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Abstract

Neural Machine Translation (NMT) based on
the encoder-decoder architecture has recently
become a new paradigm. Researchers have
proven that the target-side monolingual data
can greatly enhance the decoder model of
NMT. However, the source-side monolingual
data is not fully explored although it should
be useful to strengthen the encoder model of
NMT, especially when the parallel corpus is
far from sufficient. In this paper, we propose
two approaches to make full use of the source-
side monolingual data in NMT. The first ap-
proach employs the self-learning algorithm to
generate the synthetic large-scale parallel data
for NMT training. The second approach ap-
plies the multi-task learning framework using
two NMTs to predict the translation and the
reordered source-side monolingual sentences
simultaneously. The extensive experiments
demonstrate that the proposed methods ob-
tain significant improvements over the strong
attention-based NMT.

1 Introduction

Neural Machine Translation (NMT) following the
encoder-decoder architecture proposed by (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014) has
become the novel paradigm and obtained state-of-
the-art translation quality for several language pairs,
such as English-to-French and English-to-German
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015b; Sennrich et al., 2015). This end-
to-end NMT typically consists of two recurrent neu-
ral networks. The encoder network maps the source

sentence of variable length into the context vector
representation; and the decoder network generates
the target translation word by word starting from the
context vector.

Currently, most NMT methods utilize only the
sentence aligned parallel corpus for model train-
ing, which limits the capacity of the model. Re-
cently, inspired by the successful application of tar-
get monolingual data in conventional statistical ma-
chine translation (SMT) (Koehn et al., 2007; Chi-
ang, 2007), Gulcehre et al. (2015) and Sennrich
et al. (2015) attempt to enhance the decoder net-
work model of NMT by incorporating the target-
side monolingual data so as to boost the transla-
tion fluency. They report promising improvements
by using the target-side monolingual data. In con-
trast, the source-side monolingual data is not fully
explored. Luong et al. (2015a) adopt a simple
autoencoder or skip-thought method (Kiros et al.,
2015) to exploit the source-side monolingual data,
but no significant BLEU gains are reported. Note
that, in parallel to our efforts, Cheng et al. (2016b)
have explored the usage of both source and target
monolingual data using a similar semi-supervised
reconstruction method, in which two NMTs are em-
ployed. One translates the source-side monolingual
data into target translations, and the other recon-
structs the source-side monolingual data from the
target translations.

In this work, we investigate the usage of the
source-side large-scale monolingual data in NMT
and aim at greatly enhancing its encoder network so
that we can obtain high quality context vector rep-
resentations. To achieve this goal, we propose two
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approaches. Inspired by (Ueffing et al., 2007; Wu
et al., 2008) handling source-side monolingual cor-
pus in SMT and (Sennrich et al., 2015) exploiting
target-side monolingual data in NMT, the first ap-
proach adopts the self-learning algorithm to gener-
ate adequate synthetic parallel data for NMT train-
ing. In this method, we first build the baseline ma-
chine translation system with the available aligned
sentence pairs, and then obtain more synthetic par-
allel data by translating the source-side monolingual
sentences with the baseline system.

The proposed second approach applies the multi-
task learning framework to predict the target trans-
lation and the reordered source-side sentences at
the same time. The main idea behind is that we
build two NMTs: one is trained on the aligned sen-
tence pairs to predict the target sentence from the
source sentence, while the other is trained on the
source-side monolingual corpus to predict the re-
orderd source sentence from original source sen-
tences1. It should be noted that the two NMTs share
the same encoder network so that they can help each
other to strengthen the encoder model.

In this paper, we make the following contribu-
tions:

• To fully investigate the source-side monolin-
gual data in NMT, we propose and compare
two methods. One attempts to enhance the en-
coder network of NMT by producing rich syn-
thetic parallel corpus using a self-learning algo-
rithm, and the other tries to perform machine
translation and source sentence reordering si-
multaneously with a multi-task learning archi-
tecture.

• The extensive experiments on Chinese-to-
English translation show that our proposed
methods significantly outperform the strong
NMT baseline augmented with the attention
mechanism. We also find that the usage of the
source-side monolingual data in NMT is more
effective than that in SMT. Furthermore, we
find that more monolingual data does not al-
ways improve the translation quality and only
relevant monolingual data helps.

1We reorder all the source-side monolingual sentences so as
to make them close to target language in word order.
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Figure 1: The encoder-decoder NMT with attention.

2 Neural Machine Translation

Our approach on using source-side monolingual cor-
pora can be applied in any neural machine trans-
lation as long as it employs the encoder-decoder
framework. Without loss of generality, we use the
attention-based NMT proposed by (Bahdanau et al.,
2014), which utilizes recurrent neural networks for
both encoder and decoder as illustrated in Fig. 1.

The encoder-decoder NMT first encodes the
source sentence X = (x1, x2, · · · , xTx) into a se-
quence of context vectors C = (h1,h2, · · · ,hTx)
whose size varies with respect to the source sen-
tence length. Then, the encoder-decoder NMT de-
codes from the context vectors C and generates tar-
get translation Y = (y1, y2, · · · , yTy) one word each
time by maximizing the probability of p(yi|y<i, C).
Note that xj (yi) is word embedding corresponding
to the jth (ith) word in the source (target) sentence.
Next, we briefly review the encoder introducing how
to obtain C and the decoder addressing how to cal-
culate p(yi|y<i, C).

Encoder: The context vectors C are generated
by the encoder using a pair of recurrent neural net-
works (RNN) which consists of a forward RNN
and a backward RNN. The forward RNN operates
left-to-right over the source sentence from the first
word, resulting in the forward context vectors Cf =

(
−→
h 1,
−→
h 2, · · · ,

−→
h Tx), in which

−→
h j = RNN(

−→
h j−1, xj) (1)

←−
h j can be calculated similarly.
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RNN can be a Gated Recurrent Unit (GRU) (Cho
et al., 2014) or a Long Short-Term Memory Unit
(LSTM) (Hochreiter and Schmidhuber, 1997). At
each position j of the source sentence, the context
vector hj is defined as the concatenation of the for-
ward and backward context vectors.

Decoder: The conditional probability
p(yi|y<i, C) is computed in different ways ac-
cording to the choice of the context C at time i. In
(Cho et al., 2014), the authors choose C = hTx ,
while Bahdanau et al. (2014) use different context ci
at different time step and the conditional probability
will become:

p(yi|y<i, C) = p(yi|y<i, ci) = g(yi−1, zi, ci) (2)

where zi is the ith hidden state of the decoder and
is calculated conditioning on the previous hidden
state zi−1, previous output yi−1 and and the source
context vector ci at time i:

zi = RNN(zi−1, yi−1, ci) (3)

In attention-based NMT, ci is computed as the
weighted sum of the source-side context vectors, just
as illustrated in the top half of Fig. 1.

All the parameters of the encoder-decoder NMT
are optimized to maximize the following condi-
tional log-likelihood of the sentence aligned bilin-
gual data:

L(θ) = 1

N

N∑

n=1

Ty∑

i=1

logp(y
(n)
i |y

(n)
<i , X

(n), θ) (4)

3 Incorporating Source-side Monolingual
Data in NMT

We can see from the above objective function that all
the network parameters are only optimized on the
sentence aligned parallel corpus. It is well known
that more related data of high quality leads to better
and more robust network models. However, bilin-
gual data is scarce in many languages (or domains).
It becomes a key issue how to improve the encoder
and decoder networks using other data besides the
parallel sentence pairs. Gulcehre et al. (2015) and
Sennrich et al. (2015) have tried to fine-tune the

decoder neural network with target-side large-scale
monolingual data and they report remarkable perfor-
mance improvement with the enhanced decoder. In
contrast, we believe that the encoder part of NMT
can also be greatly strengthened with the source-side
monolingual data.

To investigate fully the source-side monolingual
data in improving the encoder network of NMT, we
propose two approaches: the first one employs the
self-learning algorithm to provide synthetic parallel
data in which the target part is obtained through au-
tomatically translating the source-side monolingual
data, which we refer to as self-learning method. The
second one applies the multi-task learning frame-
work that consists of two NMTs sharing the same
encoder network to simultaneously train one NMT
model on bilingual data and the other sentence
reordering NMT model2 on source-side monolin-
gual data, which we refer to as sentence reordering
method.

3.1 Self-learning Method

Given the sentence aligned bitext Db =

{(X(n)
b , Y

(n)
b )}Nn=1 in which N is not big enough,

we have the source-side large-scale monolingual
data Dsm = {Xm

sm}Mm=1 which is related to the
bitext and M � N .

Our goal is to generate much more bilingual data
usingDb andDsm. From the view of machine learn-
ing, we are equipped with some labelled dataDb and
plenty of unlabelled data Dsm, and we aim to obtain
more labelled data for training better models. Self-
learning is a simple but effective algorithm to tackle
this issue. It first establishes a baseline with labelled
data and then adopts the baseline to predict the la-
bels of the unlabelled data. Finally, the unlabelled
data together with the predicted labels become new
labelled data.

In our scenario, the self-learning algorithm per-
form the following three steps . First, a baseline ma-
chine translation (MT) system (can use any transla-
tion model, SMT or NMT) is built with the given
bilingual data Db. Second, the baseline MT sys-

2NMT is essentially a sequence-to-sequence prediction
model. In most cases, the input sequence is different from the
output sequence. In the sentence reordering NMT, we require
that output sequence to be the reordered input sentences which
are close to English word order.
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Figure 2: Multi-task learning framework to use source-side

monolingual data in NMT, which includes a translation model

and a sentence reordering model.

tem automatically translates the source-side mono-
lingual sentences Dsm into target translations Dtt =
{(Y m

tt )}Mm=1, and further pairs Dsm with Dtt re-
sulting in the synthetic parallel corpus Dsyn =
{(Xm

sm, Y
m
tt )}Mm=1. Third, the synthetic parallel cor-

pus Dsyn plus the original bitext Db are combined
together to train the new NMT model.

In principle, we can apply any MT system as the
baseline to generate the synthetic bilingual data. In
accordance with the translation model we focus on
in this work, we employ NMT as the baseline MT
system. Note that the synthetic target parts may neg-
atively influence the decoder model of NMT. To ad-
dress this problem, we can distinguish original bitext
from the synthetic bilingual sentences during NMT
training by freezing the parameters of the decoder
network for the synthetic data.

It is worthy to discuss why self-learning algo-
rithm can improve the encoder model of NMT. Even
though we requireDsm to share the same source lan-
guage vocabulary as Db and no new word transla-
tions can be generated, the source-side monolingual
data provides much more permutations of words in
the vocabulary. Our RNN encoder network model
will be optimized to well explain all of the word per-
mutations. Thus, the encoder model of NMT can be
enhanced for better generalization.

3.2 Sentence Reordering Method

The self-learning algorithm needs to translate first
the large-scale source-side monolingual data. A nat-

ural question arises that whether can we improve
the encoder model of NMT using just source-side
monolingual corpora rather than the synthetic par-
allel data. Luong et al. (2015a) attempt to lever-
age source-side monolingual data in NMT using a
simple autoencoder and skip-thought vectors. How-
ever, no promising results are reported. We believe
that the reason lies in two aspects: 1) the large-scale
monolingual data is not carefully selected; and 2)
the adopted model is relatively simple. In this work,
we propose to apply the multi-task learning method
which designs a parameter sharing neural network
framework to perform two tasks: machine transla-
tion and source sentence reordering. Fig.2 illus-
trates the overview of our framework for source-side
monolingual data usage.

As shown in Fig. 2, our framework consists of
two neural networks that shares the same encoder
model but employs two different decoder models for
machine translation and sentence reordering respec-
tively. For the machine translation task trained on
the sentence aligned parallel data Db, the network
parameters are optimized to maximize the condi-
tional probability of the target sentence Y (n)

b given a
source sentenceX(n)

b , namely argmaxp(Y (n)
b |X(n)

b ).
As for the sentence reordering task trained on

source-side monolingual data Dsm, we regard it as a
special machine translation task in which the target
output is just the reordered source sentence, Y (m)

sm =

X
′(m)
sm . X

′(m)
sm is obtained from X

(m)
sm by using the

pre-ordering rules proposed by (Wang et al., 2007),
which can permutate the words of the source sen-
tence so as to approximate the target language word
order3. In this way, the sentence reordering NMT is
more powerful than an autoencoder. Using the NMT
paradigm, the shared encoder network is leveraged
to learn the deep representation C(n)

sm of the source
sentenceX(n)

sm , and the decoder network is employed
to predict the reordered source sentence from the
deep representation C

(n)
sm (here X(n)

sm ∈ Dsm) by
maximizing p(X

′(n)
sm |X(n)

sm ). Note that the above two

3The pre-ordering rules are obtained from the parsed source
trees which heavily depend on the accuracy and efficiency of the
parser. In fact, it takes us lots of time (even longer than synthetic
parallel data generation) to parse all the source-side monolin-
gual data. In the future, we attempt to design a more efficient
pre-ordering method relying only on the bilingual training data.
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tasks share the same encoder model to obtain the en-
coding of the source sentences. Accordingly, the
overall objective function of this multi-task learn-
ing is the summation of log probabilities of machine
translation and sentence reordering:

L(θ) = 1

N

N∑

n=1

Ty∑

i=1

logp(y
(n)
i |y

(n)
<i , X

(n), θ)

+
1

M

M∑

m=1

TX∑

i=1

logp(X
′(m)
i |X

′(m)
<i , X(m), θ)

(5)

where (θ = θenc, θdecT , θdecR). θenc is the param-
eter collection of source language encoder network,
θdecT denotes the parameter set of the decoder net-
work for translation, and θdecR represents the param-
eters of the decoder network for sentence reordering.

Intuitively, the sentence reordering task is easier
than the translation task. Furthermore, in this paper,
we pay much more attention on the translation task
compared to the sentence reordering task. Consider-
ing these, we distinguish these two tasks during the
parameter optimization process. It is performed us-
ing an alternate iteration strategy. For each iteration,
we first optimize the encoder-decoder network pa-
rameters in the reordering task for one epoch. The
learnt encoder network parameters are employed to
initialize the encoder model for the translation task.
Then, we learn the encoder-decoder network param-
eters in the translation task for several epochs4. The
new encoder parameters are then used to initialize
the encoder model for the reordering task. We con-
tinue the iteration until the constraint (e.g. iteration
number or no parameter change) is satisfied. The
weakness is that this method is less efficient than the
self-learning approach.

4 Experimental Settings

In this section we describe the data set used in our
experiments, data preprocessing, the training and
evaluation details, and all the translation methods we
compare in experiments.

4We rune four epochs for the translation task in each itera-
tion.

4.1 Dataset
We perform two tasks on Chinese-to-English trans-
lation: one for small data set and the other for
large-scale data set. Our small training data in-
cludes 0.63M sentence pairs (after data cleaning)
extracted from LDC corpora5. The large-scale data
set contains about 2.1M sentence pairs including the
small training data. For validation, we choose NIST
2003 (MT03) dataset. For testing, we use NIST
2004 (MT04), NIST 2005 (MT05) and NIST 2006
(MT06) datasets. As for the source-side monolin-
gual data, we collect about 20M Chinese sentences
from LDC and we retain the sentences in which
more than 50% words should appear in the source-
side portion of the bilingual training data, resulting
in 6.5M monolingual sentences for small training
data set (12M for large-scale training data set) or-
dered by the word hit rate.

4.2 Data Preprocessing
We apply word-level translation in experiments. The
Chinese sentences are word segmented using Stan-
ford Word Segmenter6. To pre-order the Chinese
sentences using the syntax-based reordering method
proposed by (Wang et al., 2007), we utilize the
Berkeley parser (Petrov et al., 2006). The English
sentences are tokenized using the tokenizer script
from the Moses decoder7. To speed up the training
procedure, we clean the training data and remove all
the sentences of length over 50 words. We limit the
vocabulary in both Chinese and English to the most
40K words and all the out-of-vocabulary words are
replaced with UNK.

4.3 Training and Evaluation Details
Each NMT model is trained on GPU K40 us-
ing stochastic gradient decent algorithm AdaGrad
(Duchi et al., 2011). We use mini batch size of 32.
The word embedding dimension of source and tar-
get language is 500 and the size of hidden layer is
set to 1024. The training time for each model ranges
from 5 days to 10 days for small training data set and
ranges from 8 days to 15 days for large training data

5LDC2000T50, LDC2002L27, LDC2002T01,
LDC2002E18, LDC2003E07, LDC2003E14, LDC2003T17,
LDC2004T07.

6http://nlp.stanford.edu/software/segmenter.shtml
7http://www.statmt.org/moses/
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Method MT03 MT04 MT05 MT06
Moses 30.30 31.04 28.19 30.04
RNNSearch 28.38 30.85 26.78 29.27
RNNSearch-Mono-SL (25%) 29.65 31.92 28.65 29.86
RNNSearch-Mono-SL (50%) 32.43 33.16 30.43 32.35
RNNSearch-Mono-SL (75%) 30.24 31.18 29.33 28.82
RNNSearch-Mono-SL (100%) 29.97 30.78 26.45 28.06
RNNSearch-Mono-MTL (25%) 31.68 32.51 29.8 31.29
RNNSearch-Mono-MTL (50%) 33.38 34.30 31.57 33.40
RNNSearch-Mono-MTL (75%) 31.69 32.83 28.17 30.26
RNNSearch-Mono-MTL (100%) 30.31 30.62 27.23 28.85
RNNSearch-Mono-Autoencoder (50%) 31.55 32.07 28.19 30.85
RNNSearch-Mono-Autoencoder (100%) 27.81 30.32 25.84 27.73

Table 1: Translation results (BLEU score) for different translation methods. For our methods exploring the source-side monolingual

data, we investigate the performance change as we choose different scales of monolingual data (e.g. from top 25% to 100%

according to the word coverage of the monolingual sentence in source language vocabulary of bilingual training corpus).

set8. We use case-insensitive 4-gram BLEU score as
the evaluation metric (Papineni et al., 2002).

4.4 Translation Methods

In the experiments, we compare our method with
conventional SMT model and a strong NMT model.
We list all the translation methods as follows:

• Moses: It is the state-of-the-art phrase-based
SMT system (Koehn et al., 2007). We use its
default configuration and train a 4-gram lan-
guage model on the target portion of the bilin-
gual training data.

• RNNSearch: It is an attention-based NMT sys-
tem (Bahdanau et al., 2014).

• RNNSearch-Mono-SL: It is our NMT system
which makes use of the source-side large-scale
monolingual data by applying the self-learning
algorithm.

• RNNSearch-Mono-MTL: It is our NMT sys-
tem that exploits the source-side monolingual
data by using our multi-task learning frame-
work which performs machine translation and
sentence reordering at the same time.

8It needs another 5 to 10 days when adding millions of
monolingual data.

• RNNSearch-Mono-Autoencoder: It also ap-
plies the multi-task learning framework in
which a simple autoencoder is adopted on
source-side monolingual data (Luong et al.,
2015a).

5 Translation Results on Small Data

For translation quality evaluation, we attempt to fig-
ure out four questions: 1) Can the source-side mono-
lingual data improve the neural machine translation?
2) Could the improved NMT outperform the state-
of-the-art phrase-based SMT? 3) Whether it is true
that the more the source-side monolingual data the
better the translation quality? 4) Which MT model
is more suitable to incorporate source-side monolin-
gual data: SMT or NMT?

5.1 Effects of Source-side Monolingual Data in
NMT

Table 1 reports the translation quality for different
methods. Comparing the first two lines in Table
1, it is obvious that the NMT method RNNSearch
performs much worse than the SMT model Moses
on Chinese-to-English translation. The gap is as
large as approximately 2.0 BLEU points (28.38 vs.
30.30). We speculate that the encoder-decoder net-
work models of NMT are not well optimized due to
insufficient bilingual training data.

The focus of this work is to figure out whether
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the encoder model of NMT can be improved using
source-side monolingual data and further boost the
translation quality. The four lines (3-6 in Table 1)
show the BLEU scores when applying self-learning
algorithm to incorporate the source-side monolin-
gual data. Clearly, RNNSearch-Mono-SL outper-
forms RNNSearch in most cases. The best perfor-
mance is obtained if the top 50% monolingual data is
used. The biggest improvement is up to 4.05 BLEU
points (32.43 vs. 28.38 on MT03) and it also signif-
icantly outperforms Moses.

When employing our multi-task learning frame-
work to incorporate source-side monolingual data,
the translation quality can be further improved
(Lines 7-10 in Table 1). For example, RNNSearch-
Mono-MTL using the top 50% monolingual data can
remarkably outperform the baseline RNNSearch,
with an improvement up to 5.0 BLEU points (33.38
vs. 28.38 on MT03). Moreover, it also performs
significantly better than the state-of-the-art phrase-
based SMT Moses by the largest gains of 3.38 BLEU
points (31.57 vs. 28.19 on MT05). The promis-
ing results demonstrate that source-side monolin-
gual data can improve neural machine translation
and our multi-task learning is more effective.

From the last two lines in Table 1, we can see
that RNNSearch-Mono-Autoencoder can also im-
prove the translation quality by more than 1.0 BLEU
points when using the most related monolingual
data. However, it underperforms RNNSearch-Mono-
MTL by a large gap. It indicates that sentence re-
ordering model is better than sentence reconstruc-
tion model for exploiting the source-side monolin-
gual data.

Note that we sort the source-side monolingual
data according to the word coverage 9 in the bilin-
gual training data. Sentences in the front have more
shared words with the source-side vocabulary of
bilingual training data. We can clearly see from
Table 1 that monolingual data cannot always im-
prove NMT. By adding closely related corpus (25%
to 50%), the methods can achieve better and bet-
ter performance. However, when adding more unre-

9In current work, the simple word coverage is applied to
indicate the similarity. In the future, we plan to use phrase em-
bedding (Zhang et al., 2014) or sentence embedding (Zhang et
al., 2015; Wang et al., 2016a; Wang et al., 2016b) to select the
relevant monolingual data.
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Figure 3: Effects of source-side monolingual data on MT04.

lated monolingual data (75% to 100%) which shares
fewer and fewer words in common with the bilin-
gual data, the translation quality becomes worse and
worse, and even worse than the baseline RNNSearch.
Both self-learning algorithm RNNSearch-Mono-SL
and multi-task learning framework RNNSearch-
Mono-MTL have the same trend. This indicates that
only closely related source-side monolingual data
can lead to performance improvement.

5.2 NMT vs. SMT on Using Source-side
Monolingual Data

Although the proposed multi-task learning frame-
work cannot fit SMT because of no shared deep
information between the two tasks in SMT, self-
learning algorithm can also be applied in SMT as
done by (Ueffing et al., 2007; Wu et al., 2008). We
may want to know whether NMT is more effective
in using source-side monolingual data than SMT.

We apply the self-learning algorithm in SMT by
incorporating top 25%, 50%, 75% and 100% syn-
thetic sentence pairs to retrain baseline Moses. Fig.
3 shows the effect of source-side monolingual data
in different methods on test set MT04. The fig-
ure reveals three similar phenomena. First, related
monolingual data can boost the translation quality
no matter whether NMT or SMT is used, but mixing
more unrelated monolingual corpus will decrease
the performance. Second, integrating closely related
source-side monolingual data in NMT (RNNSearch-
SL and RNNSearch-MTL) is much more effective
than that in SMT (e.g. results for top 50%). It
is because that SMT relies on the translation rules
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Method MT03 MT04 MT05 MT06
RNNSearch 35.18 36.20 33.21 32.86
RNNSearch-Mono-MTL (50%) 36.32 37.51 35.08 34.26
RNNSearch-Mono-MTL (100%) 35.75 36.74 34.23 33.52

Table 2: Translation results (BLEU score) for different translation methods in large-scale training data.

learnt from the bilingual training data and the syn-
thetic parallel data is obtained by these rules, and
thus the synthetic parallel data cannot generate much
more information. In contrast, NMT provides a
encoder-decoder mechanism and depends heavily
on the source language semantic vector representa-
tions which facilitate the information sharing. Third,
the translation quality changes much more dramati-
cally in NMT methods than that in SMT. It indicates
that the neural network models incline to be more
affected by the quality of the training data.

6 Translation Results on Large-scale Data

A natural question arises that is the source-side
monolingual data still very helpful when we have
much more bilingual training data. We conduct the
large-scale experiments using our proposed multi-
task framework RNNSearch-Mono-MTL. Table 2 re-
ports the results.

We can see from the table that closely related
source-side monolingual data (the top 50%) can
also boost the translation quality on all of the test
sets. The performance improvement can be more
than 1.0 BLEU points. Compared to the results
on small training data, the gains from source-side
monolingual data are much smaller. It is reasonable
since large-scale training data can make the param-
eters of the encoder-decoder parameters much sta-
ble. We can also observe the similar phenomenon
that adding more unrelated monolingual data leads
to decreased translation quality.

7 Related Work

As a new paradigm for machine translation, the
encoder-decoder based NMT has drawn more and
more attention. Most of the existing methods mainly
focus on designing better alignment mechanisms
(attention model) for the decoder network (Cheng
et al., 2016a; Luong et al., 2015b; Cohn et al.,
2016; Feng et al., 2016; Tu et al., 2016; Mi et al.,

2016a; Mi et al., 2016b), better objective functions
for BLEU evaluation (Shen et al., 2016) and better
strategies for handling unknown words (Luong et al.,
2015c; Sennrich et al., 2015; Li et al., 2016) or large
vocabularies (Jean et al., 2015; Mi et al., 2016c).

Our focus in this work is aiming to make full
use of the source-side large-scale monolingual data
in NMT, which is not fully explored before. The
most related works lie in three aspects: 1) apply-
ing target-side monolingual data in NMT, 2) target-
ing knowledge sharing with multi-task NMT, and 3)
using source-side monolingual data in conventional
SMT and NMT.

Gulcehre et al. (2015) first investigate the target-
side monolingual data in NMT. They propose shal-
low and deep fusion methods to enhance the decoder
network by training a big language model on target-
side large-scale monolingual data. Sennrich et al.
(2015) further propose a new approach to use target-
side monolingual data. They generate the synthetic
bilingual data by translating the target monolingual
sentences to source language sentences and retrain
NMT with the mixture of original bilingual data and
the synthetic parallel data. It is similar to our self-
learning algorithm in which we concern the source-
side monolingual data. Furthermore, their method
requires to train an additional NMT from target lan-
guage to source language, which may negatively in-
fluence the attention model in the decoder network.

Dong et al. (2015) propose a multi-task learn-
ing method for translating one source language into
multiple target languages in NMT so that the en-
coder network can be shared when dealing with sev-
eral sets of bilingual data. Zoph et al. (2016), Zoph
and Knight (2016) and Firat et al. (2016) further deal
with more complicated cases (e.g. multi-source lan-
guages). Note that all these methods require bilin-
gual training corpus. Instead, we adapt the multi-
task learning framework to better accommodate the
source-side monolingual data.

Ueffing et al. (2007) and Wu et al. (2008) explore
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the usage of source-side monolingual data in con-
ventional SMT with a self-learning algorithm. Al-
though we apply self-learning in this work, we use it
to enhance the encoder network in NMT rather than
generating more translation rules in SMT and we
also adapt a multi-task learning framework to take
full advantage of the source-side monolingual data.
Luong et al. (2015a) also investigate the source-side
monolingual data in the multi-task learning frame-
work, in which a simple autoencoder or skip-thought
vectors are employed to model the monolingual
data. Our sentence reordering model is more pow-
erful than simple autoencoder in encoder enhance-
ment. Furthermore, they do not carefully prepare
the monolingual data for which we show that only
related monolingual data leads to big improvements.

In parallel to our work, Cheng et al. (2016b) pro-
pose a similar semi-supervised framework to handle
both source and target language monolingual data.
If source-side monolingual data is considered, a re-
construction framework including two NMTs is em-
ployed. One NMT translates the source-side mono-
lingual data into target language translations, from
which the other NMT attempts to reconstruct the
original source-side monolingual data. In contrast
to their approach, we propose a sentence reorder-
ing model rather than the sentence reconstruction
model. Furthermore, we carefully investigate the re-
lationship between the monolingual data quality and
the translation performance improvement.

8 Conclusions and Future Work

In this paper, we propose a self-learning algo-
rithm and a new multi-task learning framework to
use source-side monolingual data so as to improve
the encoder network of the encoder-decoder based
NMT. The self-learning algorithm generates the syn-
thetic parallel corpus and enlarge the bilingual train-
ing data to enhance the encoder model of NMT.
The multi-task learning framework performs ma-
chine translation on bilingual data and sentence re-
ordering on source-side monolingual data by shar-
ing the same encoder network. The experiments
show that our method can significantly outperform
the strong attention-based NMT baseline, and the
proposed multi-task learning framework performs
better than the self-learning algorithm at the expense

of low efficiency. Furthermore, the experiments also
demonstrate that NMT is more effective for incor-
porating the source-side monolingual data than con-
ventional SMT. We also observe that more mono-
lingual data does not always improve the translation
quality and only relevant data does help.

In the future, we would like to design smarter
mechanisms to distinguish real data from synthetic
data in self-learning algorithm, and attempt to pro-
pose better models for handling source-side mono-
lingual data. We also plan to apply our methods
in other languages, especially for low-resource lan-
guages.
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