
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1526–1534,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Does String-Based Neural MT Learn Source Syntax?

Xing Shi, Inkit Padhi, and Kevin Knight
Information Sciences Institute & Computer Science Department

University of Southern California
xingshi@isi.edu, ipadhi@usc.edu, knight@isi.edu

Abstract

We investigate whether a neural, encoder-
decoder translation system learns syntactic in-
formation on the source side as a by-product
of training. We propose two methods to de-
tect whether the encoder has learned local and
global source syntax. A fine-grained analy-
sis of the syntactic structure learned by the
encoder reveals which kinds of syntax are
learned and which are missing.

1 Introduction

The sequence to sequence model (seq2seq) has been
successfully applied to neural machine translation
(NMT) (Sutskever et al., 2014; Cho et al., 2014)
and can match or surpass MT state-of-art. Non-
neural machine translation systems consist chiefly
of phrase-based systems (Koehn et al., 2003) and
syntax-based systems (Galley et al., 2004; Galley
et al., 2006; DeNeefe et al., 2007; Liu et al., 2011;
Cowan et al., 2006), the latter of which adds syntac-
tic information to source side (tree-to-string), target
side (string-to-tree) or both sides (tree-to-tree). As
the seq2seq model first encodes the source sentence
into a high-dimensional vector, then decodes into a
target sentence, it is hard to understand and interpret
what is going on inside such a procedure. Consider-
ing the evolution of non-neural translation systems,
it is natural to ask:

1. Does the encoder learn syntactic information
about the source sentence?

2. What kind of syntactic information is learned,
and how much?

3. Is it useful to augment the encoder with addi-
tional syntactic information?

In this work, we focus on the first two questions
and propose two methods:

• We create various syntactic labels of the source
sentence and try to predict these syntactic la-
bels with logistic regression, using the learned
sentence encoding vectors (for sentence-level
labels) or learned word-by-word hidden vectors
(for word-level label). We find that the encoder
captures both global and local syntactic infor-
mation of the source sentence, and different in-
formation tends to be stored at different layers.

• We extract the whole constituency tree of
source sentence from the NMT encoding vec-
tors using a retrained linearized-tree decoder. A
deep analysis on these parse trees indicates that
much syntactic information is learned, while
various types of syntactic information are still
missing.

2 Example

As a simple example, we train an English-French
NMT system on 110M tokens of bilingual data (En-
glish side). We then take 10K separate English sen-
tences and label their voice as active or passive. We
use the learned NMT encoder to convert these sen-
tences into 10k corresponding 1000-dimension en-
coding vectors. We use 9000 sentences to train a
logistic regression model to predict voice using the
encoding cell states, and test on the other 1000 sen-
tences. We achieve 92.8% accuracy (Table 2), far
above the majority class baseline (82.8%). This
means that in reducing the source sentence to a

1526

Model Accuracy
Majority Class 82.8
English to French (E2F) 92.8
English to English (E2E) 82.7

Table 1: Voice (active/passive) prediction accuracy using the

encoding vector of an NMT system. The majority class baseline

always chooses active.

fixed-length vector, the NMT system has decided to
store the voice of English sentences in an easily ac-
cessible way.

When we carry out the same experiment on an
English-English (auto-encoder) system, we find that
English voice information is no longer easily ac-
cessed from the encoding vector. We can only pre-
dict it with 82.7% accuracy, no better than chance.
Thus, in learning to reproduce input English sen-
tences, the seq2seq model decides to use the fixed-
length encoding vector for other purposes.

3 Related work

Interpreting Recurrent Neural Networks. The
most popular method to visualize high-dimensional
vectors, such as word embeddings, is to project them
into two-dimensional space using t-SNE (van der
Maaten and Hinton, 2008). Very few works try to
interpret recurrent neural networks in NLP. Karpa-
thy et al. (2016) use a character-level LSTM lan-
guage model as a test-bed and find several activation
cells that track long-distance dependencies, such as
line lengths and quotes. They also conduct an er-
ror analysis of the predictions. Li et al. (2016) ex-
plore the syntactic behavior of an RNN-based sen-
timent analyzer, including the compositionality of
negation, intensification, and concessive clauses, by
plotting a 60-dimensional heat map of hidden unit
values. They also introduce a first-order derivative
based method to measure each unit’s contribution to
the final decision.
Verifying syntactic/semantic properties. Several
works try to build a good distributional representa-
tion of sentences or paragraph (Socher et al., 2013;
Kalchbrenner et al., 2014; Kim, 2014; Zhao et
al., 2015; Le and Mikolov, 2014; Kiros et al.,
2015). They implicitly verify the claimed syntac-
tic/semantic properties of learned representations by
applying them to downstream classification tasks

such as sentiment analysis, sentence classification,
semantic relatedness, paraphrase detection, image-
sentence ranking, question-type classification, etc.

Novel contributions of our work include:
• We locate a subset of activation cells that are

responsible for certain syntactic labels. We ex-
plore the concentration and layer distribution of
different syntactic labels.

• We extract whole parse trees from NMT encod-
ing vectors in order to analyze syntactic prop-
erties directly and thoroughly.

• Our methods are suitable for large scale mod-
els. The models in this work are 2-layer 1000-
dimensional LSTM seq2seq models.

4 Datasets and models

We train two NMT models, English-French (E2F)
and English-German (E2G). To answer whether
these translation models’ encoders to learn store
syntactic information, and how much, we employ
two benchmark models:

• An upper-bound model, in which the encoder
learns quite a lot of syntactic information. For
the upper bound, we train a neural parser that
learns to “translate” an English sentence to its
linearized constitutional tree (E2P), following
Vinyals et al. (2015).

• An lower-bound model, in which the encoder
learns much less syntactic information. For
the lower bound, we train two sentence auto-
encoders: one translates an English sentence to
itself (E2E), while the other translates a per-
muted English sentence to itself (PE2PE). We
already had an indication above (Section 2) that
a copying model does not necessarily need to
remember a sentence’s syntactic structure.

Figure 1 shows sample inputs and outputs of the
E2E, PE2PE, E2F, E2G, and E2P models.

We use English-French and English-German data
from WMT2014 (Bojar et al., 2014). We take 4M
English sentences from the English-German data to
train E2E and PE2PE. For the neural parser (E2P),
we construct the training corpus following the recipe
of Vinyals et al. (2015). We collect 162K training
sentences from publicly available treebanks, includ-
ing Sections 0-22 of the Wall Street Journal Penn
Treebank (Marcus et al., 1993), Ontonotes version 5

1527

Model Target Language
Input

vocabulary
size

Output
vocabulary

size

Train/Dev/Test
Corpora Sizes

(sentence pairs)
BLEU

E2E English 200K 40K 4M/3000/2737 89.11
PE2PE Permuted English 200K 40K 4M/3000/2737 88.84

E2F French 200K 40K 4M/6003/3003 24.59
E2G German 200K 40K 4M/3000/2737 12.60

E2P
Linearized

constituency tree
200K 121 8162K/1700/2416 n/a

Table 2: Model settings and test-set BLEU-n4r1 scores (Papineni et al., 2002).

Figure 1: Sample inputs and outputs of the E2E, PE2PE, E2F,

E2G, and E2P models.

(Pradhan and Xue, 2009) and the English Web Tree-
bank (Petrov and McDonald, 2012). In addition to
these gold treebanks, we take 4M English sentences
from English-German data and 4M English sen-
tences from English-French data, and we parse these
8M sentences with the Charniak-Johnson parser1

(Charniak and Johnson, 2005). We call these 8,162K
pairs the CJ corpus. We use WSJ Section 22 as our
development set and section 23 as the test set, where
we obtain an F1-score of 89.6, competitive with the
previously-published 90.5 (Table 4).

Model Architecture. For all experiments2,
we use a two-layer encoder-decoder with long
short-term memory (LSTM) units (Hochreiter and
Schmidhuber, 1997). We use a minibatch of 128, a
hidden state size of 1000, and a dropout rate of 0.2.

1The CJ parser is here https://github.com/BLLIP/bllip-
parser and we used the pretrained model ”WSJ+Gigaword-v2”.

2We use the toolkit: https://github.com/isi-nlp/Zoph RNN

Parser
WSJ 23
F1-score

valid trees
(out of 2416)

CJ Parser 92.1 2416
E2P 89.6 2362
(Vinyals et al., 2015) 90.5 unk

Table 3: Labeled F1-scores of different parsers on WSJ Section

23. The F1-score is calculated on valid trees only.

For auto-encoders and translation models, we train
8 epochs. The learning rate is initially set as 0.35
and starts to halve after 6 epochs. For E2P model,
we train 15 epochs. The learning rate is initialized
as 0.35 and starts to decay by 0.7 once the perplexity
on a development set starts to increase. All parame-
ters are re-scaled when the global norm is larger than
5. All models are non-attentional, because we want
the encoding vector to summarize the whole source
sentence. Table 4 shows the settings of each model
and reports the BLEU scores.

5 Syntactic Label Prediction

5.1 Experimental Setup

In this section, we test whether different seq2seq
systems learn to encode syntactic information about
the source (English) sentence.

With 1000 hidden states, it is impractical to in-
vestigate each unit one by one or draw a heat map of
the whole vector. Instead, we use the hidden states
to predict syntactic labels of source sentences via lo-
gistic regression. For multi-class prediction, we use
a one-vs-rest mechanism. Furthermore, to identify
a subset of units responsible for certain syntactic la-
bels, we use the recursive feature elimination (RFE)
strategy: the logistic regression is first trained using

1528

Label Train Test
Number

of
classes

Most
frequent

label
Voice 9000 1000 2 Active
Tense 9000 1000 2 Non-past
TSS 9000 1000 20 NP-VP
POS 87366 9317 45 NN
SPC 81292 8706 24 NP

Table 4: Corpus statistics for five syntactic labels.

Figure 2: The five syntactic labels for sentence “This time , the

firms were ready”.

all 1000 hidden states, after which we recursively
prune those units whose weights’ absolute values are
smallest.

We extract three sentence-level syntactic labels:
1. Voice: active or passive.
2. Tense: past or non-past.
3. TSS: Top level syntactic sequence of the con-

stituent tree. We use the most frequent 19 se-
quences (“NP-VP”, “PP-NP-VP”, etc.) and la-
bel the remainder as “Other”.

and two word-level syntactic labels:
1. POS: Part-of-speech tags for each word.
2. SPC: The smallest phrase constituent that

above each word.
Both voice and tense labels are generated using

rule-based systems based on the constituent tree of
the sentence.

Figure 2 provides examples of our five syntactic
labels. When predicting these syntactic labels using
corresponding cell states, we split the dataset into

training and test sets. Table 4 shows statistics of each
labels.

For a source sentence s,

s = [w1, ..., wi, ..., wn]

the two-layer encoder will generate an array of cell
vectors c during encoding,

c = [(c1,0, c1,1), ..., (ci,0, ci,1), ..., (cn,0, cn,1)]

We extract a sentence-level syntactic label Ls, and
predict it using the encoding cell states that will be
fed into the decoder:

Ls = g(cn,0) or Ls = g(cn,1)

where g(·) is the logistic regression.
Similarly, for extracting word-level syntactic la-

bels:

Lw = [Lw1, ..., Lwi, ..., Lwn]

we predict each label Lwi using the cell states im-
mediately after encoding the word wi:

Lwi = g(ci,0) or LWi = g(ci,1)

5.2 Result Analysis
Test-set prediction accuracy is shown in Figure 3.
For voice and tense, the prediction accuracy of two
auto-encoders is almost same as the accuracy of ma-
jority class, indicating that their encoders do not
learn to record this information. By contrast, both
the neural parser and the NMT systems achieve ap-
proximately 95% accuracy. When predicting the
top-level syntactic sequence (TSS) of the whole sen-
tence, the Part-of-Speech tags (POS), and small-
est phrase constituent (SPC) for each word, all five
models achieve an accuracy higher than that of ma-
jority class, but there is still a large gap between the
accuracy of NMT systems and auto-encoders. These
observations indicate that the NMT encoder learns
significant sentence-level syntactic information—it
can distinguish voice and tense of the source sen-
tence, and it knows the sentence’s structure to some
extent. At the word level, the NMT’s encoder also
tends to cluster together the words that have similar
POS and SPC labels.

Different syntactic information tends to be stored
at different layers in the NMT models. For word-
level syntactic labels, POS and SPC, the accuracy
of the lower layer’s cell states (C0) is higher than
that of the upper level (C1). For the sentence-level

1529

E2P
E2F

E2G
E2E

PE2PE

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

Voice

E2P
E2F

E2G
E2E

PE2PE

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

Tense

E2P
E2F

E2G
E2E

PE2PE

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

TSS

E2P
E2F

E2G
E2E

PE2PE

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

POS

E2P
E2F

E2G
E2E

PE2PE

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

SPC

Majority Class
C0 All
C0 Top10
C1 All
C1 Top10

Figure 3: Prediction accuracy of five syntactic labels on test. Each syntactic label is predicted using both the lower-layer cell states

(C0) and higher-layer cell states (C1). For each cell state, we predict each syntactic label using all 1000 units (All), as well as the

top 10 units (Top10) selected by recursive feature elimination. The horizontal blue line is the majority class accuracy.

labels, especially tense, the accuracy of C1 is larger
than C0. This suggests that the local features are
somehow preserved in the lower layer whereas more
global, abstract information tends to be stored in the
upper layer.

For two-classes labels, such as voice and tense,
the accuracy gap between all units and top-10 units
is small. For other labels, where we use a one-
versus-rest strategy, the gap between all units and
top-10 units is large. However, when predicting
POS, the gap of neural parser (E2P) on the lower
layer (C0) is much smaller. This comparison in-
dicates that a small subset of units explicitly takes
charge of POS tags in the neural parser, whereas for
NMT, the POS info is more distributed and implicit.

There are no large differences between encoders
of E2F and E2G regarding syntactic information.

Figure 4: E2F and E2F2P share the same English encoder.

When training E2F2P, we only update the parameters of lin-

earized tree decoder, keeping the English encoder’s parameters

fixed.

1530

6 Extract Syntactic Trees from Encoder

6.1 Experimental Setup
We now turn to whether NMT systems capture
deeper syntactic structure as a by-product of learn-
ing to translate from English to another language.
We do this by predicting full parse trees from the in-
formation stored in encoding vectors. Since this is
a structured prediction problem, we can no longer
use logistic regression. Instead, we extract a con-
stituency parse tree from the encoding vector of a
model E2X by using a new neural parser E2X2P
with the following steps:

1. Take the E2X encoder as the encoder of the new
model E2X2P.

2. Initialize the E2X2P decoder parameters with a
uniform distribution.

3. Fine-tune the E2X2P decoder (while keeping
its encoder parameters fixed), using the CJ cor-
pus, the same corpus used to train E2P .

Figure 4 shows how we construct model E2F2P
from model E2F. For fine-tuning, we use the same
dropout rate and learning rate updating configura-
tion for E2P as described in Section 4.

6.2 Evaluation
We train four new neural parsers using the encoders
of the two auto-encoders and the two NMT models
respectively. We use three tools to evaluate and ana-
lyze:

1. The EVALB tool3 to calculate the labeled
bracketing F1-score.

2. The zxx package4 to calculate Tree edit dis-
tance (TED) (Zhang and Shasha, 1989).

3. The Berkeley Parser Analyser5 (Kummerfeld et
al., 2012) to analyze parsing error types.

The linearized parse trees generated by these neu-
ral parsers are not always well-formed. They can be
split into the following categories:

• Malformed trees: The linearized sequence can
not be converted back into a tree, due to miss-
ing or mismatched brackets.

• Well-formed trees: The sequence can be con-
verted back into a tree. Tree edit distance can
be calculated on this category.

3http://nlp.cs.nyu.edu/evalb/
4https://github.com/timtadh/zhang-shasha
5https://github.com/jkkummerfeld/berkeley-parser-analyser

– Wrong length trees: The number of tree
leaves does not match the number of
source-sentence tokens.

– Correct length trees: The number of tree
leaves does match the number of source-
sentence tokens.

Before we move to results, we emphasize the fol-
lowing points:

First, compared to the linear classifier used in Sec-
tion 5, the retrained decoder for predicting a lin-
earized parse tree is a highly non-linear method.
The syntactic prediction/parsing performance will
increase due to such non-linearity. Thus, we do
not make conclusions based only on absolute per-
formance values, but also on a comparison against
the designed baseline models. An improvement over
the lower bound models indicates that the encoder
learns syntactic information, whereas a decline from
the upper bound model shows that the encoder loses
certain syntactic information.

Second, the NMT’s encoder maps a plain English
sentence into a high-dimensional vector, and our
goal is to test whether the projected vectors form
a more syntactically-related manifold in the high-
dimensional space. In practice, one could also pre-
dict parse structure for the E2E in two steps: (1) use
E2E’s decoder to recover the original English sen-
tence, and (2) parse that sentence with the CJ parser.
But in this way, the manifold structure in the high-
dimensional space is destroyed during the mapping.

6.2.1 Result Analysis
Table 5 reports perplexity on training and devel-

opment sets, the labeled F1-score on WSJ Section
23, and the Tree Edit Distance (TED) of various sys-
tems.

Tree Edit Distance (TED) calculates the
minimum-cost sequence of node edit opera-
tions (delete, insert, rename) between a gold tree
and a test tree. When decoding with beam size
10, the four new neural parsers can generate well-
formed trees for almost all the 2416 sentences in the
WSJ section 23. This makes TED a robust metric
to evaluate the overall performance of each parser.
Table 5 reports the average TED per sentence. Trees
extracted from E2E and PE2PE encoding vectors
(via models E2E2P and PE2PE2P, respectively)
get TED above 30, whereas the NMT systems get

1531

Model
Perplexity
on Train

Perplexity
on WSJ 22

Labeled F1
on WSJ23

EVALB-trees
(out of 2416)

Average TED
per sentence

Well-formed
trees

(out of 2416)
PE2PE2P 1.83 1.92 46.64 818 34.43 2416

E2E2P 1.69 1.77 59.35 796 31.25 2416
E2G2P 1.39 1.41 80.34 974 17.11 2340
E2F2P 1.36 1.38 79.27 1093 17.77 2415

E2P 1.11 1.18 89.61 2362 11.50 2415
Table 5: Perplexity, labeled F1-score, and Tree Edit Distance (TED) of various systems. Labeled F1-scores are calculated on

EVALB-trees only. Tree edit distances are calculated on the well-formed trees only. EVALB-trees are those whose number of

leaves match the number of words in the source sentence, and are otherwise accepted by standard Treebank evaluation software.

approximately 17 TED.
Among the well-formed trees, around half have

a mismatch between number of leaves and number
of tokens in the source sentence. The labeled F1-
score is reported over the rest of the sentences only.
Though biased, this still reflects the overall perfor-
mance: we achieve around 80 F1 with NMT en-
coding vectors, much higher than with the E2E and
PE2PE encoding vectors (below 60).

6.2.2 Fine-grained Analysis
Besides answering whether the NMT encoders

learn syntactic information, it is interesting to know
what kind of syntactic information is extracted and
what is not.

As Table 5 shows, different parsers generate dif-
ferent numbers of trees that are acceptable to Tree-
bank evaluation software (“EVALB-trees”), having
the correct number of leaves and so forth. We se-
lect the intersection set of different models’ EVALB-
trees. We get a total of 569 shared EVALB-trees.
The average length of the corresponding sentence is
12.54 and the longest sentence has 40 tokens. The
average length of all 2416 sentences in WSJ section
23 is 23.46, and the longest is 67. As we do not ap-
ply an attention model for these neural parsers, it is
difficult to handle longer sentences. While the in-
tersection set may be biased, it allows us to explore
how different encoders decide to capture syntax on
short sentences.

Table 6 shows the labeled F1-scores and Part-of-
Speech tagging accuracy on the intersection set. The
NMT encoder extraction achieves around 86 per-
cent tagging accuracy, far beyond that of the auto-
encoder based parser.

Model Labeled F1
POS

Tagging Accuracy
PE2PE2P 58.67 54.32

E2E2P 70.91 68.03
E2G2P 85.36 85.30
E2F2P 86.62 87.09

E2P 93.76 96.00
Table 6: Labeled F1-scores and POS tagging accuracy on the

intersection set of EVALB-trees of different parsers. There are

569 trees in the intersection, and the average length of corre-

sponding English sentence is 12.54.

Besides the tagging accuracy, we also utilize the
Berkeley Parser Analyzer (Kummerfeld et al., 2012)
to gain a more linguistic understanding of predicted
parses. Like TED, the Berkeley Parser Analyzer is
based on tree transformation. It repairs the parse tree
via a sequence of sub-tree movements, node inser-
tions and deletions. During this process, multiple
bracket errors are fixed, and it associates this group
of node errors with a linguistically meaningful error
type.

The first column of Figure 5 shows the average
number of bracket errors per sentence for model E2P
on the intersection set. For other models, we report
the ratio of each model to model E2P. Kummerfeld
et al. (2013) and Kummerfeld et al. (2012) give de-
scriptions of different error types. The NMT-based
predicted parses introduce around twice the brack-
eting errors for the first 10 error types, whereas for
“Sense Confusion”, they bring more than 16 times
bracket errors. “Sense confusion” is the case where
the head word of a phrase receives the wrong POS,

1532

Sense Confusion
Single Word Phrase

Different label
Noun boundary error

NP Internal
Unary

Modifier Attach
Verb taking wrong arguments

PP Attach
VP Attach

Co-ordination

0.057
0.150
0.137
0.022
0.053
0.123
0.205
0.035
0.242
0.024
0.081

E2P
(Ave. Bracket Err)

16.58
2.74
2.52
2.20
2.17
1.98
1.46
1.44
1.44
1.36
1.14

E2F2P
(Ratio)

17.77
3.31
2.42
3.20
1.83
2.25
2.03
2.75
1.27
1.27
1.05

E2G2P
(Ratio)

23.77
5.01
5.00
3.10
3.17
3.21
1.69
3.50
1.82
4.55
1.78

E2E2P
(Ratio)

32.19
5.12
5.26
5.10
3.58
3.71
1.82
2.44
2.27
5.64
0.22

PE2PE2P
(Ratio)

Figure 5: For model E2P (the red bar), we show the average number of bracket errors per sentence due to the top 11 error types.

For other models, we show the ratio of each model’s average number of bracket errors to that of model E2P . Errors analyzed on

the intersection set. The table is sorted based on the ratios of the E2F2P model.

resulting in an attachment error. Figure 6 shows an
example.

Even though we can predict 86 percent of parts-
of-speech correctly from NMT encoding vectors, the
other 14 percent introduce quite a few attachment
errors. NMT sentence vectors encode a lot of syntax,
but they still cannot grasp these subtle details.

7 Conclusion

We investigate whether NMT systems learn source-
language syntax as a by-product of training on string
pairs. We find that both local and global syntactic in-
formation about source sentences is captured by the
encoder. Different types of syntax is stored in dif-
ferent layers, with different concentration degrees.
We also carry out a fine-grained analysis of the con-
stituency trees extracted from the encoder, highlight-
ing what syntactic information is still missing.

Acknowledgments

This work was supported by ARL/ARO (W911NF-
10-1-0533) and DARPA (HR0011-15-C-0115).

References

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Matous Machacek,
Christof Monz, Pavel Pecina, Matt Post, Herv Saint-
Amand, Radu Soricut, and Lucia Specia, editors.
2014. Proc. Ninth Workshop on Statistical Machine
Translation.

Figure 6: Example of Sense Confusion. The POS tag for word

“beyond” is predicted as “RB” instead of “IN”, resulting in a

missing prepositional phrase.

1533

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proc. ACL.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. In Proc. EMNLP.

Brooke Cowan, Ivona Kučerová, and Michael Collins.
2006. A discriminative model for tree-to-tree trans-
lation. In Proc. EMNLP.

Steve DeNeefe, Kevin Knight, Wei Wang, and Daniel
Marcu. 2007. What can syntax-based MT learn from
phrase-based MT? In Proc. EMNLP-CoNLL.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What ’ s in a translation rule ? Infor-
mation Sciences, 2004.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Proc.
ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8).

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proc. ACL.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2016.
Visualizing and understanding recurrent networks. In
Proc. ICLR.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proc. EMNLP.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Proc. NIPS.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proc.
NAACL.

Jonathan K. Kummerfeld, David Hall, James R. Curran,
and Dan Klein. 2012. Parser showdown at the Wall
Street Corral: An empirical investigation of error types
in parser output. In Proc. EMNLP-CoNLL.

Jonathan K. Kummerfeld, Daniel Tse, James R Curran,
and Dan Klein. 2013. An empirical examination of
challenges in Chinese parsing. In Proc. ACL.

Qv Le and Tomas Mikolov. 2014. Distributed represen-
tations of sentences and documents. In Proc. ICML.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models in
nlp. In Proc. NAACL.

Yang Liu, Qun Liu, and Yajuan Lü. 2011. Adjoining
tree-to-string translation. In Proc. ACL.

Mitchell P Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proc. ACL.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on Parsing the Web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Sameer S Pradhan and Nianwen Xue. 2009. Ontonotes:
the 90% solution. In Proc. NAACL.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proc. EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Proc. NIPS.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Proc. NIPS.

Kaizhong Zhang and Dennis Shasha. 1989. Simple fast
algorithms for the editing distance between trees and
related problems. SIAM Journal on Computing, 18(6).

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. In Proc. IJ-
CAI.

1534

