJMADAPTED (FCE) 42.12 58.30
Adaptation based on L1 Spanish
SCONCAT + NNJMADAPTED 41.88 58.32
SCONCAT + NNJMADAPTED (FCE) 42.36 58.54
Best Published Results
Rozovskaya and Roth (2016)

(classifiers + spelling + SMT) 47.40 -
(SMT) 39.48 -

Chollampatt et al. (2016) (SMT) 41.75 57.19
Shared Task Teams
CAMB (classifiers, rules, SMT) 37.33 54.26
CUUI (classifiers) 36.79 51.79
AMU (SMT) 35.01 50.17

Table 5: ST denotes F0.5 scores on the shared task test set and

10ANN denotes the F0.5 scores on the extended test set with 10

sets of annotations.

achieves the best F0.5 score (47.40) after adding clas-
sifier components, spelling checker, punctuation and
capitalization correction components in a pipeline
with their SMT-based system. However, their SMT-
based system alone achieves an F0.5 score of 39.48
only.

8 Discussion and Error Analysis

Our results show that L1-based adaptation of the
NNJM using L1-specific in-domain data from Lang-
8 significantly improves the F0.5 score of the GEC
system on the three L1s by 1.27 (Chinese), 0.88
(Russian), and 0.64 (Spanish). We observe simi-
lar gains when smaller in-domain development data
from FCE is used for adaptation. These results show
that adaptation based on L1 is beneficial for targeted
error correction based on the native language of the
writers. Our results also show that the proposed
method of NNJM adaptation is scalable to differ-
ent sizes of in-domain and general domain data and
outperforms other methods of adaptation like phrase
table interpolation (Sennrich, 2012) and Neural Do-
main Adaptation Model (NDAM) (Joty et al., 2015).

We perform error analysis on four error types
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Error type ∆ F0.5
Chinese Russian Spanish

verb form/tense +0.394 +0.298 -0.124
determiner +2.892 +2.440 +1.648
preposition +0.084 +2.010 +1.806
noun number +0.130 -0.706 +0.822
all +0.400 +1.068 +0.586

Table 6: Differences between per error type F0.5 scores of sys-

tem and baseline for the three L1s

which are difficult for non-native learners of En-
glish.

We compare the outputs produced by our adapted
system: SCONCAT + NNJMADAPTED and the baseline:
SCONCAT + NNJMBASELINE. We perform per error
type quantitative analysis of our results by observ-
ing the difference in the per error type F0.5 scores
averaged over five runs of tuning and evaluation of
baseline and system. Computing per error type F0.5
scores is difficult for SMT-based GEC systems, as
the error types for corrections proposed by the SMT-
based GEC system cannot be determined trivially.
To overcome this difficulty, we attempt to determine
the error type of the proposed corrections by match-
ing them to the available human annotations (the
source/target phrase without the surrounding con-
text) in the complete FCE dataset (1,244 scripts).
We select those sentences from the test data where
the error type of every correction proposed by the
baseline and the system can be determined. This
process selects 928, 1102, and 2179 sentences for
L1 Chinese, Russian, and Spanish, respectively. The
differences in per error type F0.5 scores between sys-
tem and baseline are shown in Table 6. For Chinese,
the largest gain in F0.5 is observed for determiner er-
rors. Determiner errors are frequent in our L1 Chi-
nese FCE test set (10.02%) . Moreover, we see that
adaptation improves verb form errors by approxi-
mately 0.4% F0.5. Verb form errors are the most fre-
quent error type in our L1 Chinese test set (14.46%).
Also, the highest gain for L1 Russian comes from
determiner errors which is the most frequent error
type in our FCE test data for L1 Russian (13.55%).
Similarly, the highest gain for L1 Spanish comes
from preposition errors which is the most frequent
error type for L1 Spanish (12.51%).

From a practical standpoint, the adapted system
can be used as an educational aid in English classes

of local students in non-English-speaking countries,
where all the students share the same L1 and their
L1 is known in advance. The adapted system can
give focused feedback to learners by correcting mis-
takes frequently made by learners having the same
L1. Also, NNJM adaptation proposed in this paper
can be done using a small number of essays (50–100
essays) in a relatively short time (20–30 minutes),
making it easy to adapt GEC systems in practice.

9 Conclusion

In this paper, we perform NNJM adaptation using
L1-specific learner text with a KL divergence reg-
ularized objective function. We integrate adapta-
tion into an SMT-based GEC system. The systems
with adapted NNJMs outperform unadapted base-
lines significantly. We also demonstrate the neces-
sity for regularization when adapting on smaller in-
domain data. Our method of adaptation performs
better compared to other adaptation methods, espe-
cially when smaller in-domain data is used. Our re-
sults show that adapting GEC systems for learners
of similar L1 background gives significant improve-
ment and can be adopted in practice to improve GEC
systems.
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