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Abstract

We introduce two first-order graph-based de-
pendency parsers achieving a new state of the
art. The first is a consensus parser built from
an ensemble of independently trained greedy
LSTM transition-based parsers with different
random initializations. We cast this approach
as minimum Bayes risk decoding (under the
Hamming cost) and argue that weaker con-
sensus within the ensemble is a useful signal
of difficulty or ambiguity. The second parser
is a “distillation” of the ensemble into a sin-
gle model. We train the distillation parser
using a structured hinge loss objective with
a novel cost that incorporates ensemble un-
certainty estimates for each possible attach-
ment, thereby avoiding the intractable cross-
entropy computations required by applying
standard distillation objectives to problems
with structured outputs. The first-order distil-
lation parser matches or surpasses the state of
the art on English, Chinese, and German.

1 Introduction

Neural network dependency parsers achieve state of
the art performance (Dyer et al., 2015; Weiss et
al., 2015; Andor et al., 2016), but training them in-
volves gradient descent on non-convex objectives,
which is unstable with respect to initial parameter
values. For some tasks, an ensemble of neural net-
works from different random initializations has been
found to improve performance over individual mod-
els (Sutskever et al., 2014; Vinyals et al., 2015, in-
ter alia). In §3, we apply this idea to build a first-
order graph-based (FOG) ensemble parser (Sagae

and Lavie, 2006) that seeks consensus among 20
randomly-initialized stack LSTM parsers (Dyer et
al., 2015), achieving nearly the best-reported per-
formance on the standard Penn Treebank Stanford
dependencies task (94.51 UAS, 92.70 LAS).

We give a probabilistic interpretation to the en-
semble parser (with a minor modification), viewing
it as an instance of minimum Bayes risk inference.
We propose that disagreements among the ensem-
ble’s members may be taken as a signal that an at-
tachment decision is difficult or ambiguous.

Ensemble parsing is not a practical solution, how-
ever, since an ensemble of N parsers requires N
times as much computation, plus the runtime of find-
ing consensus. We address this issue in §5 by distill-
ing the ensemble into a single FOG parser with dis-
criminative training by defining a new cost function,
inspired by the notion of “soft targets” (Hinton et al.,
2015). The essential idea is to derive the cost of each
possible attachment from the ensemble’s division of
votes, and use this cost in discriminative learning.
The application of distilliation to structured predic-
tion is, to our knowledge, new, as is the idea of em-
pirically estimating cost functions.

The distilled model performs almost as well as
the ensemble consensus and much better than (i)
a strong LSTM FOG parser trained using the con-
ventional Hamming cost function, (ii) recently pub-
lished strong LSTM FOG parsers (Kiperwasser and
Goldberg, 2016; Wang and Chang, 2016), and (iii)
many higher-order graph-based parsers (Koo and
Collins, 2010; Martins et al., 2013; Le and Zuidema,
2014). It represents a new state of the art for graph-
based dependency parsing for English, Chinese, and
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German. The code to reproduce our results is pub-
licly available.1

2 Notation and Definitions

Let x = 〈x1, . . . , xn〉 denote an n-length sentence.
A dependency parse for x, denoted y, is a set of
tuples (h,m, `), where h is the index of a head, m
the index of a modifier, and ` a dependency label
(or relation type). Most dependency parsers are con-
strained to return y that form a directed tree.

A first-order graph-based (FOG; also known as
“arc-factored”) dependency parser exactly solves

ŷ(x) = arg max
y∈T (x)

∑

(h,m)∈y
s(h,m,x)

︸ ︷︷ ︸
S(y,x)

, (1)

where T (x) is the set of directed trees over x, and
s is a local scoring function that considers only a
single dependency arc at a time. (We suppress de-
pendency labels; there are various ways to incorpo-
rate them, discussed later.) To define s, McDonald
et al. (2005a) used hand-engineered features of the
surrounding and in-between context of xh and xm;
more recently, Kiperwasser and Goldberg (2016)
used a bidirectional LSTM followed by a single hid-
den layer with non-linearity.

The exact solution to Eq. 1 can be found using
a minimum (directed) spanning tree algorithm (Mc-
Donald et al., 2005b) or, under a projectivity con-
straint, a dynamic programming algorithm (Eisner,
1996), in O(n2) or O(n3) runtime, respectively. We
refer to parsing with a minimum spanning tree algo-
rithm as MST parsing.

An alternative that runs in linear time is
transition-based parsing, which recasts parsing as
a sequence of actions that manipulate auxiliary data
structures to incrementally build a parse tree (Nivre,
2003). Such parsers can return a solution in a faster
O(n) asymptotic runtime. Unlike FOG parsers,
transition-based parsers allow the use of scoring
functions with history-based features, so that attach-
ment decisions can interact more freely; the best per-
forming parser at the time of this writing employ
neural networks (Andor et al., 2016).

1https://github.com/adhigunasurya/
distillation_parser.git

Let hy(m) denote the parent of xm in y (using a
special null symbol when m is the root of the tree),
and hy′(m) denotes the parent of xm in the pre-
dicted tree y′. Given two dependency parses of the
same sentence, y and y′, the Hamming cost is

CH(y,y′) =
n∑

m=1

{
0 if hy(m) = hy′(m)
1 otherwise

This cost underlies the standard dependency pars-
ing evaluation scores (unlabeled and labeled attach-
ment scores, henceforth UAS and LAS). More gen-
erally, a cost functionC maps pairs of parses for the
same sentence to non-negative values interpreted as
the cost of mistaking one for the other, and a first-
order cost function (FOC) is one that decomposes
by attachments, like the Hamming cost.

Given a cost function C and a probabilistic model
that defines p(y | x), minimum Bayes risk (MBR)
decoding is defined by

ŷMBR(x) = arg min
y∈T (x)

∑

y′∈T (x)
p(y′ | x) · C(y,y′)

= arg min
y∈T (x)

Ep(Y |x)[C(y,Y )]. (2)

Under the Hamming cost, MBR parsing equates al-
gorithmically to FOG parsing with s(h,m,x) =
p((h,m) ∈ Y | x), the posterior marginal of the
attachment under p. This is shown by linearity of
expectation; see also Titov and Henderson (2006).

Apart from MBR decoding, cost functions are
also used for discriminative training of a parser. For
example, suppose we seek to estimate the param-
eters θ of scoring function Sθ. One approach is
to minimize the structured hinge loss of a training
dataset D with respect to θ:

min
θ

∑

(x,y)∈D
[− Sθ(y,x)

+ max
y′∈T (x)

(
Sθ(y

′,x) + C(y′,y)
)
]

(3)

Intuitively, this amounts to finding parameters that
separate the model score of the correct parse from
any wrong parse by a distance proportional to the
cost of the wrong parse. With regularization, this is
equivalent to the structured support vector machine
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(Taskar et al., 2005; Tsochantaridis et al., 2005),
and if Sθ is (sub)differentiable, many algorithms
are available. Variants have been used extensively
in training graph-based parsers (McDonald et al.,
2005b; Martins et al., 2009), which typically make
use of Hamming cost, so that the inner max can be
solved efficiently using FOG parsing with a slightly
revised local scoring function:

s′(h,m,x) = s(h,m,x) +

{
0 if (h,m) ∈ y
1 otherwise

(4)
Plugging this into Eq. 1 is known as cost-
augmented parsing.

3 Consensus and Minimum Bayes Risk

Despite the recent success of neural network depen-
dency parsers, most prior works exclusively report
single-model performance. Ensembling neural net-
work models trained from different random start-
ing points is a standard technique in a variety of
problems, such as machine translation (Sutskever
et al., 2014) and constituency parsing (Vinyals et
al., 2015). We aim to investigate the benefit of en-
sembling independently trained neural network de-
pendency parsers by applying the parser ensembling
method of Sagae and Lavie (2006) to a collection of
N strong neural network base parsers.

Here, each base parser is an instance of the
greedy, transition-based parser of Dyer et al. (2015),
known as the stack LSTM parser, trained from a
different random initial estimate. Given a sen-
tence x, the consensus FOG parser (Eq. 1) defines
score s(h,m,x) as the number of base parsers that
include the attachment (h,m), which we denote
votes(h,m).2 An example of this scoring function
with an ensemble of 20 models is shown in Figure 1
We assign to dependency (h,m) the label most fre-
quently selected by the base parsers that attach m to
h.

Next, note that if we let s(h,m,x) =
votes(h,m)/N , this has no effect on the parser (we
have only scaled by a constant factor). We can there-
fore view s as a posterior marginal, and the ensemble
parser as an MBR parser (Eq. 2).

2An alternative to building an ensemble of stack LSTM
parsers in this way would be to average the softmax decisions
at each timestep (transition), similar to Vinyals et al. (2015).

John saw the woman with a telescope

19

1

Figure 1: Our ensemble’s votes (20 models) on an am-
biguous PP attachment of with. The ensemble is nearly
but not perfectly unanimous in selecting saw as the head.

Model UAS LAS UEM
Andor et al. (2016) 94.61 92.79 -
N = 1 (stack LSTM) 93.10 90.90 47.60
ensemble, N = 5, MST 93.91 91.94 50.12
ensemble, N = 10, MST 94.34 92.47 52.07
ensemble, N = 15, MST 94.40 92.57 51.86
ensemble, N = 20, MST 94.51 92.70 52.44

Table 1: PTB-SD task: ensembles improve over a strong
greedy baseline. UEM indicates unlabeled exact match.

Experiment. We consider this approach on the
Stanford dependencies version 3.3.0 (De Marneffe
and Manning, 2008) Penn Treebank task. As noted,
the base parsers instantiate the greedy stack LSTM
parser (Dyer et al., 2015).3

Table 1 shows that ensembles, even with small
N , strongly outperform a single stack LSTM parser.
Our ensembles of greedy, locally normalized parsers
perform comparably to the best previously reported,
due to Andor et al. (2016), which uses a beam (width
32) for training and decoding.

4 What is Ensemble Uncertainty?

While previous works have already demonstrated
the merit of ensembling in dependency parsing
(Sagae and Lavie, 2006; Surdeanu and Manning,
2010), usually with diverse base parsers, we con-
sider whether the posterior marginals estimated by
p̂((h,m) ∈ Y | x) = votes(h,m)/N can be in-
terpreted. We conjecture that disagreement among
base parsers about where to attach xm (i.e., uncer-
tainty in the posterior) is a sign of difficulty or am-

3We use the standard data split (02–21 for training, 22
for development, 23 for test), automatically predicted part-
of-speech tags, same pretrained word embedding as Dyer et
al. (2015), and recommended hyperparameters; https://
github.com/clab/lstm-parser, each with a different
random initialization; this differs from past work on ensembles,
which often uses different base model architectures.
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Sentence: It will go for work ranging from refinery
modification to changes in the distribution system,
including the way service stations pump fuel into
cars.

xh posterior new cost Hamming
go 0.143 0.143 1

work 0.095 0.191 1
modification 0.190 0.096 1

changes 0.286 0.000 0
system 0.095 0.191 1
pump 0.190 0.096 1

stations 0.000 0.286 1

Table 2: An ambiguous sentence from the training set and
the posteriors4 of various possible parents for including.
The last two columns are, respectively, the contributions
to the distillation cost CD (explained in §5.1, Eq. 5) and
the standard Hamming cost CH . The most probable head
under the ensemble is changes, which is also the correct
answer.

biguity. If this is true, then the ensemble provides
information about which confusions are more or less
reasonable—information we will exploit in our dis-
tilled parser (§5).

A complete linguistic study is out of scope here;
instead, we provide a motivating example before
empirically validating our conjecture. Table 2 shows
an example where there is considerable disagree-
ment among base parsers over the attachment of a
word (including). We invite the reader to attempt to
select the correct attachment and gauge the difficulty
of doing so, before reading on.

Regardless of whether our intuition that this is an
inherently difficult and perhaps ambiguous case is
correct, it is uncontroversial to say that the words
in the sentence not listed, which received zero votes
(e.g., both instances of the), are obviously implausi-
ble attachments.

Our next idea is to transform ensemble uncer-
tainty into a new estimate of cost—a replacement

4In §3, we used 20 models. Since those 20 models were
trained on the whole training set, they cannot be used to obtain
the uncertainty estimates on the training set, where the example
sentence in Table 2 comes from. Therefore we trained a new
ensemble of 21 models from scratch with five-way jackknifing.
The same jackknifing setting is used in the distillation parser
(§6).

for the Hamming cost—and use it in discriminative
training of a single FOG parser. This allows us to
distill what has been learned by the ensemble into a
single model.

5 Distilling the Ensemble

Despite its state of the art performance, our ensem-
ble requires N parsing calls to decode each sen-
tence. To reduce the computational cost, we intro-
duce a method for “distilling” the ensemble’s knowl-
edge into a single parser, making use of a novel cost
function to communicate this knowledge from the
ensemble to the distilled model. While models that
combine the outputs of other parsing models have
been proposed before (Martins et al., 2008; Nivre
and McDonald, 2008; Zhang and Clark, 2008, in-
ter alia), these works incorporated the scores or out-
puts of the baseline parsers as features and as such
require running the first-stage models at test-time.
Creating a cost function from a data analysis proce-
dure is, to our knowledge, a new idea.

The idea is attractive because cost functions are
model-agnostic; they can be used with any parser
amenable to discriminative training. Further, only
the training procedure changes; parsing at test time
does not require consulting the ensemble at all,
avoiding the costly application of the N parsers to
new data, unlike model combination techniques like
stacking and beam search.

Distilling an ensemble of classifiers into one sim-
pler classifer that behaves similarly is due to Bucilǎ
et al. (2006) and Hinton et al. (2015); they were
likewise motivated by a desire to create a simpler
model that was cheaper to run at test time. In their
work, the ensemble provides a probability distribu-
tion over labels for each input, and this predicted
distribution serves as the training target for the dis-
tilled model (a sum of two cross entropies objective
is used, one targeting the empirical training distribu-
tion and the other targeting the ensemble’s posterior
distribution). This can be contrasted with the super-
vision provided by the training data alone, which
conventionally provides a single correct label for
each instance. These are respectively called “soft”
and “hard” targets.

We propose a novel adaptation of the soft target
idea to the structured output case. Since a sentence
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Sentence: John saw the woman with a telescope

xh soft hard
John 0.0 0
saw 0.95 1
the 0.0 0

woman 0.05 0
a 0.0 0

telescope 0.0 0

Table 3: Example of soft targets (taken from our 20-
model ensemble’s uncertainty on the sentence) and hard
targets (taken from the gold standard) for possible parents
of with. The soft target corresponds with the posterior
(second column) in Table 2, but the hard target differs
from the Hamming cost (last column of Table 2) since
the hard target assigns a value of 1 to the correct answer
and 0 to all others (the reverse is true for Hamming cost).

has an exponential (in its length) number of parses,
representing the posterior distribution over parses
predicted by the ensemble is nontrivial. We solve
this problem by taking a single parse from each
model, representing the N -sized ensemble’s parse
distribution using N samples.

Second, rather than considering uncertainty at the
level of complete parse trees (which would be anal-
ogous to the classification case) or larger structures,
we instead consider uncertainty about individual at-
tachments, and seek to “soften” the attachment tar-
gets used in training the parser. An illustration
for the prepositional phrase attachment ambiguity in
Fig. 1, taken from the ensemble output for the sen-
tence, is shown in Table 3. Soft targets allow us to
encode the notion that mistaking woman as the par-
ent of with is less bad than attaching with to John
or telescope. Hard targets alone do not capture this
information.

5.1 Distillation Cost Function

The natural place to exploit this additional informa-
tion when training a parser is in the cost function.
When incorporated into discriminative training, the
Hamming cost encodes hard targets: the correct at-
tachment should receive a higher score than all in-
correct ones, with the same margin. Our distillation
cost function aims to reduce the cost of decisions
that—based on the ensemble uncertainty—appear to

be more difficult, or where there may be multiple
plausible attachments.

Let π(h,m) =

1− p̂((h,m) ∈ Y | x) = N − votes(h,m)

N
.

Our new cost function is defined by CD(y,y
′) =

∑n
m=1max

{
0, π(hy′(m),m)− π(hy(m),m)

}

=
∑n

m=1max
{
0, p̂(hy(m),m)− p̂(hy′(m),m)

}
.

(5)

Recall that y denotes the correct parse, according
to the training data, and y′ is a candidate parse.

This function has several attractive properties:

1. When a word xm has more than one plausi-
ble (according to the ensemble) but incorrect
(according to the annotations) attachment, each
one has a diminished cost (relative to Hamming
cost and all implausible attachments).

2. The correct attachment (according to the gold-
standard training data) always has zero cost
since hy(m) = hy′(m) and Eq. 5 cancels out.

3. When the ensemble is confident, cost for its
choice(s) is lower than it would be under Ham-
ming cost—even when the ensemble is wrong.
This means that we are largely training the dis-
tilled parser to simulate the ensemble, includ-
ing mistakes and correct predictions. This en-
courages the model to replicate the state of the
art ensemble performance.

4. Further, when the ensemble is perfectly con-
fident and correct, every incorrect attachment
has a cost of 1, just as in Hamming cost.

5. The cost of any attachment is bounded above
by the proportion of votes assigned to the cor-
rect attachment.

One way to understand this cost function is to
imagine that it gives the parser more ways to achieve
a zero-cost5 attachment. The first is to correctly at-
tach a word to its correct parent. The second is
to predict a parent that the ensemble prefers to the
correct parent, i.e., π(hy′(m),m) < π(hy(m),m).
Any other decision will incur a non-zero cost that is

5It is important to note the difference between cost (Eq. 5)
and loss (Eq. 3).
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proportional to the implausibility of the attachment,
according to the ensemble. Hence the model is su-
pervised both by the hard targets in the training data
annotations and the soft targets from the ensemble.

While it may seem counter-intuitive to place zero
cost on an incorrect attachment, recall that the cost
is merely a margin that must separate the scores
of parses containing correct and incorrect arcs. In
contrast, the loss (in our case, the structured hinge
loss) is the “penalty” the learner tries to minimize
while training the graph-based parser, which de-
pends on both the cost and model score as defined
in Equation 3. When an incorrect arc is preferred
by the ensemble over the gold arc (hence assigned a
cost/margin of 0), the model will still incur a loss
if s(hy(m),m,x) < s(hy′(m),m,x). In other
words, the score of any incorrect arc (including
those strongly preferred by the ensemble) cannot be
higher than the score of the gold arc.

The learner only incurs 0 loss if
s(hy(m),m,x) ≥ s(hy′(m),m,x). This means
that the gold score and the predicted score can have
a margin of 0 (i.e., have the same score and incur no
loss) when the ensemble is highly confident of that
prediction, but the score of the correct parse cannot
be lower regardless of how confident the ensemble
is (hence the objective does not encourage incorrect
trees at the expense of gold ones).

In the example in Table 2, we show the (additive)
contribution to the distillation cost by each attach-
ment decision (column labeled “new cost”). Note
that more plausible attachments according to the en-
semble have a lower cost than less plausible ones
(e.g., the cost for modification is less than system,
though both are incorrect). While in the last line sta-
tions received no votes in the ensemble (implausible
attachment), its contribution to the cost is bounded
by the proportion of votes for correct attachment.
The intuition is that, when the ensemble is not cer-
tain of the correct answer, it should not assign a large
cost to implausible attachments. In contrast, Ham-
ming cost would assign a cost of 1 (column labeled
“Hamming”) in all incorrect cases.

5.2 Distilled Parser
Our distilled parser is trained discriminatively with
the structured hinge loss (Eq. 3). This is a natural
choice because it makes the cost function explicit

and central to learning.6 Further, because our en-
semble’s posterior gives us information about each
attachment individually, the cost function we con-
struct can be first-order, which simplifies training
with exact inference.

This approach to training a model is well-
studied for a FOG parser, but not for a transition-
based parser, which is comprised of a collection
of classifiers trained to choose good sequences of
transitions—not to score whole trees for good at-
tachment accuracy. Transition-based approaches are
therefore unsuitable for our proposed distillation
cost function, even though they are asymptotically
faster. We proceed with a FOG parser (with Eis-
ner’s algorithm for English and Chinese, and MST
for German since it contains a considerable number
of non-projective trees) as the distilled model.

Concretely, we use a bidirectional LSTM fol-
lowed by a hidden layer of non-linearity to calculate
the scoring function s(h,m,x), following Kiper-
wasser and Goldberg (2016) with minor modifica-
tions. The bidirectional LSTM maps each word xi
to a vector x̄i that embeds the word in context (i.e.,
x1:i−1 and xi+1:n). Local attachment scores are
given by:

s(h,m,x) = v> tanh (W[x̄h; x̄m] + b) (6)

where the model parameters are v, W, and b, plus
the bidirectional LSTM parameters. We will refer to
this parsing model as neural FOG.

Our model architecture is nearly identical to that
of Kiperwasser and Goldberg (2016), with two pri-
mary differences. The first difference is that we fix
the pretrained word embeddings and compose them
with learned embeddings and POS tag embeddings
(Dyer et al., 2015), allowing the model to simulta-
neously leverage pretrained vectors and learn a task-
specific representation.7 Unlike Kiperwasser and
Goldberg (2016), we did not observe any degrada-
tion by incorporating the pretrained vectors. Second,

6Alternatives that do not use cost functions include proba-
bilistic parsers, whether locally normalized like the stack LSTM
parser used within our ensemble, or globally normalized, as in
Andor et al. (2016); cost functions can be incorporated in such
cases with minimum risk training (Smith and Eisner, 2006) or
softmax margin (Gimpel and Smith, 2010).

7To our understanding, Kiperwasser and Goldberg (2016)
initialized with pretrained vectors and backpropagated during
training.
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we apply a per-epoch learning rate decay of 0.05 to
the Adam optimizer. While the Adam optimizer au-
tomatically adjusts the global learning rate accord-
ing to past gradient magnitudes, we find that this ad-
ditional per-epoch decay consistently improves per-
formance across all settings and languages.

6 Experiments

We ran experiments on the English PTB-SD version
3.3.0, Penn Chinese Treebank (Xue et al., 2002), and
German CoNLL 2009 (Hajič et al., 2009) tasks.

Experimental settings. We used the standard
splits for all languages. Like Chen and Manning
(2014) and Dyer et al. (2015), we use predicted tags
with the Stanford tagger (Toutanova et al., 2003)
for English and gold tags for Chinese. For German
we use the predicted tags provided by the CoNLL
2009 shared task organizers. All models were aug-
mented with pretrained structured-skipgram (Ling et
al., 2015) embeddings; for English we used the Gi-
gaword corpus and 100 dimensions, for Chinese Gi-
gaword and 80, and for German WMT 2010 mono-
lingual data and 64.

Hyperparameters. The hyperparameters for
neural FOG are summarized in Table 4. For the
Adam optimizer we use the default settings in the
CNN neural network library.8 Since the ensemble
is used to obtain the uncertainty on the training set,
it is imperative that the stack LSTMs do not overfit
the training set. To address this issue, we performed
five-way jackknifing of the training data for each
stack LSTM model to obtain the training data uncer-
tainty under the ensemble. To obtain the ensemble
uncertainty on each language, we use 21 base mod-
els for English (see footnote 4), 17 for Chinese, and
11 for German.

Speed. One potential drawback of using a
quadratic or cubic time parser to distill an ensemble
of linear-time transition-based models is speed. Our
FOG model is implemented using the same CNN li-
brary as the stack LSTM transition-based parser. On
the same single-thread CPU hardware, the distilled
MST parser9 parses 20 sentences per second with-
out any pruning, while a single stack LSTM model

8https://github.com/clab/cnn.git
9The runtime of the Hamming-cost bidirectional LSTM

FOG parser is the same as the distilled parser.

Bi-LSTM dimension 100
Bi-LSTM layers 2
POS tag embedding 12
Learned word embedding 32
Hidden Layer Units 100
Labeler Hiden Layer Units 100
Optimizer Adam
Learning rate decay 0.05

Table 4: Hyperparameters for the distilled FOG parser.
Both the model architecture and the hyperparameters are
nearly identical with Kiperwasser and Goldberg (2016).
We apply a per-epoch learning rate decay to the Adam op-
timizer, which consistently improves performance across
all datasets.

is only three times faster at 60 sentences per second.
Running an ensemble of 20 stack LSTMs is at least
20 times slower (without multi-threading), not in-
cluding consensus parsing. In the end, the distilled
parser is more than ten times faster than the ensem-
ble pipeline.

Accuracy. All scores are shown in Table 5. First,
consider the neural FOG parser trained with Ham-
ming cost (CH in the second-to-last row). This is a
very strong benchmark, outperforming many higher-
order graph-based and neural network models on all
three datasets. Nonetheless, training the same model
with distillation cost gives consistent improvements
for all languages. For English, we see that this
model comes close to the slower ensemble it was
trained to simulate. For Chinese, it achieves the
best published scores, for German the best published
UAS scores, and just after Bohnet and Nivre (2012)
for LAS.

Effects of Pre-trained Word Embedding. As
an ablation study, we ran experiments on English
without pre-trained word embedding, both with the
Hamming and distillation costs. The model trained
with Hamming cost achieved 93.1 UAS and 90.9
LAS, compared to 93.6 UAS and 91.1 LAS for
the model with distillation cost. This result further
showcases the consistent improvements from using
the distillation cost across different settings and lan-
guages.

We conclude that “soft targets” derived from en-
semble uncertainty offer useful guidance, through
the distillation cost function and discriminative
training of a graph-based parser. Here we consid-
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System Method P? PTB-SD CTB German
CoNLL’09

UAS LAS UAS LAS UAS LAS
Zhang and Nivre (2011) Transition (beam) - - 86.0 84.4 - -
Bohnet and Nivre (2012)† Transition (beam) - - 87.3 85.9 91.37 89.38
Chen and Manning (2014) Transition (greedy) X 91.8 89.6 83.9 82.4 - -
Dyer et al. (2015) Transition (greedy) X 93.1 90.9 87.2 85.7 - -
Weiss et al. (2015) Transition (beam) X 94.0 92.0 - - - -
Yazdani and Henderson (2015) Transition (beam) - - - - 89.6 86.0
Ballesteros et al. (2015) Transition (greedy) 91.63 89.44 85.30 83.72 88.83 86.10
Ballesteros et al. (2016) Transition (greedy) X 93.56 91.42 87.65 86.21 - -
Kiperwasser and Goldberg (2016) Transition (greedy) X 93.9 91.9 87.6 86.1 - -
Andor et al. (2016) Transition (beam) X 94.61 92.79 - - 90.91 89.15
Ma and Zhao (2012) Graph (4th order) - - 87.74 - - -
Martins et al. (2013) Graph (3rd order) 93.1 - - - - -
Le and Zuidema (2014) Reranking/blend X 93.8 91.5 - - - -
Zhu et al. (2015) Reranking/blend X - - 85.7 - - -
Kiperwasser and Goldberg (2016) Graph (1st order) 93.1 91.0 86.6 85.1 - -
Wang and Chang (2016) Graph (1st order) X 94.08 91.82 87.55 86.23 - -
This work: ensemble, N = 20, MST Transition (greedy) X 94.51 92.70 89.80 88.56 91.86 89.98
This work: neural FOG, CH Graph (1st order) X 93.76 91.60 87.32 85.82 91.22 88.82
This work: neural FOG, CD (distilled) Graph (1st order) X 94.26 92.06 88.87 87.30 91.60 89.24

Table 5: Dependency parsing performance on English, Chinese, and German tasks. The “P?” column indicates the use
of pretrained word embeddings. Reranking/blend indicates that the reranker score is interpolated with the base model’s
score. Note that previous works might use different predicted tags for English. We report accuracy without punctuation
for English and Chinese, and with punctuation for German, using the standard evaluation script in each case. We only
consider systems that do not use additional training data. The best overall results are indicated with bold (this was
achieved by the ensemble of greedy stack LSTMs in Chinese and German), while the best non-ensemble model is
denoted with an underline. The † sign indicates the use of predicted tags for Chinese in the original publication,
although we report accuracy using gold Chinese tags based on private correspondence with the authors.

ered a FOG parser, though future work might inves-
tigate any parser amenable to training to minimize a
cost-aware loss like the structured hinge.

7 Related Work

Our work on ensembling dependency parsers is
based on Sagae and Lavie (2006) and Surdeanu and
Manning (2010); an additional contribution of this
work is to show that the normalized ensemble votes
correspond to MBR parsing. Petrov (2010) pro-
posed a similar model combination with random ini-
tializations for phrase-structure parsing, using prod-
ucts of constituent marginals. The local optima in
his base model’s training objective arise from latent
variables instead of neural networks (in our case).

Model distillation was proposed by Bucilǎ et al.
(2006), who used a single neural network to simu-
late a large ensemble of classifiers. More recently,
Ba and Caruana (2014) showed that a single shal-

low neural network can closely replicate the per-
formance of an ensemble of deep neural networks
in phoneme recognition and object detection. Our
work is closer to Hinton et al. (2015), in the sense
that we do not simply compress the ensemble and
hit the “soft target,” but also the “hard target” at the
same time10. These previous works only used model
compression and distillation for classification; we
extend the work to a structured prediction problem
(dependency parsing).

Täckström et al. (2013) similarly used an ensem-
ble of other parsers to guide the prediction of a seed
model, though in a different context of “ambiguity-
aware” ensemble training to re-lexicalize a trans-
fer model for a target language. We similarly use
an ensemble of models as a supervision for a sin-

10Our cost is zero when the correct arc is predicted, regard-
less of what the soft target thinks, something a compression
model without gold supervision cannot do.
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gle model. By incorporating the ensemble uncer-
tainty estimates in the cost function, our approach
is cheaper, not requiring any marginalization during
training. An additional difference is that we learn
from the gold labels (“hard targets”) rather than only
ensemble estimates on unlabeled data.

Kim and Rush (2016) proposed a distillation
model at the sequence level, with application in
sequence-to-sequence neural machine translation.
There are two primary differences with this work.
First, we use a global model to distill the ensemble,
instead of a sequential one. Second, Kim and Rush
(2016) aim to distill a larger model into a smaller
one, while we propose to distill an ensemble instead
of a single model.

8 Conclusions

We demonstrate that an ensemble of 20 greedy stack
LSTMs (Dyer et al., 2015) can achieve state of the
art accuracy on English dependency parsing. This
approach corresponds to minimum Bayes risk de-
coding, and we conjecture that the arc attachment
posterior marginals quantify a notion of uncertainty
that may indicate difficulty or ambiguity. Since run-
ning an ensemble is computationally expensive, we
proposed discriminative training of a graph-based
model with a novel cost function that distills the en-
semble uncertainty. Deriving a cost function from a
statistical model and extending distillation to struc-
tured prediction are new contributions. This dis-
tilled model, trained to simulate the slower ensemble
parser, improves over the state of the art on Chinese
and German.
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