
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1765–1774,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

An Evaluation of Parser Robustness for Ungrammatical Sentences

Homa B. Hashemi
Intelligent Systems Program

University of Pittsburgh
hashemi@cs.pitt.edu

Rebecca Hwa
Computer Science Department

University of Pittsburgh
hwa@cs.pitt.edu

Abstract

For many NLP applications that require a
parser, the sentences of interest may not be
well-formed. If the parser can overlook prob-
lems such as grammar mistakes and produce
a parse tree that closely resembles the correct
analysis for the intended sentence, we say that
the parser is robust. This paper compares the
performances of eight state-of-the-art depen-
dency parsers on two domains of ungrammat-
ical sentences: learner English and machine
translation outputs. We have developed an
evaluation metric and conducted a suite of ex-
periments. Our analyses may help practition-
ers to choose an appropriate parser for their
tasks, and help developers to improve parser
robustness against ungrammatical sentences.

1 Introduction

Previous works have shown that, in general, parser
performances degrade when applied to out-of-
domain sentences (Gildea, 2001; McClosky et al.,
2010; Foster, 2010; Petrov et al., 2010; Foster et al.,
2011). If a parser performs reasonably well for a
wide range of out-of-domain sentences, it is said to
be robust (Bigert et al., 2005; Kakkonen, 2007; Fos-
ter, 2007).

Sentences that are ungrammatical, awkward, or
too casual/colloquial can all be seen as special kinds
of out-of-domain sentences. These types of sen-
tences are commonplace for NLP applications, from
product reviews and social media analysis to intel-
ligent language tutors and multilingual processing.
Since parsing is an essential component for many
applications, it is natural to ask: Are some parsers

more robust than others against sentences that are
not well-formed? Previous works on parser evalu-
ation that focused on accuracy and speed (Choi et
al., 2015; Kummerfeld et al., 2012; McDonald and
Nivre, 2011; Kong and Smith, 2014) have not taken
ungrammatical sentences into consideration.

In this paper, we report a set of empirical analy-
ses of eight leading dependency parsers on two do-
mains of ungrammatical text: English-as-a-Second
Language (ESL) learner text and machine transla-
tion (MT) outputs. We also vary the types of train-
ing sources; the parsers are trained with the Penn
Treebank (to be comparable with other studies) and
Tweebank, a treebank on tweets (to be a bit more
like the test domain) (Kong et al., 2014).

The main contributions of the paper are:

• a metric and methodology for evaluating un-
grammatical sentences without referring to a
gold standard corpus;

• a quantitative comparison of parser accuracy of
leading dependency parsers on ungrammatical
sentences; this may help practitioners to select
an appropriate parser for their applications; and

• a suite of robustness analyses for the parsers on
specific kinds of problems in the ungrammati-
cal sentences; this may help developers to im-
prove parser robustness in the future.

2 Evaluation of Parser Robustness

Parser evaluation for ungrammatical texts presents
some domain-specific challenges. The typical ap-
proach to evaluate parsers is to compare parser out-

1765

puts against manually annotated gold standards. Al-
though there are a few small semi-manually con-
structed treebanks on learner texts (Geertzen et al.,
2013; Ott and Ziai, 2010) or tweets (Daiber and
van der Goot, 2016), their sizes make them unsuit-
able for the evaluation of parser robustness. More-
over, some researchers have raised valid questions
about the merit of creating a treebank for ungram-
matical sentences or adapting the annotation schema
(Cahill, 2015; Ragheb and Dickinson, 2012).

A “gold-standard free” alternative is to compare
the parser output for each problematic sentence with
the parse tree of the corresponding correct sentence.
Foster (2004) used this approach over a small set of
ungrammatical sentences and showed that parser’s
accuracy is different for different types of errors.
A limitation of this approach is that the compari-
son works best when the differences between the
problematic sentence and the correct sentence are
small. This is not the case for some ungrammatical
sentences (especially from MT systems). Another
closely-related approach is to semi-automatically
create treebanks from artificial errors. For exam-
ple, Foster generated artificial errors to the sentences
from the Penn Treebank for evaluating the effect of
error types on parsers (Foster, 2007). In another
work, Bigert et al. (2005) proposed an unsupervised
evaluation of parser robustness based on the intro-
duction of artificial spelling errors in error-free sen-
tences. Kakkonen (2007) adapted a similar method
to compare the robustness of four parsers over sen-
tences with misspelled words.

Our proposed evaluation methodology is similar
to the “gold-standard free” approach; we compare
the parser output for an ungrammatical sentence
with the automatically generated parse tree of the
corresponding correct sentence. In the next section,
we discuss our evaluation metric to address the con-
cerns that some ungrammatical sentences may be
very different from their corrected versions. This al-
lows us to evaluate parsers with more realistic data
that exhibit a diverse set of naturally occurring er-
rors, instead of artificially generated errors or lim-
ited error types.

3 Proposed Evaluation Methodology

For the purpose of robustness evaluation, we take the
automatically produced parse tree of a well-formed
sentence as “gold-standard” and compare the parser
output for the corresponding problematic sentence
against it. Even if the “gold-standard” is not per-
fectly correct in absolute terms, it represents the
norm from which parse trees of problematic sen-
tences diverge: if a parser were robust against un-
grammatical sentences, its output for these sentences
should be similar to its output for the well-formed
ones.

Determining the evaluation metric for compar-
ing these trees, however, presents another chal-
lenge. Since the words of the ungrammatical sen-
tence and its grammatical counterpart do not neces-
sarily match (an example is given in Figure 1), we
cannot use standard metrics such as Parseval (Black
et al., 1991). We also cannot use adapted metrics
for comparing parse trees of unmatched sentences
(e.g., Sparseval (Roark et al., 2006)), because these
metrics consider all the words regardless of the mis-
matches (extra or missing words) between two sen-
tences. This is a problem for comparing ungrammat-
ical sentences to grammatical ones because a parser
is unfairly penalized when it assigns relations to ex-
tra words and when it does not assign relations to
missing words. Since a parser cannot modify the
sentence, we do not want to penalize these extra-
neous or missing relations; on the other hand, we
do want to identify cascading effects on the parse
tree due to a grammar error. For the purpose of
evaluating parser robustness against ungrammatical
sentences, we propose a modified metric in which
the dependencies connected to unmatched (extra or
missing) error words are ignored. A more formal
definition is as follows:

• Shared dependency is a mutual dependency be-
tween two trees;

• Error-related dependency is a dependency con-
nected to an extra word1 in the sentence;

• Precision is (# of shared dependencies) / (# of
dependencies of the ungrammatical sentence -

1The extra word in the ungrammatical sentences is an un-
necessary word error, and the extra word in the grammatical
sentence is a missing word error.

1766

I appreciate all about this

I appreciate all this

ROOT

ROOT

U
ng

ra
m

m
at

ic
al

G
ra

m
m

at
ic

al

Figure 1: Example of evaluating robustness of an
ungrammatical sentence (top) dependency parse tree
with its corresponding grammatical sentence (bot-
tom).

of error-related dependencies of the ungram-
matical sentence);

• Recall is (# of shared dependencies) / (# of de-
pendencies of the grammatical sentence - # of
error-related dependencies of the grammatical
sentence); and

• Robustness F1 is the harmonic mean of preci-
sion and recall.

Figure 1 shows an example in which the un-
grammatical sentence has an unnecessary word,
“about”, so the three dependencies connected to it
are counted as error-related dependencies. The two
shared dependencies between the trees result in a
precision of 2/(5−3) = 1, recall of 2/(4−0) = 0.5,
and Robustness F1 of 66%.

4 Experimental Setup

Our experiments are conducted over a wide range of
dependency parsers that are trained on two different
treebanks: Penn Treebank (PTB) and Tweebank. We
evaluate the robustness of parsers over two datasets
that contain ungrammatical sentences: writings of
English-as-a-Second language learners and machine
translation outputs. We choose datasets for which
the corresponding correct sentences are available (or
easily reconstructed).

4.1 Parsers

Our evaluation is over eight state-of-the-art depen-
dency parsers representing a wide range of ap-
proaches. We use the publicly available versions of
each parser with the standard parameter settings.

Malt Parser (Nivre et al., 2007)2 A greedy
transition-based dependency parser. We use LI-
BLINEAR setting in the learning phase.

Mate Parser v3.6.1 (Bohnet, 2010)3 A graph-based
dependency parser that uses second-order maxi-
mum spanning tree.

MST Parser (McDonald and Pereira, 2006)4 A first-
order graph-based parser that searches for maxi-
mum spanning trees.

Stanford Neural Network Parser (SNN) (Chen and
Manning, 2014)5 A transition-based parser that
uses word embeddings. We use pre-trained
word embeddings from Collobert et al. (2011) as
recommended by the authors.

SyntaxNet (Andor et al., 2016)6 A transition-based neu-
ral network parser. We use the globally normalized
training of the parser with default parameters.

Turbo Parser v2.3 (Martins et al., 2013)7 A graph-
based dependency parser that uses dual decompo-
sition algorithm with third-order features.

Tweebo Parser (Kong et al., 2014)8 An extension of the
Turbo Parser specialized to parse tweets. Tweebo
Parser adds a new constraint to the Turbo Parser’s
integer linear programming to ignore some Twitter
tokens from parsing, but also simultaneously uses
these tokens as parsing features.

Yara Parser (Rasooli and Tetreault, 2015)9 A
transition-based parser that uses beam search
training and dynamic oracle.

4.2 Data
We train all the parsers using two treebanks and test
their robustness over two ungrammatical datasets.

4.2.1 Parser Training Data
Penn Treebank (PTB) We follow the standard
splits of Penn Treebank, using section 2-21 for train-
ing, section 22 for development, and section 23 for

2www.maltparser.org
3code.google.com/p/mate-tools
4seas.upenn.edu/˜strctlrn/MSTParser/

MSTParser.html
5nlp.stanford.edu/software/nndep.shtml
6github.com/tensorflow/models/tree/

master/syntaxnet
7www.cs.cmu.edu/˜ark/TurboParser
8github.com/ikekonglp/TweeboParser
9github.com/yahoo/YaraParser

1767

testing. We transform bracketed sentences from
PTB into dependency formats using Stanford Ba-
sic Dependency representation (De Marneffe et al.,
2006) from Stanford parser v3.6. We assign POS
tags to the training data using Stanford POS tagger
(Toutanova et al., 2003) with ten-way jackknifing
(with 97.3% accuracy).

Tweebank Tweebank is a Twitter dependency cor-
pus annotated by non-experts containing 929 tweets
(Kong et al., 2014). Kong et al. (2014) used 717
of tweets for training and 201 for test10. We fol-
low the same split in our experiments. We use pre-
trained POS tagging model of Kong et al. (2014)
(with 92.8% accuracy) over the tweets.

The elements in tweets that have no syntactic
function (such as hashtags, URLs and emoticons)
are annotated as unselected tokens (no tokens as the
heads). In order to be able to use Tweebank in other
parsers, we link the unselected tokens to the wall
symbol (i.e. root as the heads). This assumption will
generate more arcs from the root, but since we use
the same evaluation setting for all the parsers, the
results are comparable. We evaluate the accuracy of
the trained parser on Tweebank with the unlabeled
attachment F1 score (same procedure as Kong et al.
(2014)).

4.2.2 Robustness Test Data
To test the robustness of parsers, we choose two

datasets of ungrammatical sentences for which their
corresponding correct sentences are available. For a
fair comparison, we automatically assign POS tags
to the test data. When parsers are trained on PTB,
we use the Stanford POS tagger (Toutanova et al.,
2003). When parsers are trained on Tweebank, we
coarsen POS tags to be compatible with the Twitter
POS tags using the mappings specified by Gimpel et
al. (2011).

English-as-a-Second Language corpus (ESL)
For the ungrammatical sentences, we use the First
Certificate in English (FCE) dataset (Yannakoudakis
et al., 2011) that contains the writings of English as
a second language learners and their corresponding
error corrections. Given the errors and their correc-
tions, we can easily reconstruct the corrected version

10github.com/ikekonglp/TweeboParser/tree/
master/Tweebank

of each ungrammatical ESL sentence. From this cor-
pus, we randomly select 10,000 sentences with at
least one error; there are 4954 with one error; 2709
with two errors; 1290 with three; 577 with four; 259
with five; 111 with six; and 100 with 7+ errors.

Machine Translation corpus (MT) Machine
translation outputs are another domain of ungram-
matical sentences. We use the LIG (Potet et al.,
2012) which contains 10,881 and LISMI’s TRACE
corpus11 which contains 6,693 French-to-English
machine translation outputs and their human post-
editions. From these corpora, we randomly se-
lect 10,000 sentences with at least edit distance one
(upon words) with their human-edited sentence. The
distribution of the number of sentences with their
edit distances from 1 to 10+ is as follows (begin-
ning with 1 edit distance and ending with 10+): 674;
967; 1019; 951; 891; 802; 742; 650; 547; and 2752.

4.3 Evaluation Metric
In the robustness evaluation metric (Section 3),
shared dependencies and error-related dependencies
are detected based on alignments between words in
the ungrammatical and grammatical sentences. We
find the alignments in the FCE and MT data in a
slightly different way. In the FCE dataset, in which
the error words are annotated, the grammatical and
ungrammatical sentences can easily be aligned. In
the MT dataset, we use the TER (Translation Error
Rate) tool (default settings)12 to find alignments.

In our experiments, we present unlabeled robust-
ness F1 micro-averaged across the test sentences.
We consider punctuations when parsers are trained
with the PTB data, because punctuations can be
a source of ungrammaticality. However, we ig-
nore punctuations when parsers are trained with the
Tweebank data, because punctuations are not anno-
tated in the tweets with their dependencies.

5 Experiments

The experiments aim to address the following ques-
tions given separate training and test data:

1. How do parsers perform on erroneous sen-
tences? (Section 5.1)

11anrtrace.limsi.fr/trace_postedit.tar.
bz2

12www.cs.umd.edu/˜snover/tercom

1768

Parser
Train on PTB §1-21 Train on Tweebanktrain

UAS Robustness F1 UAF1 Robustness F1

PTB §23 ESL MT Tweebanktest ESL MT
Malt 89.58 93.05 76.26 77.48 94.36 80.66
Mate 93.16 93.24 77.07 76.26 91.83 75.74
MST 91.17 92.80 76.51 73.99 92.37 77.71
SNN 90.70 93.15 74.18 53.4 88.90 71.54
SyntaxNet 93.04 93.24 76.39 75.75 88.78 81.87
Turbo 92.84 93.72 77.79 79.42 93.28 78.26
Tweebo - - - 80.91 93.39 79.47
Yara 93.09 93.52 73.15 78.06 93.04 75.83

Table 1: Parsers’ performance in terms of accuracy and robustness. The best result in each column is given
in bold, and the worst result is in italics.

2. To what extent is each parser negatively im-
pacted by the increase in the number of errors
in sentences? (Section 5.2)

3. To what extent is each parser negatively im-
pacted by the interactions between multiple er-
rors? (Section 5.3)

4. What types of errors are more problematic for
parsers? (Section 5.4)

5.1 Overall Accuracy and Robustness
The overall performances of all parsers are shown in
Table 1. Note that the Tweebo Parser’s performance
is not trained on the PTB because it is a specializa-
tion of the Turbo Parser, designed to parse tweets.
Table 1 shows that, for both training conditions, the
parser that has the best robustness score in the ESL
domain has also high robustness for the MT domain.
This suggests that it might be possible to build robust
parsers for multiple ungrammatical domains. The
training conditions do matter – Malt performs better
when trained from Tweebank than from the PTB. In
contrast, Tweebank is not a good fit with the neu-
ral network parsers due to its small size. Moreover,
SNN uses pre-trained word embeddings, and 60% of
Tweebank tokens are missing.

Next, let us compare parsers within each train/test
configuration for their relative robustness. When
trained on the PTB, all parsers are comparably ro-
bust on ESL data, while they exhibit more differ-
ences on the MT data, and, as expected, everyone’s
performance is much lower because MT errors are
more diverse than ESL errors. We expected that by

training on Tweebank, parsers will perform better on
ESL data (and maybe even MT data), since Twee-
bank is arguably more similar to the test domains
than the PTB; we also expected Tweebo to outper-
form others. The results are somewhat surprising.
On the one hand, the highest parser score increased
from 93.72% (Turbo trained on PTB) to 94.36%
(Malt trained on Tweebank), but the two neural net-
work parsers performed significantly worse, most
likely due to the small training size of Tweebank. In-
terestingly, although SyntaxNet has the lowest score
on ESL, it has the highest score on MT, showing
promise in its robustness.

5.2 Parser Robustness by Number of Errors

To better understand the overall results, we further
breakdown the test sentences by the number of er-
rors each contains. Our objectives are: (1) to observe
the speed with which the parsers lose their robust-
ness as the sentences become more error-prone; (2)
to determine whether some parsers are more robust
than others when handling noisier data.

Figure 2 presents four graphs, plotting robust-
ness F1 scores against the number of errors for all
parsers under each train/test configuration. In terms
of the parsers’ general degradation of robustness, we
observe that: 1) parsing robustness degrades faster
with the increase of errors for the MT data than the
ESL data; 2) training on the PTB led to a more simi-
lar behavior between the parsers than when training
on Tweebank; 3) training on Tweebank does help
some parsers to be more robust against many errors.

In terms of relative robustness between parsers,

1769

Figure 2: Variation in parser robustness as the number of errors in the test sentences increases.

we observe that Malt, Turbo, and Tweebo parsers
are more robust than others given noisier inputs.
The SNN parser is a notable outlier when trained on
Tweebank due to insufficient training examples.

5.3 Impact of Error Distances

This experiment explores the impact of the interac-
tivity of errors. We assume that errors have more
interaction if they are closer to each other, and less
interaction if they are scattered throughout the sen-
tence. We define “near” to be when there is at most
1 word between errors and “far” to be when there
are at least 6 words between errors. We expect all
parsers to have more difficulty on parsing sentences
when their errors have more interaction, but how do
the parsers compare against each other? We conduct
this experiment using a subset of sentences that have
exactly three errors; we compare parser robustness
when these three errors are near each other with the
robustness when the errors are far apart.

Table 2 presents the results as a collection of
shaded bars. This aims to give an at-a-glance vi-
sualization of the outcomes. In this representation,
all parsers with the same train data and test domain
(including both the near and far sets) are treated as
one group. The top row specifies the lowest score of
all parsers on both test sets; the bottom row speci-
fies the highest score. The shaded area of each bar
indicates the relative robustness of each parser with
respect to the lowest and highest scores of the group.
An empty bar indicates that it is the least robust (cor-
responding to the lowest score in the top row); a
fully shaded bar means it is the most robust (cor-
responding to the highest score in the bottom row).
Consider the left-most box, in which parsers trained
on PTB and tested on ESL are compared. In this

group13, Yara (near) is the least robust parser with a
score of F1 = 87.3%, while SNN (far) is the most
robust parser with a score of F1 = 93.4%; as ex-
pected, all parsers are less robust when tested on
sentences with near errors than far errors, but they
do exhibit relative differences: Turbo parser seems
most robust in this setting. Turbo parser’s lead in
handling error interactivity holds for most of the
other train/test configurations as well; the only ex-
ception is for Tweebank/MT, where SyntaxNet and
Malt are better. Compared to ESL data, near er-
rors in MT data are more challenging for all parsers;
when trained on PTB, most are equally poor, except
for Yara, which has the worst score (79.1%), even
though it has the highest score when the errors are
far apart (91.5%). Error interactivity has the most
effect on Yara parser in all but one train/test config-
uration (Tweebank/ESL).

5.4 Impact of Error Types

In the following experiments, we examine the im-
pact of different error types. To remove the impact
due to interactivity between multiple errors, these
studies use a subset of sentences that have only one
error. Although all parsers are fairly robust for sen-
tences containing one error, our focus here is on the
relative performances of parsers over different error
types: We want to see whether some error types are
more problematic for some parsers than others.

5.4.1 Impact of grammatical error types
The three main grammar error types are replace-

ment (a word need replacing), missing (a word miss-
ing), and unnecessary (a word is redundant). Our

13As previously explained, Tweebo is not trained on PTB, so
it has no bars associated with it.

1770

Train on PTB §1-21 Train on Tweebanktrain
Parser ESL MT ESL MT

Near Far Near Far Near Far Near Far
min 87.3 (Yara) 79.1 (Yara) 82.4 (SyntaxNet) 80.6 (SNN)
Malt
Mate
MST
SNN
SyntaxNet
Turbo
Tweebo
Yara
max 93.4 (SNN) 91.5 (Yara) 94.5 (Malt) 94.4 (Malt)

Table 2: Parser performance on test sentences with three near and three far errors. Each box represents one
train/test configuration for all parsers and error types. The bars within indicate the level of robustness scaled
to the lowest score (empty bar) and highest score (filled bar) of the group.

Train on PTB §1-21 Train on Tweebanktrain
Parser ESL MT ESL MT

Repl. Miss. Unnec. Repl. Miss. Unnec. Repl. Miss. Unnec. Repl. Miss. Unnec.
min 93.7 (MST) 92.8 (Yara) 89.4 (SyntaxNet) 87.8 (SNN)
Malt
Mate
MST
SNN
SyntaxNet
Turbo
Tweebo
Yara
max 96.9 (Turbo) 97.2 (SNN) 97.8 (Malt) 97.6 (Malt)

Table 3: Parser robustness on sentences with one grammatical error, each can be categorized as a replace-
ment error, a missing word error or an unnecessary word error.

goal is to see whether different error types have dif-
ferent effect on parsers. If yes, is there a parser that
is more robust than others?

As shown in Table 3, replacement errors are the
least problematic error type for all the parsers; on
the other hand, missing errors are the most difficult
error type for parsers. This finding suggests that
a preprocessing module for correcting missing and
unnecessary word errors may be helpful in the pars-
ing pipeline.

5.4.2 Impact of error word category
Another factor that might affect parser perfor-

mances is the class of errors; for example, we might
expect an error on a preposition to have a higher im-
pact (since it is structural) than an error on an adjec-
tive. We separate the sentences into two groups: er-
ror occurring on an open- or closed-class word. We

expect closed-class errors to have a stronger negative
impact on the parsers because they contain function
words such as determiners, pronouns, conjunctions
and prepositions.

Table 4 shows results. As expected, closed-class
errors are generally more difficult for parsers. But
when parsers are trained on PTB and tested on MT,
there are some exceptions: Turbo, Mate, MST and
Yara parsers tend to be more robust on closed-class
errors. This result corroborates the importance of
building grammar error correction systems to handle
closed-class errors such as preposition errors.

5.4.3 Impact of error semantic role
An error can be either in a verb role, an argument

role, or no semantic role. We extract semantic role
of the error by running Illinoise semantic role labeler
(Punyakanok et al., 2008) on corrected version of the

1771

Train on PTB §1-21 Train on Tweebanktrain
Parser ESL MT ESL MT

Open class Closed class Open class Closed class Open class Closed class Open class Closed class
min 95.1 (SNN) 94.5 (Yara) 89.6 (SyntaxNet) 91.5 (SNN)
Malt
Mate
MST
SNN
SyntaxNet
Turbo
Tweebo
Yara
max 96.8 (Malt) 96.1 (SNN) 97.6 (Malt) 97.0 (Malt)

Table 4: Parser robustness on sentences with one error, where the error either occurs on an open-class
(lexical) word or a closed-class (functional) word.

Train on PTB §1-21 Train on Tweebanktrain
Parser ESL MT ESL MT

Verb Argument No role Verb Argument No role Verb Argument No role Verb Argument No role
min 94.1 (SyntaxNet) 91.8 (Malt) 91.8 (SNN) 92.2 (SNN)
Malt
Mate
MST
SNN
SyntaxNet
Turbo
Tweebo
Yara
max 96.7 (Turbo) 96.7 (SyntaxNet) 96.9 (Malt) 96.9 (Malt)

Table 5: Parser robustness on sentences with one error where the error occurs on a word taking on a verb
role, an argument role, or a word with no semantic role.

sentences. We then obtain the role of the errors using
alignments between ungrammatical sentence and its
corrected counterpart.

Table 5 shows the average robustness of parsers
when parsing sentences that have one error. For
parsers trained on the PTB data, handling sentences
with argument errors seem somewhat easier than
those with other errors. For parsers trained on the
Tweebank, the variation in the semantic roles of the
errors does not seem to impact parser performance;
each parser performs equally well or poorly across
all roles; comparing across parsers, Malt seems par-
ticularly robust to error variations due to semantic
roles.

6 Conclusions and Recommendations

In this paper, we have presented a set of empirical
analyses on the robustness of processing ungram-
matical text for several leading dependency parsers,
using an evaluation metric designed for this purpose.

We find that parsers indeed have different responses
to ungrammatical sentences of various types. We
recommend practitioners to examine the range of
ungrammaticality in their input data (whether it is
more like tweets or has grammatical errors like ESL
writings). If the input data contains text more simi-
lar to tweets (e.g. containing URLs and emoticons),
Malt or Turbo parser may be good choices. If the
input data is more similar to the machine translation
outputs; SyntaxNet, Malt, Tweebo and Turbo parser
are good choices.

Our results also suggest that some preprocess-
ing steps may be necessary for ungrammatical sen-
tences, such as handling redundant and missing
word errors. While there are some previous works
on fixing the unnecessary words in the literature
(Xue and Hwa, 2014), it is worthy to develop better
NLP methods for catching and mitigating the miss-
ing word errors prior to parsing. Finally, this work
corroborate the importance of building grammar er-
ror correction systems for handling closed-class er-

1772

rors such as preposition errors.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation Award #1550635. We would like
to thank the anonymous reviewers and the Pitt NLP
group for their helpful comments.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. arXiv preprint
arXiv:1603.06042.

Johnny Bigert, Jonas Sjöbergh, Ola Knutsson, and Mag-
nus Sahlgren. 2005. Unsupervised evaluation of
parser robustness. In Computational Linguistics and
Intelligent Text Processing, pages 142–154.

E. Black, S. Abney, S. Flickenger, C. Gdaniec, C. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A procedure
for quantitatively comparing the syntactic coverage
of English grammars. In Proceedings of the DARPA
Speech and Natural Language Workshop, pages 306–
311.

Bernd Bohnet. 2010. Very high accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings of
the 23rd International Conference on Computational
Linguistics, pages 89–97.

Aoife Cahill. 2015. Parsing learner text: to shoehorn or
not to shoehorn. In Proceedings of LAW IX - The 9th
Linguistic Annotation Workshop, page 144.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750.

Jinho D Choi, Joel Tetreault, and Amanda Stent. 2015.
It depends: Dependency parser comparison using a
web-based evaluation tool. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics, pages 26–31.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Joachim Daiber and Rob van der Goot. 2016. The de-
noised web treebank: Evaluating dependency parsing
under noisy input conditions. In LREC.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D Manning, et al. 2006. Generating typed depen-
dency parses from phrase structure parses. In LREC,
number 2006, pages 449–454.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner,
Joseph Le Roux, Stephen Hogan, Joakim Nivre,
Deirdre Hogan, Josef Van Genabith, et al. 2011. #
hardtoparse: POS tagging and parsing the twitterverse.
In proceedings of the Workshop On Analyzing Micro-
text (AAAI 2011), pages 20–25.

Jennifer Foster. 2004. Parsing ungrammatical input: an
evaluation procedure. In LREC.

Jennifer Foster. 2007. Treebanks gone bad. Interna-
tional Journal of Document Analysis and Recognition,
10(3-4):129–145.

Jennifer Foster. 2010. “cba to check the spelling” in-
vestigating parser performance on discussion forum
posts. In The Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 381–384.

Jeroen Geertzen, Theodora Alexopoulou, and Anna Ko-
rhonen. 2013. Automatic linguistic annotation of
large scale l2 databases: the EF-Cambridge open lan-
guage database (EFCamDat). In Proceedings of the
31st Second Language Research Forum.

Daniel Gildea. 2001. Corpus variation and parser perfor-
mance. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
167–202.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A Smith. 2011. Part-of-speech tagging for Twit-
ter: Annotation, features, and experiments. In ACL-
HLT, pages 42–47.

Tuomo Kakkonen. 2007. Robustness evaluation of two
CCG, a PCFG and a link grammar parsers. Proceed-
ings of the 3rd Language & Technology Conference:
Human Language Technologies as a Challenge for
Computer Science and Linguistics.

Lingpeng Kong and Noah A Smith. 2014. An empirical
comparison of parsing methods for stanford dependen-
cies. arXiv preprint arXiv:1404.4314.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A Smith. 2014. A dependency parser for
tweets. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing.

Jonathan K Kummerfeld, David Hall, James R Curran,
and Dan Klein. 2012. Parser showdown at the wall
street corral: An empirical investigation of error types
in parser output. In Proceedings of the 2012 Joint

1773

Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 1048–1059.

André FT Martins, Miguel Almeida, and Noah A Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics, pages 617–622.

David McClosky, Eugene Charniak, and Mark Johnson.
2010. Automatic domain adaptation for parsing. In
The Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 28–36.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Computational
Linguistics, 37(1):197–230.

Ryan T McDonald and Fernando CN Pereira. 2006. On-
line learning of approximate dependency parsing algo-
rithms. In EACL.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. Maltparser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(02):95–135.

Niels Ott and Ramon Ziai. 2010. Evaluating depen-
dency parsing performance on german learner lan-
guage. Proceedings of the Ninth Workshop on Tree-
banks and Linguistic Theories (TLT-9), 9:175–186.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and
Hiyan Alshawi. 2010. Uptraining for accurate deter-
ministic question parsing. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 705–713.

Marion Potet, Emmanuelle Esperança-Rodier, Laurent
Besacier, and Hervé Blanchon. 2012. Collection of
a large database of French-English SMT output cor-
rections. In LREC, pages 4043–4048.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2):257–287.

Marwa Ragheb and Markus Dickinson. 2012. Defining
syntax for learner language annotation. In COLING
(Posters), pages 965–974.

Mohammad Sadegh Rasooli and Joel Tetreault. 2015.
Yara parser: A fast and accurate dependency parser.
arXiv preprint arXiv:1503.06733.

Brian Roark, Mary Harper, Eugene Charniak, Bonnie
Dorr, Mark Johnson, Jeremy G Kahn, Yang Liu, Mari
Ostendorf, John Hale, Anna Krasnyanskaya, et al.
2006. Sparseval: Evaluation metrics for parsing
speech. In LREC.

Kristina Toutanova, Dan Klein, Christopher D Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In NAACL,
pages 173–180.

Huichao Xue and Rebecca Hwa. 2014. Redundancy de-
tection in esl writings. In EACL, pages 683–691.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics, pages 180–189.

1774

