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Abstract

For AI systems to reason about real world situ-
ations, they need to recognize which processes
are at play and which entities play key roles in
them. Our goal is to extract this kind of role-
based knowledge about processes, from mul-
tiple sentence-level descriptions. This knowl-
edge is hard to acquire; while semantic role
labeling (SRL) systems can extract sentence
level role information about individual men-
tions of a process, their results are often noisy
and they do not attempt create a globally con-
sistent characterization of a process.

To overcome this, we extend standard within
sentence joint inference to inference across
multiple sentences. This cross sentence in-
ference promotes role assignments that are
compatible across different descriptions of the
same process. When formulated as an Integer
Linear Program, this leads to improvements
over within-sentence inference by nearly 3%
in F1. The resulting role-based knowledge is
of high quality (with a F1 of nearly 82).

1 Introduction

Knowledge about processes is essential for AI sys-
tems in order to understand and reason about the
world. At the simplest level, even knowing which
class of entities play key roles can be useful for
tasks involving recognition and reasoning about pro-
cesses. For instance, given a description “a pud-
dle drying in the sun”, one can recognize this as an
instance of the process evaporation using a macro-
level role knowledge: Among others, the typical un-
dergoer of evaporation is a kind of liquid (the pud-

1) Evaporation is the process by which liquids are
converted to their gaseous forms.
2) Evaporation is the process by which water is
converted into water vapor.
3) Water vapor rises from water due to evaporation.
4) Clouds arise as water evaporates in the sun.

Table 1: Example sentences for the process evaporation. Un-

derlined spans correspond to fillers for the undergoer role.

dle), and the enabler is usually a heat source (the
sun).

Our goal is to acquire this kind of role-based
knowledge about processes from sentence-level de-
scriptions in grade level texts. Semantic role label-
ing (SRL) systems can be trained to identify these
process specific roles. However, these were de-
veloped for sentence-level interpretation and only
ensure within sentence consistency of labels (Pun-
yakanok et al., 2004; Toutanova et al., 2005; Lewis
et al., 2015), limiting their ability to generate co-
herent characterizations of the process overall. In
particular, the same process participant may appear
in text at different syntactic positions, with different
wording, and with different verbs, which makes it
hard to extract globally consistent descriptions. In
this work, we propose a cross sentence inference
method to address this problem.

To illustrate the challenge consider some exam-
ple sentences on evaporation shown in Table 1.The
underlined spans correspond to fillers for an un-
dergoer role i.e., the main entity that is undergo-
ing evaporation. However, the filler water occurs
as different syntactic arguments with different main
actions. Without large amounts of process-specific
training data, a supervised classifier will not able to
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learn these variations reliably. Nevertheless, since
all these sentences are describing evaporation, it is
highly likely that water plays a single role. This ex-
pectation can be encoded as a factor during inference
to promote consistency and improve accuracy, and is
the basis of our approach.

We formalize this cross sentence joint inference
idea as an Integer Linear Program (ILP). Our cen-
tral idea is to collect all sentences for a single pro-
cess, generate candidate arguments, and assign roles
that are globally consistent for all arguments within
the process. This requires a notion of consistency,
which we model as pairwise alignment of arguments
that should receive the same label. Argument-level
entailment alone turns out to be ineffective for this
purpose.

Therefore, we develop an alignment classifier that
uses the compatibility of contexts in which the can-
didate arguments are embedded. We transform the
original role-label training data to create alignment
pairs from arguments that get assigned the same la-
bel, thus avoiding the need for additional labeling.
Finally, the ILP combines the output of the SRL
classifier and the alignment classifier in an objective
function in order to find globally consistent assign-
ments.

An empirical evaluation on a process dataset
shows that proposed cross sentence formulation out-
performs a strong within sentence joint inference
baseline, which uses scores from a custom built role
classifier that is better suited for the target domain.

In summary, this work makes the following con-
tributions:

1. A cross-sentence, collective role-labeling and
alignment method for harvesting process
knowledge.

2. A high quality semantic resource that provides
knowledge about scientific processes discussed
in grade-level texts including physical, biolog-
ical, and natural processes.

3. An evaluation which shows that the proposed
cross sentence inference yields high quality
process knowledge.

2 Related Work

Role-based representations have been shown to be
useful for Open-domain factoid question answer-
ing (Shen and Lapata, 2007; Pizzato and Mollá,
2008), grade-level science exams (Jauhar et al.,
2016) , and comprehension questions on process
descriptions (Berant et al., 2014). Similar to pro-
cess comprehension work, we target semantic rep-
resentations about processes but we focus only on
a high-level summary of the process, rather than
detailed sequential representation of sub-events in-
volved. Moreover, we seek to aggregate knowledge
from multiple descriptions rather than understand a
single discourse about each process.

There has been substantial prior work on se-
mantic role labeling itself, that we leverage in this
work. First, there are several systems trained on
the PropBank dataset, e.g., EasySRL (Lewis et al.,
2015), Mate (Björkelund et al., 2009), Generalized-
Inference (Punyakanok et al., 2004). Although use-
ful, the PropBank roles are verb (predicate) specific,
and thus do not produce consistent labels for a pro-
cess (that may be expressed using several different
verbs). In constrast, frame-semantic parsers, e.g.,
SEMAFOR (Das et al., 2010), trained on FrameNet-
annotated data (Baker et al., 1998) do produce con-
cept (frame)-specific labels, but the FrameNet train-
ing data has poor (< 50%) coverage of the grade
science process terms. Building a resource like
FrameNet for a list of scientific processes is expen-
sive.

Several unsupervised, and semi-supervised ap-
proaches have been proposed to address these issues
for PropBank style predicate-specific roles (Swier
and Stevenson, 2004; Lang and Lapata, 2011;
Fürstenau and Lapata, 2009; Fürstenau and Lapata,
2012; Lang and Lapata, 2010; Klementiev, 2012). A
key idea here is to cluster syntactic signatures of the
arguments and use the discovered clusters as roles.
Another line of research has sought to perform joint
training for syntactic parsing and semantic role la-
beling (Lewis et al., 2015), and in using PropBank
role labels to improve FrameNet processing using
pivot features (Kshirsagar et al., 2015).

Some SRL methods account for context informa-
tion from multiple sentences (Ruppenhofer et al.,
2010; Roth and Lapata, 2015). They focus on an-
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Process Undergoer Enabler Action Result
evaporation liquid heat changes gas

water heat energy convert water vapor
weathering rock weather disintegration smaller rocks

solid material heating breaking down smaller particles
photosynthesis carbon dioxide solar energy convert energy

CO2 light energy transforms food

Table 2: Examples of Target Knowledge Roles

notating individual event mentions in a document
using discourse-level evidence such as co-reference
chains. Our task is to aggregate knowledge about
processes from multiple sentences in different doc-
uments. Although both tasks require raw SRL-style
input, the different nature of the process task means
that a different solution framework is needed.

Our goal is to acquire high quality semantic
role based knowledge about processes. This al-
lows us an unique opportunity to jointly inter-
pret sentences that are discussing the same pro-
cess. We build on ideas from previous within sen-
tence joint inference (Punyakanok et al., 2004), ar-
gument similarity notions in semi and unsupervised
approaches (Fürstenau and Lapata, 2012), and com-
bining PropBank roles to propose a cross-sentence
inference technique (Kshirsagar et al., 2015). The
inference can be integrated with existing trained su-
pervised learning pipelines, which can provide a
score for role assignments for a given span.

3 Approach

Processes are complex events with many partici-
pating entities and inter-related sub-events. In this
work, we aim for a relatively simple macro-level
role-based knowledge about processes. Our task is
to find classes of entities that are likely to fill key
roles within a process namely, the undergoer, en-
abler, result, and action1 (different verbs denoting
the main action when the process is occurring, e.g.,
“dry”). We select these roles based on an initial
analysis of grade science questions that involve rec-
ognizing instances of processes from their descrip-
tions. Table 2 shows some examples of the target
knowledge roles.
1For simplicity, we abuse the notion of a role to also include the
main action as a role.

We develop a scalable pipeline for gathering such
role-based process knowledge. The input to our sys-
tem is the name of a process, e.g., “evaporate”. Then
we use a set of query patterns to find sentences that
describe the process. A semantic role classifier then
identifies the target roles in these sentences. The
output is a list of typical fillers for the four process
roles.

This setting presents a unique opportunity, where
the goal is to perform semantic role labeling on a set
of closely related sentences, sentences that describe
the same process. This allows us to design a joint
inference method that can promote expectations of
consistency amongst the extracted role fillers.

There is no large scale training data that can
be readily used for this task. Because we tar-
get process-specific and not verb-specific semantic
roles, existing ProbBank (Kingsbury and Palmer,
2003) trained SRL systems cannot be used di-
rectly. Frame-semantic parsers trained on FrameNet
data (Baker et al., 1998) are also not directly usable
because FrameNet lacks coverage for many of the
processes discussed in the science domain. There-
fore, we create a process dataset that covers a rel-
atively small number of processes, but demonstrate
that the role extraction generalizes to previously un-
seen processes as well.

3.1 Cross-Sentence Inference

Given a set of sentences about a process, we want
to extract role fillers that are globally consistent i.e.,
we want role assignments that are compatible. Our
approach is based on two observations: First, any
given role is likely to have similar fillers for a par-
ticular process. For instance, the undergoers of the
evaporation process are likely to be similar – they
are usually liquids. Second, similar arguments are
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Figure 1: A factor graph representation of cross sentence
inference. S11 and S12 denote role assignments for argu-
ments a11 and a12 in one sentence, and S21 and S22 de-
note for arguments a21 and a22 in another. The φrole fac-
tors score each role assignment to the arguments, and the
φalign factors score the compatibility of the connected ar-
guments. φsent factors encode sentence level constraints.

unlikely to fill different roles for the same process.
In evaporation, for example, it is highly unlikely that
water is an undergoer in one sentence but is a re-
sult in another. These role-specific selectional pref-
erences vary for each process and can be learned if
there are enough example role fillers for each pro-
cess during training (Zapirain et al., 2009; Zapirain
et al., 2013). Since, we wish to handle processes for
which we have no training data, we approximate this
by modeling whether two arguments should receive
the same role given their similarity and their context
similarity.

Figure 1 illustrates the cross sentence inference
problem using a factor graph. The Sij random vari-
ables denote the role label assignment for the jth

argument in sentence i. Each assignment to an ar-
gument Sij is scored by a combination of the role
classifier’s score (factor φrole), and its pairwise com-
patibility with the assignments to other arguments
(factor φalign). The factors φsent capture two basic
within sentence constraints.

3.2 Inference using ILP

We formulate the cross sentence inference task using
an Integer Linear Program shown in Figure 2. The
ILP seeks an assignment that maximizes a combina-
tion of individual role assignment scores and their
global compatibility, which is measured as the simi-
larity of fillers for the same role minus similarity of

arg max
z

∑

k

∑

i,j

zijk

(
λ φrole(aij , k)︸ ︷︷ ︸

Role classifier score

+(1− λ)

[
∆(aij , k)−∇(aij , k)

]

︸ ︷︷ ︸
Global compatibility

)

where compatibility with same roles is:

∆(aij , k) =
1

Ñk

∑

l,m

zlmkφalign(aij , alm)

and compatibility with other roles is:

∇(aij) =
2

Ñk′

∑

l,m

∑

n6=k

zlmn φalign(aij , alm)︸ ︷︷ ︸
Penalty when role n 6= k

subject to:∑

k

zijk ≤ 1 ∀ aij ∈ sentencei

∑

j

zijk ≤ 1 ∀ aij ∈ sentencei, k ∈ R

Ñk : Approximate number of arguments with role k

Ñk′ : Approximate number of arguments with role n 6= k

Figure 2: An Integer Linear Program formulation of the Cross-

sentence Inference.

fillers of different roles.
The decision variables zijk denote role assign-

ments to arguments. When zijk is set it denotes that
argument j in sentence i (aij) has been assigned role
k. The objective function uses three components to
assign scores to an assignment.
1. Classifier Score φrole(aij , k) – This is the score

of a sentence-level role classifier for assigning
role k to argument aij .

2. Within Role Compatibility ∆(aij , k) – This is
a measure of argument aij’s compatibility with
other arguments which have also been assigned
the same role k. We measure compatibility us-
ing a notion of alignment. An argument is said
to align with another if they are similar to each
other in some respect (either lexically or se-
mantically). As we show later, we develop an
alignment cclassifier which predicts an alignment
score φalign for each pair of arguments. The com-
patibility is defined as a normalized sum of the
alignment scores for argument aij paired with
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other arguments that have also been assigned the
role k. Without some normalization roles with
many arguments will receive higher compatibil-
ity scores.To avoid this, we normalize by (1/Ñk),
where Ñk refers to the number of arguments that
the role classifier originally labeled with role k,
an approximation to the number of arguments
that are currently assigned role k by the ILP.

3. Across Role Incompatibility ∇(aij , k) – This is
a measure of how well aij aligns with the other
arguments that are assigned a different role (n 6=
k). For good assignments this quantity should be
low. Therefore we add this as a penalty to the ob-
jective. As with ∆, we use an approximation for
normalization (1/Ñk′), which is the product of
other roles and the number of arguments in other
sentences that can receive these roles. Because
Ñk′ is typically higher, we boost this score by 2
to balance against ∆.
Last, we use two sets of hard constraints to en-

force the standard within-sentence expectations for
roles: 1) A single argument can receive only one role
label, and 2) A sentence cannot have more than one
argument with the same label, except for the NONE
role.

We use an off-the-shelf solver in Gurobi
(www.gurobi.com) to find an approximate solution
to the resulting optimization problem.

3.3 Role Classifier (Φrole)
The role classifier provides a score for each role la-
bel for a given argument. Although existing SRL
and frame semantic parsers do not directly produce
the role information we need (Section 2), we build
on them by using their outputs for building a process
role classifier.

Before we can assign role labels, we first
need to generate candidate arguments. Using
EasySRL (Lewis et al., 2015), a state-of-the-art SRL
system, we generate the candidate argument spans
for each predicate (verbs) in the sentence. Then, us-
ing a linear SVM classifier (Fan et al., 2008), we
score the candidate arguments and the predicates for
our four roles and a special NONE role to indicate
the argument is not one of the four. The classifier
is trained with a set of annotated examples (see Sec-
tion 4) with the following sets of features.

i) Lexical and Syntactic – We use a small set of

standard SRL features such as lexical and syntactic
contexts of arguments (e.g., head word, its POS tag)
and predicate-argument path features (e.g, depen-
dency paths). We also add features that are specific
to the nature of the process sentences. In particular,
we encode syntactic relationships of arguments with
respect to the process name mention in the sentence.
We use Stanford CoreNLP toolkit (Manning et al.,
2014) to obtain POS tags, and dependency parses to
build these features.

ii) PropBank roles – While they do not have a 1-
to-1 correspondence with process roles, we use the
EasySRL roles coupled with the specific predicate
as a feature to provide useful evidence towards the
process role.

iii) Framenet Frames – We use the frames evoked
by the words in the sentence to allow better feature
sharing among related processes. For instance, the
contexts of undergoers in evaporation and conden-
sation are likely to be similar as they are both state
changes which evoke the same Undergo Change
frame in FrameNet.

iv) Query patterns – We use query patterns to find
sentences that are likely to contain the target roles
of interest. The query pattern that retrieved a sen-
tence can help bias the classifier towards roles that
are likely to be expressed in it.

3.4 Alignment Classifier (Φalign)
Our goal with alignment is to identify arguments that
should receive similar role labels. One way to do this
argument alignment is to use techniques developed
for phrase level entailment or similarity which of-
ten use resources such as WordNet and distributional
embeddings such as word2vec (Mikolov et al., 2013)
vectors. It turns out that this simple entailment or
argument similarity, by itself, is not enough in many
cases for our task2. Moreover, the enabler, and the
result roles are often long phrases whose text-based
similarity is not reliable. A more robust approach is
necessary. Lexical and syntactic similarity of argu-
ments and the context in which they are embedded
can provide valuable additional information. Table 3
shows a complete list of features we use to train the
alignment classifier.
2We used an approach that combined WordNet-based phrase
similarity method, and Word2Vec vector similarity, where the
vectors were learned from a general news domain.
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Lexical

Entailment score of arguments.
Word2vec similarity of argument vectors.
Word2Vec similarity of head nodes of arguments.
Word2Vec similarity of parent of the head nodes.
Word2Vec similarity of verbs of argument sentences.
Jaccard similarity of children of the head node.

Syntactic

Similarities of frames to right and left of arguments.
Jaccard similarity of POS tags of argument.
POS tag of head nodes match (boolean).
POS tag of head node parents match (boolean).
Similarity of dep. path from arg to process name.
Similarity of POS tags on arg to process name path.
Similarity of POS tags of arg’s children.
Similarity of the dependencies of the arg’s head.

Sentence

Query patterns match argument sentences (boolean).

Table 3: Alignment Classifier Features. Similarities of sets

were calculated using Jaccard co-efficient.

Fortunately, learning this classifier does not re-
quire any additional training data. The original data
with annotated semantic role labels can be easily
transformed to generate supervision for this classi-
fier. For any given process, we consider all pairs
of arguments in different sentences (i.e., (aij , alm) :
i 6= l) and label them as aligned if they are labeled
with the same role, or unaligned otherwise.

4 Evaluation

Our goal is to generate knowledge about processes
discussed in grade-level science exams. Since ex-
isting semantic resources such as FrameNet do not
provide adequate coverage for these, we created a
dataset of process sentences annotated with the four
process roles: undergoer, enabler, action, and result.

4.1 Dataset
This dataset consists of 1205 role fillers extracted
from 537 sentences retrieved from the web. We
first compiled the target processes from a list of
process-oriented questions found in two collections:
(i) New York Regents science exams (Clark, 2015),
and (ii) helpteaching.com, a Web-based collection

Query Patterns
〈name〉 is the process of 〈x〉
〈name〉 is the process by which 〈x〉
〈name〉 {occurs when} 〈x〉
〈name〉 { helps to | causes } 〈x〉

Table 4: Example query patterns used to find process descrip-

tion sentences.

of practice questions. Then, we identified 127 pro-
cess questions from which we obtained a set of 180
unique target processes. For each target process,
we queried the web using Google to find definition-
style sentences, which describe the target process.
For each process we discarded some noisy sentences
through a combination of automatic and manual fil-
tering.

Table 4 shows some examples of the 14 query
patterns that we used to find process descriptions.
Because these patterns are not process-specific, they
work for unseen processes as well.

To find role fillers from these sentences, we first
processed each sentence using EasySRL (Lewis et
al., 2015) to generate candidate arguments. Some of
the query patterns can be used to generate additional
arguments. For example, in the pattern “〈name〉 is
the process of 〈x〉” if 〈x〉 is a noun then it is likely to
be an undergoer, and thus can be a good candidate.
3. Then two annotators annotated the candidate ar-
guments with the target roles if one were applicable
and marked them as NONE otherwise. Disagree-
ments were resolved by a third annotator. The an-
notations spanned a random subset of 54 target pro-
cesses. The role label distribution is shown below:

Role No. of instance
Undergoer 77
Enabler 154
Action 315
Result 194
NONE 465

Table 5: Role distribution

We conducted five fold cross validation experi-
ments to test role extraction. To ensure that we are
testing the generalization of the approach to unseen

3These patterns are ambiguous and are not adequate by them-
selves for accurately extracting the roles. We use them as fea-
tures.
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processes, we generated the folds such that the pro-
cesses in the test fold were unseen during training.
We compared the basic role classifier described in
Section 3.3, the within sentence and the cross sen-
tence inference models. We tune the ILP parame-
ter λ for cross sentence inference based on a coarse-
grained sweep on the training folds.

We also compared with a simple baseline that
learned a mapping from PropBank roles produced
by EasySRL system to the process roles by using
the roles and the verb as features. We also add the
FrameNet frames invoked by the lexical unit in the
sentence. Note this is essentially a subset of the
features we use in our role classifier. As a sec-
ond baseline, we compare with a (nearly) out-of-the-
box application of SEMAFOR (Das et al., 2010), a
FrameNet based frame-semantic parser. We modi-
fied SEMAFOR to override the frame identification
step since the process frame information is already
associated with the test sentences.

4.2 Cross-Sentence Inference Results

Table 6 compares performance of the different meth-
ods. The learned role mapping of shallow seman-
tic roles performs better than SEMAFOR but worse
than the simple role classifier. SEMAFOR uses a
large set of features which help it scale for a di-
verse set of frames in FrameNet. However, many
of these many not be well suited for the process sen-
tences in our relatively smaller dataset. Therefore,
we use our custom role classifier as a strong base-
line to demonstrate within and cross sentence gains.
Enforcing sentence-level consistency through joint

Method Prec. Rec. F1
Role mapping 56.62 59.60 58.07
SEMAFOR 40.72 50.54 45.10

Role class. (φrole) 78.48 78.62 78.55
+ within sent. 86.25 73.91 79.60
+ cross sent. 89.84 75.36 81.97††

Table 6: Process role inference performance. †† indicates

significant improvement over Role + within sentence system.

inference, shown as (+within sent.), improves over
the baseline which does not use any consistency. It
gains precision (by nearly 8 points), while loosing
recall in the trade-off (by about 4.7 points) to yield

an overall gain in F1 by 1.05 points. Enforcing cross
sentence consistency, shown as (+cross sent.) pro-
vides additional gains beyond within sentence infer-
ence by another 2.38 points in F1 4. Table 7 shows
how the gains are distributed across different roles.
Cross sentence inference provides improvements for
all roles, with the biggest for undergoers (nearly 4
points).

Method Und. Ena. Act. Res.
Role Class. 65.38 73.84 83.58 77.30

+ within 66.01 73.11 86.70 76.11
+ cross 70.00 74.31 89.30 78.00

Table 7: Performance (F1) across all roles.

Figure 3 shows the precision/recall plots for the
basic role classifier and within and cross sentence in-
ference. Both inference models trade recall for gains
in precision. Cross sentence yields higher precision
at most recall levels, for a smaller overall loss in re-
call compared to within sentence (1.6 versus 4.9).

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.7

0.8

0.9

1.0

Pr
ec

is
on

Role Classifier
+ within sent.
+ cross sent.

Figure 3: Precision/Recall trade-offs for process role inference.

y-axis is truncated at 0.7 to better visualize the differences.

4.3 Ablations
Table 8 shows the utility of various components of
cross sentence inference. Using argument entail-
ment alone turns out to be ineffective and only pro-
duces a minor improvement (0.16 in F1). How-
ever, the alignment classifier scores are much more
effective and yield about 2.37 points gain in F1.
Both within and across role compatibilities, ∆ and
∇, yield statistically significant improvements5 over
4The single parameter in ILP turned out to be stable across the
folds and obtained this best value at λ = 0.8.

5Significance measured using approximate randomization test
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Figure 4: Cross sentence gains in F1 when varying the number

of most similar arguments used to assess compatibilities.

within sentence inference. Combining these com-
plementary compatibilities provides the best gains.

Method Prec. Rec. F1
within sent. 86.25 73.91 79.60

+ Entailment
cross sent. w/ ∆ 85.13 72.64 78.39
cross sent. w/∇ 85.98 73.36 79.17
cross sent. w/ ∆ +∇ 86.62 73.91 79.76

+ Alignment Classifier
cross sent. w/ ∆ 89.07 75.36 81.64††
cross sent. w/∇ 88.72 75.54 81.60††
cross sent. w/ ∆ +∇ 89.84 75.36 81.97††

Table 8: Performance impact of inference components. ††
indicates significant improvement over within sentence.

We also studied the effect of varying the number
of arguments that ILP uses to measure the compat-
ibility of role assignments. Specifically, we allow
inference to use just the top k alignments from the
alignment classifier. Figure 4 shows the main trend.
Using just the top similar argument already yields a
1 point gain in F1. Using more arguments tends to
increase gains in general but with some fluctuations.
Finding an assignment that respects all compatibili-
ties across many argument pairs can be difficult. As
seen in the figure, at some of the shorter span lengths
we see a slightly larger gain (+0.3) compared to us-
ing all spans. This hints at benefits of a more flexible
formulation that makes joint decisions on alignment
and role label assignments.

Table 9 shows an ablation of the alignment clas-
sifier features. Entailment of arguments is the most

informative feature for argument alignment. Adding
lexical and syntactic context compatibilities adds
significant boosts in precision and recall. Know-
ing that the arguments are retrieved by the same
query pattern (sentence feature) only provides mi-
nor improvements. Even though the overall classi-
fication performance is far from perfect, cross sen-
tence can benefit from alignment as long as it pro-
vides a higher score for argument pairs that should
align compared to those that should not.

Feature P R F1
Entailment score only 39.55 14.59 21.32
+Lexical 50.75 26.02 34.40
+Syntactic 62.31 31.47 41.82
+Sentence 62.33 31.41 41.53

Table 9: Performance of different feature groups for alignment.

4.3.1 Error Analysis
We conduct an error analysis over a random set

of 50 errors observed for cross sentence inference.
In addition to issues from noisy web sentences and
nested arguments from bad candidate extraction, we
find the following main types of errors:

• Dissimilar role fillers (27.5 %) – In some pro-
cesses, the fillers for the result role have high
levels of variability that makes alignment error
prone. For the process camouflage, for instance,
the result roles include ‘disorientation’, ‘protect
from predator’, ‘remain undetected’ etc.

• Bad role classifier scores (37.5%) – For some in-
stances the role classifier assign high scores to in-
correct labels, effectively preventing the ILP from
flipping to the correct role. For example, the ar-
gument that follows “causes” tends to be a re-
sult in many cases but not always, leading to high
scoring errors. For example, in the sentence with
“...when heat from the sun causes water on earth’s
...”, the role classifier incorrectly assigns ‘water’
to a result role with high confidence.

• Improper Weighting (7.5%)– Sometimes the ILP
does not improve upon a bad top choice from
the role classifier. In some of these cases, rather
than the fixed lambda, a different weighted com-
bination of role and alignment classifier scores
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would have helped the ILP to flip. For example,
the argument ‘under autumn conditions’ from the
sentence ‘hibernation occurs when the insects are
maintained under autumn conditions.’ has a good
role score and is similar to other correctly labeled
enablers such as ‘cold , winter conditions’ but yet
is unable to improve.

The rest (27.5 %) are due to noisy web sentences,
incorrect argument extraction and errors outside the
scope of cross sentence inference.

5 Conclusions

Simple role-based knowledge is essential for rec-
ognizing and reasoning about situations involving
processes. In this work we developed a cross sen-
tence inference method for automatically acquiring
such role-based knowledge for new processes. The
main idea is to enforce compatibility among roles
extracted from sentences belonging to a single pro-
cess. We find that the compatibility can be effec-
tively assessed using an alignment classifier built
without any additional supervision. Empirical eval-
uation on a process dataset shows that cross sentence
inference using an Integer Linear Program helps im-
prove the accuracy of process knowledge extraction.
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