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Abstract

Identifying mathematical relations expressed
in text is essential to understanding a broad
range of natural language text from election
reports, to financial news, to sport commen-
taries to mathematical word problems. This
paper focuses on identifying and understand-
ing mathematical relations described within a
single sentence. We introduce the problem
of Equation Parsing – given a sentence, iden-
tify noun phrases which represent variables,
and generate the mathematical equation ex-
pressing the relation described in the sentence.
We introduce the notion of projective equation
parsing and provide an efficient algorithm to
parse text to projective equations. Our system
makes use of a high precision lexicon of math-
ematical expressions and a pipeline of struc-
tured predictors, and generates correct equa-
tions in 70% of the cases. In 60% of the time,
it also identifies the correct noun phrase →
variables mapping, significantly outperform-
ing baselines. We also release a new annotated
dataset for task evaluation.

1 Introduction

Understanding text often involves reasoning with re-
spect to quantities mentioned in it. Understanding
the news article statement in Example 1 requires
identifying relevant entities and the mathematical re-
lations expressed among them in text, and determin-
ing how to compose them. Similarly, solving a math
word problem with a sentence like Example 2, re-
quires realizing that it deals with a single number,
knowing the meaning of “difference” and compos-

Example 1 Emanuel’s campaign contribu-
tions total three times those of his opponents
put together.
Example 2 Twice a number equals 25 less
than triple the same number.
Example 3 Flying with the wind , a bird was
able to make 150 kilometers per hour.
Example 4 The sum of two numbers is 80.
Example 5 There are 54 5-dollar and 10-
dollar notes.

ing the right equation – “25” needs to be subtracted
from a number only after it is multiplied by 3.

As a first step towards understanding such rela-
tions, we introduce the Equation Parsing task - given
a sentence expressing a mathematical relation, the
goal is to generate an equation representing the rela-
tion, and to map the variables in the equation to their
corresponding noun phrases. To keep the problem
tractable, in this paper we restrict the final output
equation form to have at most two (possibly coref-
erent) variables, and assume that each quantity men-
tioned in the sentence can be used at most once in
the final equation.1 In example 1, the gold out-
put of an equation parse should be V1 = 3 × V2,
with V1 = “Emanuel’s campaign contributions” and
V2 = “those of his opponents put together”.

The task can be seen as a form of semantic parsing
(Goldwasser and Roth, 2011; Kwiatkowski et al.,
2013) where instead of mapping a sentence to a logi-
cal form, we want to map it to an equation. However,

1We empirically found that around 97% of sentences de-
scribing a relation have this property.
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there are some key differences that make this prob-
lem very challenging in ways that differ from the
“standard” semantic parsing. In Equation Parsing,
not all the components of the sentence are mapped
to the final equation. There is a need to identify
noun phrases that correspond to variables in the rela-
tions and determine that some are irrelevant and can
be dropped. Moreover, in difference from seman-
tic parsing into logical forms, in Equation Parsing
multiple phrases in the text could correspond to the
same variable, and identical phrases in the text could
correspond to multiple variables.

We call the problem of mapping noun phrases
to variables the problem of grounding variables.
Grounding is challenging for various reasons, key
among them are that: (i) The text often does not
mention “variables” explicitly, e.g., the sentence
in example 3 describes a mathematical relation be-
tween the speed of bird and the speed of wind, with-
out mentioning “speed” explicitly. (ii) Sometimes,
multiple noun phrases could refer to the same vari-
able. For instance, in example 2, both “a number”
and “the same number” refer to the same variable.
On the other hand, the same noun phrase might re-
fer to multiple variables, as in example 4, where the
noun phrase “two numbers” refer to two variables.

In addition, the task involves deciding which of
the quantities identified in the sentence are relevant
to the final equation generation. In example 5, both
“5” and “10” are not relevant for the final equation
“V1 + V2 = 54”. Finally, the equation needs to
be constructed from a list of relevant quantities and
grounded variables. Overall, the output space be-
comes exponential in the number of quantities men-
tioned in the sentence.

Determining the final equation that corresponds
to the text is an inference step over a very large
space. To address this, we define the concept of
“projectivity” - a condition where the final equation
can be generated by combining adjacent numbers or
variables, and show that most sentences expressing
mathematical relations exhibit the projectivity prop-
erty. Finally, we restrict our inference procedure to
only search over equations which have this property.

Our approach builds on a pipeline of structured
predictors that identify irrelevant quantities, recog-
nize coreferent variables, and, finally, generate equa-
tions. We also leverage a high precision lexicon of

mathematical expressions and develop a greedy lex-
icon matching strategy to guide inference. We dis-
cuss and exemplify the advantages of this approach
and, in particular, explain where the “standard” NLP
pipeline fails to support equation parsing, and ne-
cessitates the new approach proposed here. Another
contribution of this work is the development of a
new annotated data set for the task of equation pars-
ing. We evaluate our method on this dataset and
show that our method predicts the correct equation
in 70% of the cases and that in 60% of the time we
also ground all variables correctly.

The next section presents a discussion of related
work. Next we formally describe the task of equa-
tion parsing. The following sections describe our
equation representation and the concept of projectiv-
ity, followed by the description of our algorithm to
generate the equations and variable groundings from
text. We conclude with experimental results.

2 Related Work

The work most related to this paper is (Madaan et al.,
2016), which focuses on extracting relation triples
where one of the arguments is a number. In contrast,
our work deals with multiple variables and complex
equations involving them. There has been a lot of re-
cent work in automatic math word problem solving
(Kushman et al., 2014; Roy et al., 2015; Hosseini
et al., 2014; Roy and Roth, 2015). These solvers
cannot handle sentences individually. They require
the input to be a complete math word problem, and
even then, they only focus on retrieving a set of an-
swer values without mentioning what each answer
value corresponds to. Our work is also conceptually
related to work on semantic parsing – mapping natu-
ral language text to a formal meaning representation
(Wong and Mooney, 2007; Clarke et al., 2010; Cai
and Yates, 2013; Kwiatkowski et al., 2013; Gold-
wasser and Roth, 2011). However, as mentioned
earlier, there are some significant differences in the
task definition that necessitate the development of a
new approach.

3 The Equation Parsing Task

Equation parsing takes as input a sentence x describ-
ing a single mathematical equation, comprising one
or two variables and other quantities mentioned in x.
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Let N be the set of noun phrases in the sentence x.
The output of the task is the mathematical equation
described in x, along with a mapping of each vari-
able in the equation to its corresponding noun phrase
in N . We refer to this mapping as the “grounding”
of the variable; the noun phrase represents what the
variable stands for in the equation. Table 1 gives
an example of an input and output for the equation
parsing of the text in example 2. Since an equation
can be written in various forms, we use the form
which most agrees with text, as our target output.
So, for example 1, we will choose V1 = 3× V2 and
not V2 = V1 ÷ 3. In cases where several equation
forms seem to be equally likely to be the target equa-
tion, we randomly choose one of them, and keep this
choice consistent across the dataset.

The Equation Parsing Task
Input Twice a number equals 25 less than

triple the same number.
Output 2× V1 = (3× V1)− 25 (Equation)

V1 = “a number” (Grounding)
Table 1: Input and output for Equation Parsing

3.1 Equation Parse Representation

In this section, we introduce an equation parse for
a sentence. An equation parse of a sentence x is
a pair (T,E), where T represents a set of triggers
extracted from x, and E represents an equation tree
formed with the set T as leaves. We now describe
these terms in detail.
Trigger Given a sentence xmentioning a mathemat-
ical relation, a trigger can either be a quantity trigger
expressed in x, or variable trigger which is a noun
phrase in x corresponding to a variable. A quantity
trigger is a tuple (q, s), where q is the numeric value
of the quantity mentioned in text, and s is the span
of text from the sentence x which refers to the quan-
tity. A variable trigger is a tuple (l, s), where l rep-
resents the label of the variable, and s represents the
noun phrase representing the variable. For example,
for the sentence in Fig 1, the spans “Twice”, “25”,
and “triple” generate quantity triggers, whereas “a
number” and “the same number” generate variable
triggers, with label V1.
Trigger List The trigger list T for a sentence x con-
tains one trigger for each variable mention and each
numeric value used in the final equation expressed

Notation Definition

Quantity Trigger Mention of a quantity in text
Variable Trigger Noun phrase coupled with variable

label
Trigger Quantity or variable trigger
Quantity Trigger
List

List of quantity triggers, one for each
number mention in equation

Variable Trigger
List

List of variable triggers, one for each
variable mention in equation

Trigger List Union of quantity and variable trig-
ger list

Equation Tree Binary tree representation of equa-
tion

lc(n), rc(n) Left and right child of node n

EXPR(n) Expression represented by node n

�(n) Operation at node n

ORDER(n) Order of operation at node n

Location(n) Character offset of trigger represent-
ing leaf node n

Span-Start(n),
Span-End(n)

Start and end character offsets of
span covered by node n

Table 2: Summary of notations used in the paper

by the sentence x. The trigger list might consist of
multiple triggers having the same label, or extracted
from the same span of text. In the example sentence
in Fig 1, the trigger list comprises two triggers hav-
ing the same label V1. The final trigger list for the
example in Fig 1 is {(2, “2”), (V1, “a number”), (25,
“25”), (3, “triple”), (V1, “the same number”)}. Note
that there can be multiple valid trigger lists. In our
example, we could have chosen both variable trig-
gers to point to the same mention “a number”. Quan-
tity triggers in the trigger list form the quantity trig-
ger list, and the variable triggers in trigger list form
the variable trigger list.
Equation Tree An equation tree of a sentence x is
a binary tree whose leaves constitute the trigger list
of x, and internal nodes (except the root) are labeled
with one of the following operations – addition, sub-
traction, multiplication, division. In addition, for
nodes which are labeled with subtraction or division,
we maintain a separate variable to determine order
of its children. The root of the tree is always labeled
with the operation equal.

An equation tree is a natural representation for an
equation. Each node n in an equation tree repre-
sents an expression EXPR(n), and the label of the
parent node determines how the expressions of its
children are to be composed to construct its own ex-
pression. Let us denote the label for a non-leaf node
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Twice a number equals 25 less than triple the same number.Sentence

Trigger List

Equation Tree

2 V1 25 3 V1

×

=
−r

×

Figure 1: A sentence with its trigger list and equation tree. −r indicates subtraction with order rl.

n to be �(n), where �(n) ∈ {+,−,×,÷,=} and
the order of a node n’s children by ORDER(n) (de-
fined only for subtraction and division nodes), which
takes values lr (Left-Right) or rl (Right-Left). For a
leaf node n, the expression EXPR(n) represents the
variable label, if n is a variable trigger, and the nu-
meric value of the quantity, if it is a quantity trigger.
Finally, we use lc(n) and rc(n) to represent the left
and right child of node n, respectively. The equation
represented by the tree can be generated as follows.
For all non-leaf nodes n, we have

EXPR(n) =



EXPR(lc(n))�(n) EXPR(rc(n))

if �(n) ∈ {+,×,=}
EXPR(lc(n))�(n) EXPR(rc(n))

if �(n) ∈ {−,÷} ∧ ORDER(n) = lr

EXPR(rc(n))�(n) EXPR(lc(n))

if �(n) ∈ {−,÷} ∧ ORDER(n) = rl

(1)

Given an equation tree T of a sentence, the equation
represented by it is the expression generated by the
root of T (following Equation 1). Referring to the
equation tree in Fig 1, the node marked “−r” repre-
sents (3× V1)− 25, and the root represents the full
equation 2× V1 = (3× V1)− 25.

4 Projectivity

For each leaf n of an equation tree T , we de-
fine a function Location(·), to indicate the posi-
tion of the corresponding trigger in text. We also
define for each node n of equation tree T , func-
tions Span-Start(n) and Span-End(n) to denote
the minimum span of text containing the leaves of
the subtree rooted at n. We define them as follows:

Span-Start(n) =




Location(n) if n is a leaf
min(Span-Start(lc(n)), Span-Start(rc(n)))

otherwise

Span-End(n) =




Location(n) if n is a leaf
max(Span-End(lc(n)), Span-End(rc(n)))

otherwise

An equation tree T is called projec-
tive iff for every node n of T , either
Span-End(lc(n)) ≤ Span-Start(rc(n)) or
Span-End(rc(n)) ≤ Span-Start(lc(n)). In other
words, the span of the left child and the right child
cannot intersect in a projective equation tree2.

The key observation, as our corpus analysis indi-
cates, is that for most sentences, there exists a trig-
ger list, such that the equation tree representing the
relation in the sentence is projective. However this
might involve mapping two mentions of the same
variable to different noun phrases. Figure 1 shows
an example of a projective equation tree, which re-
quires different mentions of V1 to be mapped to dif-
ferent noun phrases. If we had mapped both men-
tions of V1 to same noun phrase “a number”, the
resulting equation tree would not have been projec-
tive. We collected 385 sentences which represent
an equation with one or two mentions of variables,
and each number in the sentence used at most once
in the equation. We found that only one sentence
among these could not generate a projective equa-
tion tree. (See Section 6.1 for details on dataset

2This is more general than the definition of projective trees
used in dependency parsing (McDonald et al., 2005).
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creation). Therefore, we develop an algorithmic ap-
proach for predicting projective equation trees, and
show empirically that it compares favourably with
ones which do not make the projective assumption.

5 Predicting Equation Parse

Equation parsing of a sentence involves predicting
three components – Quantity Trigger List, Variable
Trigger List and Equation Tree. We develop three
structured prediction modules to predict each of the
above components.

All our prediction modules take a similar form:
given input x and output y, we learn a scoring func-
tion fw(x, y), which scores how likely is the output
y given input x. The scoring function fw(x, y) is
linear, fw(y) = wTφ(x, y), where φ(x, y) is a fea-
ture vector extracted from x and y. The inference
problem, that is, the prediction y∗ for an input x is
then: y∗ = argmaxy∈Y fw(y), where Y is the set of
all allowed values of y.

5.1 Predicting Quantity Trigger List
Given input text and the quantities mentioned in it,
the role of this step is to identify , for each quan-
tity in the text, whether it should be part of the fi-
nal equation. For instance, in example 5 in Section
1, both “5” and “10” are not relevant for the final
equation “V1 + V2 = 54”. Similarly, in example
4, the number “two” is irrelevant for the equation
“V1 + V2 = 80”.

We define for each quantity q in the sentence, a
boolean value Relevance(q), which is set to true
if q is relevant for the final equation, and to false
otherwise. For the structured classification, the in-
put x is the sentence along with a set of recognized
quantities mentioned in it, and the output y is the
relevance values for all quantities in the sentence.
We empirically found that predicting all relevance
values jointly performs better than having a binary
classifier predict each one separately. The feature
function φ(x, y) used for the classification gener-
ates neighborhood features (from neighborhood of
q) and quantity features (properties of the quantity
mention). Details added to the appendix.

5.2 Predicting Variable Trigger List
The goal of this step is to predict the variable trigger
list for the equation. Our structured classifier takes

as input the sentence x, and the output y is either
one or two noun-phrases, representing variables in
the final equation. As we pointed out earlier, mul-
tiple groundings might be valid for any given vari-
able, hence there can be multiple valid variable trig-
ger lists. For every sentence x, we construct a set Y
of valid outputs. Each element in Y corresponds to
a valid variable trigger list. Finally, we aim to output
only one of the elements of Y .

We modified the standard structured prediction al-
gorithm to consider “superset supervision” and take
into account multiple gold structures for an input x.
We assume access to N training examples of the
form : (x1, Y1), (x2, Y2), . . . , (xN , YN ), where each
Yi is a set of valid outputs for the sentence xi. Since
we want to output only one variable trigger list, we
want to score at least one y from Yi higher than all
other possible outputs, for each xi. We use a modi-
fied latent structured SVM to learn the weight vector
w. The algorithm treats the best choice among all of
Yi as a latent variable. At each iteration, for all xi,
the algorithm chooses the best choice y∗i from the
set Yi, according to the weight vector w. Then, w
is updated by learning on all (xi, y∗i ) by a standard
structured SVM algorithm. The details of the algo-
rithm are in Algorithm 1. The distinction from stan-

Algorithm 1 Structural SVM with Superset Super-
vision
Input: Training data T =
{(x1, Y1), (x2, Y2), . . . , (xN , YN )}

Output: Trained weight vector w
1: w ← w0

2: repeat
3: T ′ ← ∅
4: for all (xi, Yi) ∈ T do
5: y∗i ← argmaxy∈Yi w

Tφ(xi, y)
6: T ′ ← T ′ ∪ {(xi, y∗i )}
7: end for
8: Update w by running standard Structural

SVM algorithm on T ′

9: until convergence
10: return w

dard latent structural SVM is in line 5 of Algorithm
1. In order to get the best choice y∗i for input xi, we
search only inside Yi, instead of all of Y . A similar
formulation can be found in Björkelund and Kuhn
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(2014). The features φ(x, y) used for variable trig-
ger prediction include variable features (properties
of noun phrase indicating variable) and neighbor-
hood features (lexical features from neighborhood
of variable mention). Details added to the appendix.

If the output of the classifier is a pair of noun
phrases, we use a rule based variable coreference
detector, to determine whether both noun phrases
should have the same variable label or not. The rules
for variable coreference are as follows :

1. If both noun phrases are the same, and they do
not have the token “two” or “2”, they have the
same label.

2. If the noun phrases are different, and the noun
phrase appearing later in the sentence contains
tokens “itself”, “the same number”, they have
the same label.

3. In all other cases, they have different labels.

Finally, each noun phrase contributes one variable
trigger to the variable trigger list.

5.3 Predicting Equation Tree

It is natural to assume that the syntactic parse of the
sentence could be very useful in addressing all the
predictions we are making in the equation parsing
tasks. However, it turns out that this is not the case
– large portions of the syntactic parse will not be
part of the equation parse, hence we need the afore-
mentioned modules to address this. Nevertheless,
in the next task of predicting the equation tree, we
attempted to constraint the output space using guid-
ance from the syntactic tree; we found, though, that
even enforcing this weak level of output expectation
is not productive. This was due to the poor perfor-
mance of current syntactic parsers on the equation
data (eg., in 32% of sentences, the Stanford parser
made a mistake which does not allow recovering the
correct equation).

The tree prediction module receives the trigger list
predicted by the previous two modules, and the goal
is to create an equation tree using the trigger list as
the leaves of that tree. The input x is the sentence
and the trigger list, and the output y is the equation
tree representing the relation described in the sen-
tence. We assume that the output will be a projective

equation tree. For features φ(x, y), we extract for
each non-leaf node n of the equation tree y, neigh-
borhood features (from neighborhood of node spans
of n’s children), connecting text features (from text
between the spans of n’s children) and number fea-
tures (properties of number in case of leaf nodes).
Details are included in the appendix.

The projectivity assumption implies that the final
equation tree can be generated by combining only
adjacent nodes, once the set of leaves is sorted based
on Span-Start(·) values. This allows us to use CKY
algorithm for inference. A natural approach to fur-
ther reduce the output space is to conform to the
projective structure of the syntactic parse of the sen-
tence. However, we found this to adversely affect
performance, due to the poor performance of syn-
tactic parser on equation data.
Lexicon To bootstrap the equation parsing process,
we developed a high precision lexicon to translate
mathematical expressions to operations and orders,
like “sum of A and B” translates to “A+B”, “A minus
B” translates to “A-B”, etc. (where A and B denote
placeholder numbers or expressions). At each step
of CKY, while constructing a node n of the equation
tree, we check for a lexicon text expression corre-
sponding to node n. If found, we allow only the
corresponding operation (and order) for node n, and
do not explore other operations or orders. We show
empirically that reducing the space using this greedy
lexicon matching help improve performance. We
found that using the lexicon rules as features instead
of hard constraints do not help as much. Note that
our lexicon comprises only generic math concepts,
and around 50% of the sentences in our dataset do
not contain any pattern from the lexicon.

Finally, given input sentence, we first predict the
quantity trigger and the variable trigger lists. Given
the complete trigger list, we predict the equation tree
relating the components of the trigger list.

5.4 Alternatives
A natural approach could be to jointly learn to pre-
dict all three components, to capture the dependen-
cies among them. To investigate this, we developed
a structured SVM which predicts all components
jointly, using the union of the features of each com-
ponent. We use approximate inference, first enumer-
ating possible trigger lists, and then equation trees,
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and find the best scoring structure. However, this
method did not outperform the pipeline method. The
worse performance of joint learning is due to: (1)
search space being too large for the joint model to do
well given our dataset size of 385, and (2) our inde-
pendent classifiers being good enough, thus support-
ing better joint inference. This tradeoff is strongly
supported in the literature (Punyakanok et al., 2005;
Sutton and McCallum, 2007).

Another option is to enforce constraints between
trigger list predictions, such as, variable triggers
should not overlap with the quantity triggers. How-
ever, we noticed that often noun phrases returned
by the Stanford parser were noisy, and would in-
clude neighboring numbers within the extracted
noun phrases. This prevented us from enforcing
such constraints.

6 Experimental Results

We now describe the data set, and the annotation
procedure used. We then evaluate the system’s per-
formance on predicting trigger list, equation tree,
and the complete equation parse.

6.1 Dataset

We created a new dataset consisting of 385 sen-
tences extracted from algebra word problems and fi-
nancial news headlines. For algebra word problems,
we used the MIT dataset (Kushman et al., 2014),
and two high school mathematics textbooks, Ele-
mentary Algebra (College of Redwoods) and Begin-
ning and Intermediate Algebra (Tyler Wallace). Fi-
nancial news headlines were extracted from The Lat-
est News feed of MarketWatch, over the month of
February, 2015. All sentences with information de-
scribing a mathematical relation among at most two
(possibly coreferent) variables, were chosen. Next,
we pruned sentences which require multiple uses of
a number to create the equation. This only removed
a few time related sentences like “In 10 years, John
will be twice as old as his son.”. We empirically
found that around 97% of sentences describing a re-
lation fall under the scope of our dataset.

The annotators were shown each sentence paired
with the normalized equation representing the rela-
tion in the sentence. For each variable in the equa-
tion, the annotators were asked to mark spans of

text which best describe what the variable repre-
sents. The annotation guidelines are provided in
the appendix. We wanted to consider only noun
phrase constituents for variable grounding. There-
fore, for each annotated span, we extracted the noun
phrase with maximum overlap with the span, and
used it to represent the variables. Finally, a tu-
ple with each variable being mapped to one of the
noun phrases representing it, forms a valid output
grounding (variable trigger list). We computed inter-
annotator agreement on the final annotations where
only noun phrases represent variables. The agree-
ment (kappa) was 0.668, indicating good agreement.
The average number of mention annotations per sen-
tence was 1.74.

6.2 Equation Parsing Modules

In this section, we evaluate the performance of the
individual modules of the equation parsing process.
We report Accuracy - the fraction of correct predic-
tions. Table 3 shows the 5-fold cross validation ac-
curacy of the various modules. In each case, we also
report accuracy by removing each feature group, one
at a time. In addition, for equation tree prediction,
we also show the effect of lexicon, projectivity, con-
forming to syntactic parse constraints, and using lex-
icon as features instead of hard constraints. For all
our experiments, we use the Stanford Parser (Socher
et al., 2013), the Illinois POS tagger (Roth and Ze-
lenko, 1998) and the Illinois-SL structured predic-
tion package (Chang et al., 2015).

6.3 Equation Parsing Results

In this section, we evaluate the performance of our
system on the overall equation parsing task. We re-
port Equation Accuracy - the fraction of sentences
for which the system got the equation correct, and
Equation+Grounding Accuracy - the fraction of sen-
tences for which the system got both the equation
and the grounding of variables correct. Table 4
shows the overall performance of our system, on a
5-fold cross validation. We compare against Joint
Learning - a system which jointly learns to predict
all relevant components of an equation parse (Sec-
tion 5.4). We also compare with SPF (Artzi and
Zettlemoyer, 2013), a publicly available semantic
parser, which can learn from sentence-logical form
pairs. We train SPF with sentence-equation pairs
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Quantity Trigger List Prediction Accuracy

All features 95.3
No Neighborhood features 42.5
No Quantity features 93.2

Variable Trigger List Prediction Accuracy

All features 75.5
No Variable features 58.6
No Neighborhood features 70.3

Equation Tree Prediction Accuracy

All features 78.9
No Neighborhood features 64.3
No Connecting Text features 70.2
No Number features 77.6
No Lexicon 72.7
No Projectivity 72.8
Conform with Syntactic Parse 70.2
Lexicon as Features 74.5

Table 3: Performance of system components

Source
Equation
Accuracy

Equation +
Grounding
Accuracy

Our System 71.3 61.2
Joint Learning 60.9 50.0
SPF 3.1 N/A

Table 4: Performance on equation parsing

and a seed lexicon for mathematical terms (similar to
ours), and report equation accuracy. Our structured
predictors pipeline approach is shown to be superior
to both Joint Learning and SPF.

SPF gets only a few sentences correct. We at-
tribute this to the inability of SPF to handle over-
lapping mentions (like in Example 4), as well as its
approach of parsing the whole sentence to the fi-
nal output form. The developers of SPF also con-
firmed 3 that it is not suitable for equation parsing
and that these results are expected. Since equation
parsing is a more involved process, a slight adapta-
tion of SPF does not seem possible, necessitating a
more involved process , of the type we propose. Our
approach, in contrast to SPF, can handle overlapping
mentions, selects triggers from text, and parses the
trigger list to form equations.

3Private communication

6.4 Error Analysis

For variable trigger list prediction, around 25% of
the errors were due to the predictor choosing a span
which is contained within the correct span, e.g.,
when the target noun phrase is “The cost of a child’s
ticket”, our predictor chose only “child’s ticket”.
Although this choice might be sufficient for down-
stream tasks, we consider it to be incorrect in our
current evaluation. Another 25% of the errors were
due to selection of entities which do not participate
in the relation. For example, in “A rancher raises 5
times as many cows as horses.”, our predictor chose
“A rancher” and “cows” as variables, whereas the
relation exists between “cows” and “horses”. For
the prediction of the equation tree, we found that
35% of the errors were due to rare math concepts
expressed in text. For example, “7 dollars short of
the price” represents 7 dollars should be subtracted
from the price. These errors can be handled by care-
fully augmenting the lexicon. Another 15% of the
errors were due to lack of world knowledge, requir-
ing understanding of time, speed, and distance.

7 Conclusion

This paper investigates methods that identify and
understand mathematical relations expressed in
text. We introduce the equation parsing task, which
involves generating an equation from a sentence
and identifying what the variables represent. We
define the notion of projectivity, and construct a
high precision lexicon, and use these to reduce the
equation search space. Our experimental results are
quite satisfying and raise a few interesting issues. In
particular, it suggests that predicting equation parses
using a pipeline of structured predictors performs
better than jointly trained alternatives. As discussed,
it also points out the limitation of the current NLP
tools in supporting these tasks. Our current formu-
lation has one key limitation; we only deal with
expressions that are described within a sentence.
Our future work will focus on lifting this restriction,
in order to allow relations expressed across multiple
sentences and multiple relations expressed in the
same sentence. Code and dataset are available
at http://cogcomp.cs.illinois.edu/
page/publication_view/800.
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A Features

A.1 Quantity Trigger List Prediction
The feature function φ(x, y) used for the classifica-
tion generates the following features :

1. Neighborhood features : For each quantity q
in the input sentence, we add unigrams and bi-
grams generated from a window around q, part
of speech tags of neighborhood tokens of q. We
conjoin these features with Relevance(q).

2. Quantity Features : For each quantity q, we
add unigrams and bigrams of the phrase repre-
senting the quantity. Also, we add a feature in-
dicating whether the number is associated with
number one or two, and whether it is the only
number present in the sentence. These features
are also conjoined with Relevance(q).

A.2 Variable Trigger List Prediction
The features φ(x, y) used for variable trigger predic-
tion are as follows:

1. Variable features : Unigrams and bigrams
generated from the noun phrase representing
variables, part of speech tags of tokens in noun
phrase representing variables.

2. Neighborhood Features : Unigrams and POS
tags from neighborhood of variables.

All the above features are conjoined with two labels,
one denoting whether y has two variables or one,
and the second denoting whether y has two variables
represented by the same noun phrase.

A.3 Equation Tree Prediction
For features φ(x, y), we extract for each non-leaf
node n of the equation tree y, the following:

1. Neighborhood Features : Unigrams, bi-
grams and POS tags from neighborhood
of Span-Start(lc(n)), Span-Start(rc(n)),

Span-End(lc(n)) and Span-End(rc(n)),
conjoined with �(n) and ORDER(n).

2. Connecting Text Features : Unigrams,
bigrams and part of speech tags between
min(Span-End(lc(n)),Span-End(rc(n)))
and max(Span-Start(lc(n)),
Span-Start(rc(n))), conjoined with �(n) and
ORDER(n).

3. Number Features : In case we are combining
two leaf nodes representing quantity triggers,
we add a feature signifying whether one num-
ber is larger than the other.

B Annotation Guidelines

The annotators were shown each sentence paired
with the normalized equation representing the rela-
tion in the sentence. For each variable in the equa-
tion, the annotators were asked to mark spans of text
which best describe what the variable represents.
They were asked to annotate associated entities if
exact variable description was not present. For in-
stance, in example 3 (Section 1), the relation holds
between the speed of bird and the speed of wind.
However, “speed” is not explicitly mentioned in the
sentence. In such cases, the annotators were asked
to annotate the associated entities “the wind” and “a
bird” as representing variables.

The guidelines also directed annotators to choose
the longest possible mention, in case they feel the
mention boundary is ambiguous. As a result, in
the sentence, “City Rentals rent an intermediate-size
car for 18.95 dollars plus 0.21 per mile.”, the phrase
“City Rentals rent an intermediate-size car” was an-
notated as representing variable. We allow multiple
mentions to be annotated for the same variable. In
example 2 (Section 1), both “a number” and “the
same number” were annotated as representing the
same variable.
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